

Cambridge University Press 978-1-107-17009-4 — Gas Turbines: Internal Flow Systems Modeling Bijay Sultanian Index More Information

Index

1-D flow modeling, 144-153 chamber. See junction channel. See duct absolute reference frame. See inertial reference frame chargeable internal flow, 13 absolute velocity, 56 choking, 66 adiabatic expansion factor, 149 circular isobars, 83 adiabatic wall, 111 circular streamlines, 83 adiabatic wall temperature, 111 code validation, 143 code verification, 143 aerodynamic power transfer, 60 air properties. See air thermophysical properties combined-cycle thermal efficiency, 3 air thermophysical properties compressibility effect, 66 equation for density, 322 compressible flow network modeling, 153-156 equation for dynamic viscosity, 322 compressible flow review, 65-77 equation for Prandtl number, 322 compressor drum cavity. See compressor rotor cavity equation for specific heat at constant pressure, 322 compressor isentropic efficiency, 41, See also equation for thermal conductivity, 322 isentropic efficiency angular momentum, 55 compressor polytropic efficiency, 45, See also angular momentum equation, 55-57 polytropic efficiency ATEX certification, 119 compressor rotor cavity, 200-206, 270 axial rotor thrust, 218-221 flow and heat transfer physics in, 202-204 on blades, 220-221 heat transfer modeling, 207-209 on rotor disks, 220-221 in closed cavity, 206 with bore flow, 204-206 Bernoulli equation, 65 radially inward flow in, 270 Biot number, 119 computational fluid dynamics. See CFD blades, 6 conduction, 106-109 branch. See element 1-D steady, 107 1-D unsteady, 107-109 Brayton cycle, 41 conjugate heat transfer, 118-119 calorically perfect gas, 35 continuity equation, 52 carry-over coefficient, 242 control volume analysis, 51-60 cavity, 186-190, See also rotating cavity; rotor-stator convection, 109-113 forced, 110 centrifugal force, 56, 81-84 free, 110 centrifugally-driven buoyant convection, 106 mixed, 110 centripetal acceleration, 84 convection links, 261-268, See also nonlinear CFD, 17-18, 268-291 convection links 1-D CFD, 17, See also 1-D flow modeling junction of, 268 2-D CFD, 17 linear versus nonlinear, 261-263 3-D CFD, 18 convergent-divergent nozzle, 65-66, 148 methodology, 271-272 Coriolis force, 56, 81-84 role in multiphysics modeling, 268-270 corrected carry-over coefficient, 242 CFD boundary conditions, 281-285 coupling correction term, 148 alternate wall treatments, 285 curl, 319 inlet and outlet, 281-282 cycle efficiency. See thermal efficiency wall functions, 282-285 cycles. See thermodynamic cycles

352

Cambridge University Press 978-1-107-17009-4 — Gas Turbines: Internal Flow Systems Modeling Bijay Sultanian Index <u>More Information</u>

Index 353

damping parameter, 160	gas constant, 36
Darcy friction factor, 146	Gaussian error function, 109
direct numerical simulation (DNS), 18	GE's 9H/7H machines, 5
Dirichlet type thermal boundary condition, 118	GE9X, 1
disc. See rotor disk	geostrophic flow, 88
discharge coefficient, 102, See also loss coefficient	GE's 9HA/7HA machines, 3
disk. See rotor disk	governing conservation equations of CFD, 272–274
Dittus-Boelter equation, 164	chemical species, 273
divergence, 319	continuity, 272
duct, 144–149	energy, 273
continuity equation, 144–145	linear momentum, 272
energy equation, 147–148	the common equation form, 274
internal choking, 148	gradient, 318
linear momentum equation, 145–146	Grashof number, 110
normal shock within, 148, See also normal	gravitational body force, 204
shock	gravitational cody force, 20 f
dummy index in tensor notation, 317	heat rate, 40
dynamic enthalpy, 63	heat transfer coefficient, 109
dynamic pressure, 10, 51, 101, 139, 149	heat transfer review, 105–119
dynamic temperature, 65	hot gas ingestion, 209–218
dynamic viscosity, 141	1-D modeling, 213
ayimine viscosity, 111	multiple-orifice spoke model, 216–218
Eckert's reference temperature, 110	single-orifice model, 213–216
effective area, 148	ingress and egress, 209–210
Ekman boundary layer, 89–92	physics of, 210–212
Ekman number, 87	hydrodynamic boundary layer, 111
Ekman spiral, 92	nydrodynamie bodnady rayer, 111
element, 153–155	impulse functions, 70
energy equation, 57–59	static-pressure-based, 70
enthalpy, 35	total-pressure-based, 70
entropy, 37	impulse pressure, 51
entropy change computation, 38–39	index of isentropic compression. See ratio of specific
entropy equation, 59–60	heats
entropy map generation, 290–291	index of isentropic expansion. See ratio of specific
equation of state, 78	heats
Euler work transfer, 58	index of polytropic compression, 44
Euler's turbomachinery equation, 60–65	index of polytropic expansion, 45
alternate form of, 62–63	inertial reference frame, 63, 79–81
Eulerian viewpoint, 51	Cartesian coordinates, 79
extensive property, 51	cylindrical coordinates, 79
external flow energy, 66	intensive property, 51
	internal air system (IAS), 8, See also internal flow
Fanning friction factor. See shear coefficient	system (IFS)
Fanno flow, 74–75	internal energy, 35
finite element analysis. See thermal FEA;	internal flow concepts, 92–105
thermomechanical FEA	internal flow energy, 66
first law of thermodynamics, 35	internal flow system (IFS), 8–15
flow network model (FNM), 261	cycle penalty, 13–15
flow network solution, 156-161	efficiency impact, 11–13
element flow direction, 159	key components of, 8–11
initial solution generation, 158	cavity, 11, See also cavity
modified Newton-Raphson method,	channel, 10, See also duct
160–161	orifice, 10, See also orifice
Newton-Raphson method, 160	vortex, 10, See also vortex
fluid mechanics review, 46–92	internet of things (IoT), 258
free index in tensor notation, 317	isentropic compressible flow, 66–67
free stream temperature, 111	with area change, 73–74
frictional choking, 75	with rotation, 74
_·	· · · · · · · · · · · · · · · · · · ·

