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1 Introduction to MATLAB and Seismic Data

1.1 Scope and Prerequisites

This is a book about a complex and diverse subject: the numerical algorithms used to

process exploration seismic data to produce images of the Earth’s crust. The techniques

involved range from simple and graphical to complex and numerical. More often than not,

they tend toward the latter. The methods frequently use advanced concepts from physics,

mathematics, numerical analysis, and computation. This requires the reader to have a

background in these subjects at approximately the level of an advanced undergraduate

or beginning graduate student in geophysics or physics. This need not include experience

in exploration seismology, but such experience would be helpful.

Seismic datasets are often very large and have, historically, strained computer storage

capacities. This, along with the complexity of the underlying physics, has also strongly

challenged computation throughput. These difficulties have been a significant stimulus to

the development of computing technology. In 1980, a 3D migration1 was only possible

in the advanced computing centers of the largest oil companies. At that time, a 50 000-

trace 3D dataset would take weeks to migrate on a dedicated, multimillion-dollar computer

system. Today, much larger datasets are routinely migrated by companies and individu-

als around the world, often on computers costing less than $5000. The effective use of

this book, including working through the computer exercises, requires access to a signifi-

cant machine (at least a late-model PC or Macintosh) with MATLAB installed and having

significant memory and disk drive capacity.

Though numerical algorithms, coded in MATLAB, will be found throughout this book,

this is not a book primarily about MATLAB. It is quite feasible for the reader to plan

to learn MATLAB concurrently with working through this book, but a separate reference

work on MATLAB is highly recommended. In addition to the reference works published by

The MathWorks (the makers of MATLAB), there are many excellent independent guides

in print such as Etter (1996), Hanselman and Littlefield (1998), Redfern and Campbell

(1998), and the more recent Higham and Higham (2000). In addition, the student edition of

MATLAB is a bargain and comes with a very good reference manual. If you already own a

MATLAB reference, then stick with it until it proves inadequate. The website of The Math-

Works is worth a visit because it contains an extensive database of books about MATLAB.

Though this book does not teach MATLAB at an introductory level, it illustrates a vari-

ety of advanced techniques designed to maximize the efficiency of working with large

1 Migration refers to the fundamental step in creating an Earth image from scattered data.
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2 1 Introduction to MATLAB and Seismic Data

datasets. As with many MATLAB applications, it helps greatly if the reader has had some

experience with linear algebra. Hopefully, the concepts of matrices, row vectors, column

vectors, and systems of linear equations will be familiar.

1.1.1 WhyMATLAB?

A few remarks are appropriate concerning the choice of the MATLAB language as a vehi-

cle for presenting numerical algorithms. Why not choose a more traditional language like

C or Fortran, or an object-oriented language like C++ or Java?

MATLAB was not available until the latter part of the 1980s, and, prior to that, Fortran

was the language of choice for scientific computations. Though C was also a possibility, its

lack of a built-in facility for complex numbers was a considerable drawback. On the other

hand, Fortran lacked some of C’s advantages such as structures, pointers, and dynamic

memory allocation.

The appearance of MATLAB changed the face of scientific computing for many practi-

tioners, these authors included. MATLAB evolved from the Linpack package, which was

familiar to Fortran programmers as a robust collection of tools for linear algebra. However,

MATLAB also introduced a new vector-oriented programming language, an interactive

environment, and built-in graphics. These features offered sufficient advantages that users

found their productivity was significantly increased over the more traditional environ-

ments. Since then, MATLAB has evolved to have a large array of numerical tools, both

commercial and shareware; excellent 2D and 3D graphics; object-oriented extensions; and

a built-in interactive debugger.

Of course, C and Fortran have evolved as well. C has led to C++ and Fortran to For-

tran90. Though both of these languages have their adherents, neither seems to offer as

complete a package as does MATLAB. For example, the inclusion of a graphics facility in

the language itself is a major boon. It means that MATLAB programs that use graphics are

standard throughout the world and run the same on all supported platforms. It also leads

to the ability to graphically display data arrays at a breakpoint in the debugger. These are

useful practical advantages, especially when working with large datasets.

The vector syntax of MATLAB, once mastered, leads to more concise code than in most

other languages. Setting one matrix equal to the transpose of another through a statement

like A=B’; is much more transparent than something like

do i=1,n
do j=1,m

A(i,j)=B(j,i)
enddo

enddo

Also, for the beginner, it is actually easier to learn the vector approach, which does not

require so many explicit loops. For someone well versed in Fortran, it can be difficult to

unlearn this habit, but it is well worth the effort.

