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Introduction

The book can be divided roughly into five parts.

A. Basic theory of general algebraic groups (Chapters 1–8)

The first eight chapters cover the general theory of algebraic group schemes (not

necessarily affine) over a field. After defining them and giving some examples,

we show that most of the basic theory of abstract groups (subgroups, normal

subgroups, normalizers, centralizers, Noether isomorphism theorems, subnormal

series, etc.) carries over with little change to algebraic group schemes. We

relate affine algebraic group schemes to Hopf algebras, and we prove that all

algebraic group schemes in characteristic zero are smooth. We study the linear

representations of algebraic group schemes and their actions on algebraic schemes.

We show that every algebraic group scheme is an extension of an étale group

scheme by a connected algebraic group scheme, and that every smooth connected

group scheme over a perfect field is an extension of an abelian variety by an affine

group scheme (Barsotti–Chevalley theorem).

Beginning with Chapter 9, all group schemes are affine.

B. Preliminaries on affine algebraic groups (Chapters 9–11)

The next three chapters are preliminary to the more detailed study of affine

algebraic group schemes in the later chapters. They cover basic Tannakian

theory, in which the category of representations of an algebraic group scheme

plays the role of the topological dual of a locally compact abelian group, Jordan

decompositions, the Lie algebra of an algebraic group, and the structure of finite

group schemes. Throughout this work we emphasize the Tannakian point of view

in which the group and its category of representations are placed on an equal

footing.

C. Solvable affine algebraic groups (Chapters 12–16)

The next five chapters study solvable algebraic group schemes. Among these are

the diagonalizable groups, the unipotent groups, and the trigonalizable groups.
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2 Introduction

An algebraic group G is diagonalizable if every linear representation of G

is a direct sum of one-dimensional representations; in other words if, relative to

some basis, the image of G lies in the algebraic subgroup of diagonal matrices in

GLn. An algebraic group that becomes diagonalizable over an extension of the

base field is said to be of multiplicative type.

An algebraic group G is unipotent if every nonzero representation of G

contains a nonzero fixed vector. This implies that every representation has a

basis for which the image of G lies in the algebraic subgroup of strictly upper

triangular matrices in GLn.

An algebraic group G is trigonalizable if every simple representation has

dimension one. This implies that every representation has a basis for which

the image of G lies in the algebraic subgroup of upper triangular matrices in

GLn. The trigonalizable groups are exactly the extensions of diagonalizable

groups by unipotent groups. Trigonalizable groups are solvable, and the Lie–

Kolchin theorem says that all smooth connected solvable algebraic groups become

trigonalizable over a finite extension of the base field.

D. Reductive algebraic groups (Chapters 17–25)

This is the heart of the book, The first seven chapters develop in detail the structure

theory of split reductive groups and their representations in terms of their root

data. Chapter 24 exhibits all the almost-simple algebraic groups, and Chapter 25

explains how the theory of split groups extends to the nonsplit case.

E. Appendices

The first appendix reviews the definitions and statements from algebraic geometry

needed in the book. Experts need only note that, as we always work with schemes

of finite type over a base field k, it is natural to ignore the nonclosed points

(which we do).

The second appendix proves the existence of a quotient of an algebraic group

by an algebraic subgroup. This is an important result, but the existence of

nilpotents makes the proof difficult, and so most readers should simply accept

the statement.

The third appendix reviews the combinatorial objects, root systems and root

data, on which the theory of split reductive groups is based.

History

Apart from occasional brief remarks, we ignore the history of the subject, which

is quite complex. Many major results were discovered in one situation, and then

extended to other more general situations, sometimes easily and sometimes only

with difficulty. Without too much exaggeration, one can say that all the theory of

algebraic group schemes does is show that the theory of Killing and Cartan for
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Introduction 3

“local” objects over C extends in a natural way to “global” objects over arbitrary

fields.

Conventions and notation

Throughout, k is a field and R is a finitely generated k-algebra.1 All k-algebras

and R-algebras are required to be commutative and finitely generated unless it is

specified otherwise. Noncommutative algebras are referred to as “algebras over

k” rather than “k-algebras”. Unadorned tensor products are over k. An extension

of k is a field containing k, and a separable extension is a separable algebraic

extension. When V is a vector space over k, we often write VR for V ˝ R; for

v 2 V , we let vR D v ˝1 2 VR. The symbol ka denotes an algebraic closure of

k and ks (resp. ki ) denotes the separable (resp. perfect) closure of k in ka. The

characteristic exponent of k is p or 1 according as its characteristic is p or 0.