Cambridge University Press 978-1-107-17009-4 — Gas Turbines: Internal Flow Systems Modeling Bijay Sultanian Index More Information

354 Index

isentropic efficiency, 41-44 non-inertial reference frame, 63, 81-84 isentropic process, 41 cylindrical coordinates, 85 isobaric compressibility, 110 nonlinear convection links, 263-268, See also isochoric process, 35 convection links in multisided duct, 263-265 Jacobian matrix, 161 with uniform internal heat generation, 265 without internal heat generation, 265 iunction boundary junction, 156 multisurface forced vortex with windage, 266-267 internal junction, 155-156 normal shock, 77 normal shock function, 71-72 nozzle, 6 kinematic viscosity, 141 kinetic energy, 35 number of transfer units (NTU), 112 kinetic energy carry-over factor, 239 numerical heat transfer, 117-119 Kronecker delta, 318 Nusselt number, 110 orifice, 149-152 labyrinth seals flow physics, 238-239 generalized, 151-152 leakage mass flow rate, 239-242 sharp-edged, 149-151 stepped design, 238 overdetermined system of linear algebraic equations, straight-through design, 238 340-346 tooth-by-tooth modeling, 242-245 Golub's Householder reflection method, 340 orifice-cavity model, 245-248 HOME subroutine in FORTRAN, 341-346 Lagrangian viewpoint, 51 linear least-squares data fitting, 340-341 Laplacian, 319 large eddy simulation (LES), 18 path variables, 34 Levenberg-Marquardt method, 161 perfect gas law. See equation of state linear momentum equation, 53-55 physics-based modeling, 15-18 link. See element pipe. See duct loss coefficient, 101-105, See also discharge polytropic efficiency, 44-46 postprocessing of CFD results, 287–290 coefficient compressible flow, 103 potential energy, 35 incompressible flow, 101 Prandtl number, 110 relation with discharge coefficient, 103 pressure force, 145 pressure ratio, 42 Mach number, 65-66 preswirl system, 206-209 major loss, 154 heat transfer modeling, 207-209 Martin's formula, 240 preswirler. See preswirl system mass conservation. See continuity equation primary flow path, 4-7 mass flow functions, 67-70 probabilistic design. See robust design methodology static-pressure-based, 68 properties of air. See air thermophysical properties total-pressure-based, 68 radial equilibrium equation, 83 mass velocity, 54 material derivative. See total derivative radiation, 113-114 mathematics review, 317-321 radiation heat transfer, 106 mechanical area, 148 rate of entropy production, 59 minor loss, 101 ratio of specific heats, 141 moment coefficient, 184 Rayleigh flow, 75-76 Rayleigh-Ritz method, 303-305 momentum velocity, 54 Moody friction factor. See Darcy friction factor recovery factor, 111 multimode heat transfer, 114-116 reduced static pressure, 82 coupling with rotational work transfer, 116 reduced-order modeling. See 1-D flow modeling electrical analogy, 114-115 reference fluid temperature, 110 multiphysics modeling, 261-268 reference temperature, 36, 110, 204, 290 Regula Falsi algorithm. See Regula Falsi method

Regula Falsi method, 334-335

frame

REGULA subroutine in FORTRAN, 335 relative reference frame. *See* non-inertial reference

Navier-Stokes equations, 78-92

118 node. See junction

Neumann type thermal boundary condition,

Cambridge University Press 978-1-107-17009-4 — Gas Turbines: Internal Flow Systems Modeling Bijay Sultanian Index <u>More Information</u>