It is often argued that C and Fortran are more efficient than MATLAB and therefore more

suitable for computationally intensive tasks. However, this view misses the big picture.

What really matters is the efficiency of the entire scientific process, from the genesis of the
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3 1.2 MATLAB Conventions Used in This Book

idea, through its rough implementation and testing, to its final polished form. Arguably,

MATLAB is much more efficient for this entire process. The built-in graphics, interactive

environment, large tool set, and strict run-time error checking lead to very rapid prototyp-

ing of new algorithms. Even in the more narrow view, well-written MATLAB code can

approach the efficiency of C and Fortran. This is partly because of the vector language but

also because most of MATLAB’s number crunching actually happens in compiled library

routines written in C.

Traditional languages like C and Fortran originated in an era when computers were

room-sized behemoths and resources were scarce. As a result, these languages are oriented

toward simplifying the task of the computer at the expense of the human programmer. Their

cryptic syntax leads to efficiencies in memory allocation and computation speed that were

essential at the time. However, times have changed and computers are relatively plentiful,

powerful, and cheap. It now makes sense to shift more of the burden to the computer to

free the human to work at a higher level. Spending an extra $100 to buy more RAM may

be more sensible than developing a complex data-handling scheme to fit a problem into

less space. In this sense, MATLAB is a higher-level language that frees the programmer

from technical details to allow time to concentrate on the real problem.

Of course, there are always people who see these choices differently. Those in disagree-

ment with the reasons cited here for MATLAB can perhaps take some comfort in the fact

that MATLAB syntax is fairly similar to C or Fortran and translation is not difficult. Also,

The MathWorks markets a MATLAB “compiler” that emits C code that can be run through

a C compiler.

1.2 MATLAB Conventions Used in This Book

There are literally hundreds of MATLAB functions that accompany this book (and hun-

dreds more that come with MATLAB). Since this is not a book about MATLAB, most of

these functions will not be examined in any detail. However, all have full online docu-

mentation, and their code is liberally sprinkled with comments. It is hoped that this book

will provide the foundation necessary to enable the user to use and understand all of these

commands at whatever level necessary.

Typographic style variations are employed here to convey additional information about

MATLAB functions. A function name presented like plot refers to a MATLAB function

supplied by The MathWorks as part of the standard MATLAB package. A function name

presented like dbspec refers to a function provided with this book. Moreover, the name

NMES Toolbox refers to the entire collection of software provided in this book.

MATLAB code will be presented in small numbered packages entitled “code snippets.”

An example is the code required to convert an amplitude spectrum from linear to decibel

scale (Code Snippet 1.2.1).

The actual MATLAB code is displayed in an upright typewriter font, while introductory

remarks are emphasized like this. The code snippets do not employ typographic variations

to indicate which functions are contained in the NMES Toolbox as is done in the text proper.
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4 1 Introduction to MATLAB and Seismic Data

Code Snippet 1.2.1 This code computes a wavelet and its amplitude spectrum on both

linear and decibel scales. It makes Figure 1.1. The final line prints the figure into an “eps”

file, a detail that will not usually be included in subsequent code snippets.

1 [wavem,t]=wavemin(.001,20,1);
2 [Wavem,f]=fftrl(wavem,t);
3 Amp=abs(Wavem);
4 dbAmp=20*log10(Amp/max(Amp));
5 figure
6 subplot(3,1,1);plot(t,wavem);xlabel(’time (sec)’);xlim([0 .2])
7 subplot(3,1,2);plot(f,abs(Amp));xlabel(’Hz’);ylabel(’linear scale’);
8 ylim([0 1.01])
9 subplot(3,1,3);plot(f,dbAmp);xlabel(’Hz’);ylabel(’db down’)

10 prepfiga
11 bigfont(gcf,2,1)
12
13 print -deps .\intrographics\intro1a.eps

End Code

introcode / intro1 .m

It has proven impractical to discuss all of the input parameters for all of the programs

shown in the code snippets. Those germane to the current topic are discussed, but the

remainder are left for the reader to explore using MATLAB’s interactive help facility.2 For

example, in Code Snippet 1.2.1, wavemin creates a minimum-phase wavelet sampled at

0.002 s, with a dominant frequency of 20 Hz and a length of 0.2 s. Then fftrl computes

the Fourier spectrum of the wavelet and abs constructs the amplitude spectrum from the

complex Fourier spectrum. Finally, the amplitude spectrum is converted to decibels (dB)

on line 4.