The group of invertible elements of a ring R is denoted by R�. The symbol AlgR

denotes the category of finitely generated R-algebras.

An algebraic scheme over k (or algebraic k-scheme) is a scheme of finite

type over k. An algebraic scheme is an algebraic variety if it is geometrically

reduced and separated. By a “point” of an algebraic scheme or variety over k

we always mean a closed point. For an algebraic scheme .X;OX / over k, we

usually let X denote the scheme and jX j the underlying topological space of

closed points. For a locally closed subset Z of jX j (resp. subscheme Z of X),

the reduced subscheme of X with underlying space Z (resp. jZj) is denoted by

Zred. The residue field at a point x of X is denoted by �.x/. When the base field

k is understood, we omit it, and write “algebraic scheme” for “algebraic scheme

over k”. Unadorned products of algebraic k-schemes are over k. See Appendix

A for more details.

We let Z denote the ring of integers, R the field of real numbers, C the field

of complex numbers, and Fp the field of p elements (p prime).

A functor is said to be an equivalence of categories if it is fully faithful and

essentially surjective. A sufficiently strong version of the axiom of global choice

then implies that there exists a quasi-inverse to the functor. We sometimes loosely

refer to a natural transformation of functors as a map of functors.

All categories are locally small (i.e., the morphisms from one object to a

second are required to form a set). When the objects form a set, the category

is said to be small. A category is essentially small if it is equivalent to a small

subcategory.

Let P be a partially ordered set. A greatest element of P is a g 2 P such

that a � g for all a 2 P . An element m in P is maximal if m � a implies a D m.

A greatest element is a unique maximal element. Least and minimal elements

are defined similarly. When the partial order is inclusion, we replace least and

greatest with smallest and largest. We sometimes use Œx� to denote the class of x

under an equivalence relation.

1Except in Appendix C, where R is a set of roots.
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4 Introduction

Following Bourbaki, we let N D f0;1;2; : : :g. An integer is positive if it lies

in N. A set with an associative binary operation is a semigroup. A monoid is a

semigroup with a neutral element.

By A ' B we mean that A and B are canonically isomorphic (or that there is

a given or unique isomorphism), and by A � B we mean simply that A and B

are isomorphic (there exists an isomorphism). The notation A � B means that A

is a subset of B (not necessarily proper). A diagram A ! B� C is exact if the

first arrow is the equalizer of the pair of arrows.

Suppose that p and q are statements depending on a field k and we wish

to prove that p.k/ implies q.k/. If p.k/ implies p.ka/ and q.ka/ implies q.k/,

then it suffices to prove that p.ka/ implies q.ka/. In such a situation, we simply

say that “we may suppose that k is algebraically closed”.

We often omit “algebraic” from such expressions as “algebraic subgroup”,

“unipotent algebraic group”, and “semisimple algebraic group”. After p. 162, all

algebraic groups are affine.

We use the terminology of modern (post 1960) algebraic geometry; for

example, for algebraic groups over a field k; a homomorphism is automatically

defined over k, not over some large algebraically closed field.2

Throughout, “algebraic group scheme” is shortened to “algebraic group”. A

statement here may be stronger than a statement in Borel 1991 or Springer 1998

even when the two are word for word the same.3

All constructions are to be understood as being in the sense of schemes. For

example, fibres of maps of algebraic varieties need not be reduced, and the kernel

of a homomorphism of smooth algebraic groups need not be smooth.

Numbering

A reference “17.56” is to item 56 of Chapter 17. A reference “(112)” is to

the 112th numbered equation in the book (we include the page number where

necessary). Section 17c is Section c of Chapter 17 and Section Ac is Section c of

Appendix A. The exercises in Chapter 17 are numbered 17-1, 17-2, . . .

Foundations

We use the von Neumann–Bernays–Gödel (NBG) set theory with the axiom of

choice, which is a conservative extension of Zermelo–Fraenkel set theory with

the axiom of choice (ZFC). This means that a sentence that does not quantify

over a proper class is a theorem of NBG if and only if it is a theorem of ZFC. The

advantage of NBG is that it allows us to speak of classes.

It is not possible to define an “unlimited category theory” that includes the

category of all sets, the category of all groups, etc., and also the categories of

2As much as possible, our statements make sense in a world without choice, where algebraic

closures need not exist.
3An example is Chevalley’s theorem on representations; see 4.30.
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Introduction 5

functors from one of these categories to another. The category of functors from

the category Algk of all finitely generated k-algebras to groups is not locally small.

