

Cambridge University Press 978-1-107-16796-4 — The Core Model Iterability Problem John R. Steel Index More Information

Index of Definitions

Definitions not numbered in the text are indexed here by the number of the theorem, lemma, or definition immediately preceding; thus "1.4 ff." indicates an unnumbered definition occurring in the body of the text after Theorem 1.4.

1.1	${\cal A}$ certificate for ${\cal M}$	5
1.2	${\cal M}$ is countably certified	5
1.2 ff.	$\mathcal{M}_{m{\xi}},\mathcal{N}_{m{\xi}},\mathrm{for}m{\xi}<\Omega$	
1.3 ff.	K^{c}	6 7
1.4 ff.	the stationary class A_0	8
2.1	\mathcal{T} is α -short	10
2.4 ff.	almost normal iteration tree	12
2.4 ff.	almost k-maximal iteration tree	12
2.9	$ heta$ -iterable, $ heta$ -iteration strategy, $(\omega, heta)$ -iterable, $(\omega, heta)$ -iteration strategy	23
3.1	coiteration of ${\mathcal M}$ with ${\mathcal N}$	25
3.1 ff.	(Σ, Γ) coiteration of $\mathcal M$ with $\mathcal N, \mathcal P \unlhd Q$	25
3.2	Weasel, set premouse, proper premouse	25
3.4	universal weasel	26
3.8	Γ is S-thick in M	28
4.1	$H^{\mathcal{M}}(X)$	29
4.2	${\cal M}$ has the S-hull property at α	29
4.4	${\cal M}$ has the S-definability property at $lpha$	30
5.3	$\mathcal M$ is S-sound	36
5.5	$\operatorname{Def}(W,S)$	36
5.8	K(S)	37
5.17	K	42
6.1	$\mathcal{M} ext{ is } (\alpha, S) ext{ strong}$	43
6.4	${\cal M}$ is $lpha$ -strong	44
6.5	simple phalanx	44
6.5 ff.	$lh(\mathcal{B}),\ \lambda(eta,\mathcal{B}),\ \ ext{for}\ \ \mathcal{B}\ ext{a phalanx}$	44
6.6	iteration tree on a phalanx	45
6.6 ff.	heta-iterable phalanx	45
6.7	(Σ, \mathcal{R}) -generated phalanx	45
6.8	K^c -generated phalanx	46
6.12	properly small	51
8.1	Γ is thick in W , W has the hull or definability property at α , $\operatorname{Def}(W)$	73
8.4	F coheres with $\mathcal M$	77
8.5	the E-extension of $\Phi(\mathcal{T})$	77
8.11	${\mathcal M}$ is below $O^{\mathbb P}$	83
9.1	creature	89
9.2	creature of \mathbb{C} . \mathbb{C} exotic	89

Cambridge University Press 978-1-107-16796-4 — The Core Model Iterability Problem John R. Steel Index <u>More Information</u>

112 Index of Definitions

9.2 ff.	(j,ξ) is an index of $\mathcal M$ in $\mathbb C$, ind $(\mathcal M)$	89
9.2 ff.	coarse premouse	89
9.3	$\mathbb{C}^{\mathcal{M}}$, the K^c construction of \mathcal{M}	90
9.4	(\mathcal{R},Q,π) is a k-realization of \mathcal{M}	90
9.5	${\cal M}$ and ${\cal N}$ agree below γ	90
9.6	phalanx of creatures	90
9.7	$\Phi(T)$, the phalanx derived from T	91
9.7 ff.	the (t,λ) dropdown sequence of $\mathcal M$	91
9.8 ff.	(\mathcal{M}, t, ξ) resurrection sequence for λ	92
9.9	the pth partial resurrection $(\sigma_p, \operatorname{Res}_p)$	92
9.10	the complete resurrection (σ, Res)	93
9.11	realization $\mathcal E$ of a phalanx $\mathcal B$	93
9.12	\mathcal{E} -realization of $\mathcal{M}_{\gamma}^{\mathcal{T}}$	93
9.13	${\mathcal E}$ -realization of a branch b of ${\mathcal T}$	94
9.13 ff.	cutoff point of a coarse premouse	94
9.14 ff.	α survives at β	94
9.14 ff.	$oldsymbol{Y} ext{-realization}$	95
9.15	${\mathcal E}$ has enough room	96
9.16	α is a break point at γ	96