A decibel scale is a logarithmic display of amplitude, which is extremely useful when the

amplitude range extends over many orders of magnitude. Given an amplitude function like

A( f ), where in this context we are speaking of the amplitude of a spectrum as a function

of frequency, the decibel representation comes from the formula

AdB( f ) = 20 log10

(

A( f )

Aref

)

, (1.1)

where we assume A( f ) > 0 everywhere (if it is not obvious why, then you might want to

review logarithms), and Aref is a reference amplitude. Often the choice Aref = max(A( f ))

is made, which means that AdB( f ) will be all negative numbers except at the maximum,

where it will be zero. Suppose A( f ) = Aref/2; then AdB = 20 log10(0.5) ≈ −6 dB. Using

the properties of logarithms, if A( f ) = Aref/4, then AdB = 20 log10(
1
2

1
2
) = 20[log10

1
2

+

log10
1
2
] ≈ −12 dB. So, every −6 dB represents a decrease in amplitude by a factor of 1

2
.

Similarly, if the reference amplitude is not the maximum, then every increase in amplitude

2 To find out more about any of these functions and their inputs and outputs, type, for example, “help fftrl” at

the MATLAB prompt.
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Figure 1.1 Aminimum-phase wavelet (top), its amplitude spectrum plotted on a linear scale (middle), and its amplitude

spectrum plotted on a decibel scale (bottom).

by a factor of 2 is a +6 dB increase. Sometimes we prefer to think in factors of 10, and it is

similarly easy to show that −20 dB represents a decrease by a factor of 1
10

, while +20 dB

is an increase by 10.

This example illustrates several additional conventions. Digital seismic traces3 are dis-

crete time series, but the common textbook convention of assuming a sample interval of

unity in arbitrary units is not appropriate for practical problems. Instead, two vectors will

be used to describe a trace, one to give its amplitude and the other to give the temporal

coordinates for the first vector. Thus wavemin returns two vectors (that they are vectors

is not obvious from the code snippet), with wavem being the wavelet amplitudes and t

being the time coordinate vector for wavem. Thus the top graph of Figure 1.1 is created by

simply cross-plotting these two vectors: plot(t,wavem). Similarly, the Fourier spectrum,

Wavem, has a frequency coordinate vector f. Temporal values must always be specified in

seconds and will be returned in seconds, and frequency values must always be in hertz.

(One hertz (Hz) is one cycle per second.) Milliseconds or radians/second specifications

will never occur in code, though both cyclical frequency f and angular frequency ω may

appear in formulas (ω = 2π f).

Seismic traces will always be represented by column vectors, whether in the time or the

Fourier domain. This allows an easy transition to 2D trace gathers, such as source records

and stacked sections, where each trace occupies one column of a matrix. This column

vector preference for signals can lead to a class of simple MATLAB errors for the unwary

user. For example, suppose a seismic trace s is to be windowed to emphasize its behavior in

one zone and de-emphasize it elsewhere. The simplest way to do this is to create a window

vector win that is the same length as s and use MATLAB’s .* (dot-star) operator to multiply

3 A seismic trace is usually the recording of a single-component geophone or hydrophone. Less commonly, for

a multicomponent geophone, it is the recording of one component.
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6 1 Introduction to MATLAB and Seismic Data

Code Snippet 1.2.2 This code creates a synthetic seismogram using the convolutional

model but then generates an error while trying to apply a boxcar window. (A boxcar

window is a time series that is all zeros except for a selected range, where it is 1.0.)

1 [r,t]=reflec(1,.002,.2); %make a synthetic reflectivity
2 [w,tw]=wavemin(.002,20,.2); %make a wavelet
3 s=convm(r,w); % make a synthetic seismic trace
4 n2=round(length(s)/2);
5 win=0*(1:length(s));%initialize window to all zeros
6 win(n2-50:n2+50)=1;%100 samples in the center of win are 1.0
7 swin=s.*win; % apply the window to the trace

End Code

introcode / intro2 .m

each sample in the trace by the corresponding sample in the window. The temptation is to

write a code something like Code Snippet 1.2.2.