Instead, we should consider the functors from a subcategory Alg0
k whose objects

are small in some sense. For example, fix a family of symbols .Ti /i2N indexed

by N, and let Alg0
k denote the category of k-algebras of the form kŒT0; : : : ;Tn�=a

for some n 2 N and ideal a in kŒT0; : : : ;Tn�. Then the objects of Alg0
k are indexed

by the ideals in some subring kŒT0; : : : ;Tn� of kŒT0; : : :� – in particular, they form

a set, and so Alg0
k is small. The inclusion functor Alg0

k ,! Algk is an equivalence

of categories. Choosing a quasi-inverse amounts to choosing an ordered set of

generators for each finitely generated k-algebra. Once a quasi-inverse has been

chosen, every functor on Alg0
k has a well-defined extension to Algk .

Readers willing to assume additional axioms in set theory may use Mac Lane’s

“one-universe” solution to defining functor categories (Mac Lane 1969) or Groth-

endieck’s “multi-universe” solution (DG, p. xv), and define Alg0
k to consist of the

k-algebras that are small relative to the chosen universe.

In the text, we ignore these questions.

Prerequisites

A first course in algebraic geometry (including basic commutative algebra). Since

these vary greatly, we review the definitions and statements that we need from

algebraic geometry in Appendix A. In a few proofs, which can be skipped, we

assume somewhat more.
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CHAPTER 1

Definitions and Basic Properties

Recall that k is a field, and that an algebraic k-scheme is a scheme of finite type

over k. We let � D Spm.k/.

a. Definition

An algebraic group over k is a group object in the category of algebraic schemes

over k. In detail, this means the following.

DEFINITION 1.1. Let G be an algebraic scheme over k, and let mWG �G ! G

be a morphism. The pair .G;m/ is an algebraic group over k if there exist

morphisms

eW� ! G; invWG ! G;

such that the following diagrams commute:

G �G �G G �G

G �G G

m�id

id�m

m

m

��G G �G G ��

G

e�id

'

m

id�e

'

(1)

G G �G G

� G �

.inv;id/

m

.id;inv/

e e

(2)

When G is a variety, we call .G;m/ a group variety, and when G is an affine

scheme, we call .G;m/ an affine algebraic group.

For example,

SLn
def
D SpmkŒT11;T12; : : : ;Tnn�=.det.Tij /�1/
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a. Definition 7

becomes an affine group variety with the usual matrix multiplication on points.

For many more examples, see Chapter 2.

Similarly, an algebraic monoid over k is an algebraic scheme M over k

together with morphisms mWM �M ! M and eW� ! M such that the diagrams

(1) commute.

DEFINITION 1.2. A homomorphism 'W.G;m/ ! .G0;m0/ of algebraic groups

is a morphism 'WG ! G0 of algebraic schemes such that ' ım D m0 ı .' �'/.

An algebraic group G is trivial if eW� ! G is an isomorphism, and a homo-

morphism G ! G0 is trivial if it factors through e0W� ! G0. We often write e for

the trivial algebraic group.

DEFINITION 1.3. An algebraic subgroup of an algebraic group .G;mG/ over k

is an algebraic group .H;mH / over k such that H is a k-subscheme of G and the

inclusion map is a homomorphism of algebraic groups. An algebraic subgroup is

called a subgroup variety if its underlying scheme is a variety.

Let .G;mG/ be an algebraic group and H a nonempty subscheme of G. If

mG jH �H and invG jH factor through H , then .H;mG jH �H/ is an algebraic

subgroup of G.

Let .G;m/ be an algebraic group over k. For any field k0 containing k, the

pair .Gk0 ;mk0/ is an algebraic group over k0, said to have been obtained from

.G;m/ by extension of scalars or extension of the base field.

Algebraic groups as functors

The K-points of an algebraic scheme X with K a field do not see the nilpotents in

the structure sheaf. Thus, we are led to consider the R-points with R a k-algebra.

Once we do that, the points capture all information about X .

1.4. An algebraic scheme X over k defines a functor

QX WAlgk ! Set; R X.R/:

For example, if X is affine, say, X D Spm.A/, then

X.R/ D Homk-algebra.A;R/:

The functor X  QX is fully faithful (Yoneda lemma, A.33); in particular, QX

determines X uniquely up to a unique isomorphism. We say that a functor from

k-algebras to sets is representable if it is of the form QX for an algebraic scheme

X over k.