Index

355

relative total enthalpy, 62	specific heat at constant volume, 36
relative total pressure, 207	specific internal energy, 35
relative total temperature, 207	specific kinetic energy, 36
relative velocity, 56	specific total energy, 35
Reynolds number, 110	specific total enthalpy, 62
Reynolds transport theorem, 51	specific work, 6
rim seals. See hot gas ingestion	speed of sound, 65
Robin type thermal boundary condition, 118	Stanton number, 110
robust design methodology, 18-22	state properties, 34
Box-Behnken design (BBD), 21	static enthalpy. See enthalpy
central composite design (CCD), 21	static pressure, 50, 65, 67
design of experiments (DOE), 21	static temperature, 64–65
Monte Carlo simulation (MCS), 20–21	stator and rotor reference frames, 63-65
response surface equation (RSE), 21	total pressure and temperature, 63-65
response surface modeling (RSM), 21–22	conversion from RRF to SRF, 65
Rossby number, 87	conversion from SRF to RRF, 64
rotating cavity, 188-190	stator reference frame. See inertial reference fram
radial inflow, 190	Stefan-Boltzmann constant, 113
radial outflow, 188	Stefan-Boltzmann's law, 113
rotating Couette flow, 85–87	Stewartson boundary layer, 202-203
rotating orifice, 152, See also orifice	stream thrust, 50
rotational body force, 146	subsonic flow, 68
rotational speed, 56	substantial derivative. See total derivative
rotational work transfer, 147	sudden contraction pipe flow, 50
rothalpy, 61-62	sudden expansion pipe flow, 48–50
rotor disc. See rotor disk	with swirl, 48
rotor disk, 182-186, 323-332	without swirl, 48
disk pumping beneath a forced vortex, 184–185	suffix notation, 317
free disk pumping, 183–184	summation convention, 317
in an enclosed cavity, 186	supersonic flow, 68
transient heat transfer in, 332	surface emissivity, 113
analytical solution, 326–327	surface forces, 54
boundary conditions, 325	swirl factor, 93
governing equation, 323–325	
initial condition, 325	Taylor column, 88
numerical solution, 328-333	Taylor-Proudman theorem, 87–88
rotor reference frame. See noninertial reference frame	tensor algebra, 317
rotor-stator cavity, 187-188	thermal barrier coating (TBC), 105
radial inflow, 187–188	thermal boundary layer, 111
radial outflow, 187	thermal choking, 76
	thermal conductivity, 107
seal clearance, 241	thermal diffusivity, 108
seals. See labyrinth seals	thermal efficiency, 40
second coefficient of viscosity, 78	thermal FEA, 296–302
second law of thermodynamics, 37	thermal resistances, 115
secondary air system (SAS), 8, See also internal flow	thermodynamic cycles, 39-41
system (IFS)	thermodynamics review, 34-46
secondary flows, 47	thermomechanical analysis, 291-305
of the first kind, 47	thermomechanical FEA, 302-305
of the second kind, 47	element equlibrium equations, 303-305
shaft work, 58	element shape function, 302
shear coefficient, 193-195, 197-199	element strain-displacment equations, 303
shear force, 146	element stress-displacment equations, 303
similarity solution, 108	Thomas algorithm, 337–338
solution. See flow network solution	THOMAS subroutine in FORTRAN, 338
sonic flow, 68	torque, 55
specific flow work, 34-35, 58	total derivative, 320
specific heat at constant pressure, 36	dyad, 320

Cambridge University Press 978-1-107-17009-4 — Gas Turbines: Internal Flow Systems Modeling Bijay Sultanian Index <u>More Information</u>

356 Index

total enthalpy, 59 total pressure, 50, 63, 65 total temperature, 65, 67 tri-diagonal matrix algorithm (TDMA). See Thomas algorithm tube. See duct turbine exhaust diffuser, 6 turbine isentropic efficiency, 42, See also isentropic efficiency turbine polytropic efficiency, 45, See also polytropic efficiency turbine rim seal design. See hot gas ingestion turbulence model selection, 285-287, See also turbulence modeling flow and heat transfer in a rotor cavity, 287 flow in a noncircular duct, 286 flow in a sudden pipe expansion, 286, See also sudden expansion pipe flow swirling flow in a sudden pipe expansion, 286, See also sudden expansion pipe flow turbulence modeling, 274-281 algebraic stress model, 280-281 Boussinesq hypothesis, 275 one-equation model, 277 Prandtl mixing length model, 276-277 Reynolds averaging, 274

Reynolds Equations, 274-276

Reynolds stress transport model, 279-280 the closure problem, 275 two-equation model, 277-279 under-relaxation parameter, 160 validation with engine test data, 305-306 valves, 149 vanes, 6 vector identities, 321 vena contracta, 50, 149 viscous dissipation, 111 vortex, 47, 93-99, 152-153 forced, 48 free, 48 isentropic forced vortex, 96-98 isentropic free vortex, 93-96 isothermal forced vortex, 98-99 nonisentropic generalized vortex, 99 vorticity, 47 whole engine modeling (WEM). See multiphysics modeling