MATLAB’s response to this code is the error message

Error using .*

Matrix dimensions must agree.

The error occurs because the code 1:length(s) used on line 5 generates a 1 × 501 row

vector like 1, 2, 3, . . . , n, where n=length(s), while s is a 501 × 1 column vector. The .*

operator requires both operands to have exactly the same geometry. The simplest fix is to

write swin=s.*win(:);, which exploits the MATLAB feature that a(:) is reorganized

into a column vector (see page 38 for a discussion) regardless of the actual size of a.

As mentioned previously, two-dimensional seismic data gathers will be stored in ordi-

nary matrices. Each column is a single trace, and so each row is a time slice. A complete

specification of such a gather requires both a time coordinate vector, t, and a space

coordinate vector, x.

Rarely will the entire code from a function such as wavemin or reflec be presented.

This is because the code listings of these functions can span many pages and contain much

material that is not directly relevant or is outside the scope of this book. For example, there

are often many lines of code that check input parameters and assign defaults. These tasks

have nothing to do with numerical algorithms and so will not be presented or discussed.

Of course, the reader is always free to examine the entire codes at leisure.

1.3 Seismic Wavelets

In the previous section, mention was made of a minimum-phase wavelet, of which there

is a great variety, and there are also many other wavelet types. In seismology, a wavelet

typically represents the waveform emitted by a seismic source and as possibly modified

by data processing. All wavelet types have a specific mathematical form, which may have
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7 1.3 Seismic Wavelets

variable parameters such as a dominant frequency, a wavelet length (in time), and perhaps

a phase option. The mathematical formulas that these wavelets are based on will be pre-

sented later, in Section 4.7.1. For now, we will simply illustrate how to generate some basic

wavelets and discuss their most obvious properties.

A minimum-phase wavelet (Figure 1.1) refers to a specific type of wavelet that is

thought to be a good model for the waveform from an impulsive seismic source such as

dynamite. For now, the reasons for the name “minimum phase” will not be investigated;

rather, it is sufficient to realize that such wavelets are causal,4 have a shaped amplitude

spectrum with a dominant frequency, have an amplitude spectrum that must never vanish

at any frequency,5 and have a phase spectrum that is linked to the shape of the amplitude

spectrum. (If these terms such as “spectrum,” “amplitude,” and “phase” are unfamiliar,

rest assured that they will be explained fully in Chapter 2.) Minimum-phase wavelets

are typically used to model raw or unprocessed data. While they arise naturally, they are

not usually preferred for interpretation, because their peak energy is always delayed from

t = 0. It is a major task of data processing to estimate the wavelet in the raw data (it

is never known a priori) and design an operator to shape it to zero phase. Thus various

zero-phase wavelets are typically used to represent processed seismic data.

Figures 1.2a and 1.2b show four typical wavelets in the time and frequency domains.

The figures were created by Code Snippet 1.3.1. The minimum-phase wavelet, created

by wavemin , shows the basic causal nature and the delay of the maximum energy from

t = 0. The Ricker wavelet, created by ricker , is a popular wavelet for use in seismic

interpretation. A frequent task is to create a synthetic seismogram from well information

to compare with a final seismic image. The synthetic seismogram, s, is usually constructed

from a convolutional model s(t) = w(t) • r(t), where r is the reflectivity function (derived

from logging information), w is usually a zero-phase wavelet, very often a Ricker wavelet,

and • represents convolution.6 In Figure 1.2b, the amplitude spectra of these wavelets are

shown, and the minimum-phase and Ricker wavelets are similar, with smoothly sloping

spectra away from a dominant frequency. While the Ricker spectrum is only adjustable by

shifting the dominant frequency, the decay rate of the minimum-phase wavelet’s spectrum

can be controlled with the parameter m on line 8. The other two wavelets, Ormsby (from

ormsby ) and Klauder (from klauder ), have no single dominant frequency but instead

have a broad, flat passband. The details of these wavelets and spectra can be controlled

from the input parameters in the various programs. In Code Snippet 1.3.1, these parameters

have been deliberately chosen to make the wavelets similar.

Comparing the different zero-phase wavelets, it is apparent that the Ricker wavelet has

the least sidelobe energy but also has a greater width as measured between the first zero

crossings on either side of the maximum. The choice of which zero-phase wavelet to use

in creating a seismogram will depend upon the nature of the data and the data processing.

The Klauder wavelet is intended for correlated Vibroseis data. Vibroseis data is usually

4 A causal wavelet is one that vanishes before a specific time, usually taken to be t = 0, and persists arbitrarily

long afterwards.
5 Except possibly at a few isolated points.
6 Convolution is described intuitively in Section 2.3.1.
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8 1 Introduction to MATLAB and Seismic Data

Code Snippet 1.3.1 This code creates Figures 1.2a and 1.2b. Four wavelets are created:

minimum phase with wavemin , Ricker with ricker , Ormsby with ormsby , and Klauder

with klauder . The minimum-phase and Ricker wavelets have the same dominant fre-

quency, specified on line 2. The Ormsby and Klauder wavelets have broad, flat passbands

from fmin to fmax. The wavelets all have the same temporal length of tlen, which is set

here to 2.0 s. This is much longer than usual and is done simply to force fine sampling in

the frequency domain and make a better graph. The wavelets are created on lines 10–13

and their spectra are calculated on lines 15–18 using fftrl . Note the use of linesgray

to plot, rather than plot . This makes figures with gray lines of different shades rather than

color. The equivalent plot commands are shown commented out for comparison.

1 dt=.001;%time sample size
2 fdom=30;%dominant frequency for ricker and wavemin
3 fmin=10;%beginning of passband for ormsby and klauder
4 fmax=70;%end of passband for ormsby and klauder
5 tlen=2;%temporal length of each wavelet
6 slen=8;%sweep length (klauder)
7 staper=.5;%sweep taper (klauder)
8 m=3.5;%spectral decay control in wavemin
9

10 [wm,twm]=wavemin(dt,fdom,tlen,m);
11 [wr,twr]=ricker(dt,fdom,tlen);
12 [wo,two]=ormsby(fmin-5,fmin,fmax,fmax+10,tlen,dt);
13 [wk,twk]=klauder(fmin,fmax,dt,slen,tlen,staper);
14
15 [Wm,fwm]=fftrl(wm,twm);
16 [Wr,fwr]=fftrl(wr,twr);
17 [Wo,fwo]=fftrl(wo,two);
18 [Wk,fwk]=fftrl(wk,twk);
19
20 figure
21 inc=.1;
22 %plot(twm,wm,twr,wr+inc,two,wo+2*inc,twk,wk+3*inc);
23 linesgray({twm,wm,’-’,.4,0},{twr,wr+inc,’-’,.9,.3},...
24 {two,wo+2*inc,’-’,.9,.5},{twk,wk+3*inc,’-’,1.1,.7});
25 xlabel(’time (sec)’)
26 xlim([-.25 .25]);ylim([-.1 .45])
27 legend(’Minimum phase’,’Ricker’,’Ormsby’,’Klauder’)
28 grid
29 prepfig;bigfont(gca,1.8,1)
30
31 figure
32 %plot(fwm,abs(Wm),fwr,abs(Wr),fwo,abs(Wo),fwk,abs(Wk))
33 linesgray({fwm,abs(Wm),’-’,.4,0},{fwr,abs(Wr),’-’,.9,.3},...
34 {fwo,abs(Wo),’-’,.9,.5},{fwk,abs(Wk),’-’,1.1,.7});
35 xlabel(’frequency (Hz)’)
36 xtick([0 10 30 50 70 100 150])
37 legend(’Minimum phase’,’Ricker’,’Ormsby’,’Klauder’)
38 xlim([0 150]);ylim([0 1.1])
39 grid
40 prepfig;bigfont(gca,1.8,1)
41

End Code

introcode / waveletsfig .m
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Figure 1.2a (left) Four common seismic wavelets. The minimum-phase wavelet is a causal wavelet, which is a model for an

impulsive source like dynamite. The Ricker wavelet is zero phase with minimal sidelobes. The Ormsby wavelet is also

zero phase but with much larger sidelobes. The zero-phase Klauder wavelet is a commonmodel for Vibroseis data. The

wavelets are plotted with vertical shifts to avoid plotting on top of each other.

Figure 1.2b (right) The amplitude spectra of the wavelets of Figure 1.2a. The spectra of the minimum-phase and Ricker wavelets

decay smoothly away from a dominant frequency. The Ormsby and Klauder wavelets have a flat, broad passband and

then decay sharply at the limits of the passband. The ears at the edges of the Klauder passband are related to the

length of the sweep taper.

acquired with a source signature known as a sweep. A sweep is a temporally long7 signal

in which the vibrator runs through a prescribed range of frequencies called the swept band.

When equal power is given to each frequency, the sweep is known as a linear sweep, and

this is the usual case. Such data can be modeled as sv(t) = σ(t) • I(t), where σ(t) is the

sweep and I(t) is the Earth’s impulse response that would be recorded from a perfectly

impulsive source. After acquisition, the raw data is crosscorrelated with the sweep. We

can represent the correlated data as sc = σ(t) ⊗ sv(t) = wk(t) • I(t), where ⊗ means

crosscorrelation and wk is the Klauder wavelet defined by wk(t) = σ(t) ⊗ σ(t). Thus the

Klauder wavelet is the crosscorrelation of the sweep with itself, or the autocorrelation of

the sweep. There is a theoretical formula for the Klauder wavelet, but it is more realistic

to actually construct the sweep and numerically autocorrelate it, and this is what klauder

does. In Figure 1.2b, the Klauder spectrum is noticeably more narrow than the Ormsby

one. This is because, while the sweep begins and ends at 10 and 70 Hz, respectively, its

amplitude must rise gradually from zero to full strength because it is used to drive a large

machine. The length of time over which this happens is called the sweep taper and is

applied at both ends of the sweep. The taper causes reduced power at the beginning and

end of the sweep and is also responsible for the “ears” seen at about 15 and 65 Hz. Reducing

the length of the taper will broaden the spectrum but increase the height of the ears.

The Ormsby wavelet is often used to represent seismic data that has been deliberately

processed to have a flat passband over some prescribed range. This produces a very narrow

central wavelet peak but with quite a lot of sidelobe energy. The specification of an Ormsby

7 Sweep lengths ranging from 4 s to as long as 20 s are common in practice.
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10 1 Introduction to MATLAB and Seismic Data

wavelet is usually done by giving the four Ormsby parameters, which are called f1, f2, f3, f4,

with the following meanings:

• f1: high end of the low-frequency stop band. There is no signal for f < f1.

• f2: low end of the passband. The amplitude ramps up linearly for f1 ≤ f ≤ f2.

• f3: high end of the passband. The amplitude is constant for f2 ≤ f ≤ f3.

• f4: low end of the high-frequency stop band. There is no signal for f > f4.

The theoretical Ormsby wavelet is infinitely long, and any practical version must be

truncated. This truncation causes the stop bands to have some nonzero energy.

Each of these wavelets is normalized such that a sine wave of the dominant frequency

is unchanged in amplitude when convolved with the wavelet.

1.4 Dynamic Range and Seismic Data Display

Seismic data tends to be a challenge to computer graphics as well as to computer capacity.

A single seismic record can have a tremendous amplitude range. In speaking of this, the

term dynamic range is used, which refers to a span of real numbers. The range of numerical

voltages that a seismic recording system can faithfully handle is called its dynamic range.

For example, current digital recording systems use a fixed instrument gain and represent

amplitudes as 24-bit integer computer words.8 The first bit is used to record the sign, while

the last bit tends to fluctuate randomly, so effectively 22 bits are available. This means that

the amplitude range can be as large as 222 ≈ 106.6. Using the definition of a decibel given

in Eq. (1.1), this corresponds to about 132 dB, an enormous spread of possible values.

This 132 dB range is never usually fully realized when recording signals, for a variety of

reasons, the most important being the ambient noise levels at the recording site and the

instrument gain settings.

In a fixed-gain system, the instrument gain settings are determined to minimize clip-

ping by the analog-to-digital converter while still preserving the smallest possible signal

amplitudes. This usually means that some clipping will occur on events nearest the seismic

source. A very strong signal should saturate 22–23 bits, while a weak signal may affect

only the lowest several bits. Thus the precision, which refers to the number of significant

digits used to represent a floating-point number, steadily declines from the largest to the

smallest number in the dynamic range.

1.4.1 Single-Trace Plotting and Dynamic Range

Figure 1.3 was produced with Code Snippet 1.4.1 and shows two real seismic traces

recorded in 1997 by CREWES.9 This type of plot is called a wiggle trace display.

8 Previous systems used a 16-bit word and variable gain. A four-bit gain word, an 11-bit mantissa, and a sign

bit determined the recorded value.
9 CREWES is an acronym for the Consortium for Research in Elastic Wave Exploration Seismology at the

University of Calgary.
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