If .G;m/ is an algebraic group over k, then R .G.R/;m.R// is a functor

from k-algebras to groups.

Let X be an algebraic scheme over k, and suppose that we are given a

factorization of QX through the category of groups. Then the maps

x;y 7! xyWX.R/�X.R/ !X.R/; � 7! eW� !X.R/; x 7! x�1WX.R/ ! X.R/
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8 1. Definitions and Basic Properties

given by the group structures on the sets X.R/ define, by the Yoneda lemma,

morphisms

mWX �X ! X; � ! X; invWX ! X

making the diagrams (1) and (2) commute. Therefore, .X;m/ is an algebraic

group over k.

Combining these two statements, we see that to give an algebraic group over

k amounts to giving a functor Algk ! Grp whose underlying functor to sets is

representable by an algebraic scheme. We write QG for G regarded as a functor to

groups.

From this perspective, SLn can be described as the algebraic group over k

sending R to the group SLn.R/ of n�n matrices with entries in R and determin-

ant 1.

The functor R .R;C/ is represented by Spm.kŒT �/, and hence is an

algebraic group Ga. Similarly, the functor R .R�;�/ is represented by

Spm.kŒT;T �1�/, and hence is an algebraic group Gm. See 2.1 and 2.2 below.

We often describe a homomorphism of algebraic groups by giving its action

on R-points. For example, when we say that invWG ! G is the map x 7! x�1,

we mean that, for all k-algebras R and all x 2 G.R/, inv.x/ D x�1.

1.5. If .H;mH / is an algebraic subgroup of .G;mG/, then H.R/ is a subgroup

of G.R/ for all k-algebras R. Conversely, if H is an algebraic subscheme of

G such that H.R/ is a subgroup of G.R/ for all k-algebras R, then the Yoneda

lemma (A.33) shows that the maps

.h;h0/ 7! hh0WH.R/�H.R/ ! H.R/

arise from a morphism mH WH � H ! H and that .H;mH / is an algebraic

subgroup of .G;mG/.

1.6. Consider the functor of k-algebras �3WR fa 2 R j a3 D 1g. This is

represented by Spm.kŒT �=.T 3 �1//, and so it is an algebraic group. We consider

three cases.

(a) The field k is algebraically closed of characteristic ¤ 3. Then

kŒT �=.T 3 �1/ ' kŒT �=.T �1/�kŒT �=.T � �/�kŒT �=.T � �2/

where 1;�;�2 are the cube roots of 1 in k. Thus, �3 is a disjoint union of three

copies of Spm.k/ indexed by the cube roots of 1 in k.

(b) The field k is of characteristic ¤ 3 but does not contain a primitive cube

root of 1. Then

kŒT �=.T 3 �1/ ' kŒT �=.T �1/�kŒT �=.T 2 CT C1/;

and so �3 is a disjoint union of Spm.k/ and Spm.kŒ��/ where � is a primitive

cube root of 1 in ks.

(c) The field k is of characteristic 3. Then T 3 � 1 D .T � 1/3, and so �3 is

not reduced. Although �3.K/ D 1 for all fields K containing k, the algebraic

group �3 is not trivial. Certainly, �3.R/ may be nonzero if R has nilpotents.
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Homogeneity

Recall that, for an algebraic scheme X over k, we write jX j for the underlying

topological space of X , and �.x/ for the residue field at a point x of jX j (it

is a finite extension of k). We can identify X.k/ with the set of points x of

jX j such that �.x/ D k (CA 13.4). An algebraic scheme X over k is said to

be homogeneous if the group of automorphisms of X (as a k-scheme) acts

transitively on jX j. We shall see that algebraic groups are homogeneous when k

is algebraically closed

1.7. Let .G;m/ be an algebraic group over k. The map m.k/WG.k/�G.k/ !

G.k/ makes G.k/ into a group with neutral element e.�/ and inverse map inv.k).

When k is algebraically closed, G.k/ D jGj, and so mWG � G ! G makes

jGj into a group. The maps x 7! x�1 and x 7! ax (a 2 G.k/) are automorphisms

of jGj as a topological space.

In general, when k is not algebraically closed, m does not make jGj into

a group, and even when k is algebraically closed, it does not make jGj into a

topological group.

1.8. Let .G;m/ be an algebraic group over k. For each a 2 G.k/, there is a

translation map

laWG ' fag�G
m

�! G; x 7! ax:

For a;b 2 G.k/,

la ı lb D lab

and le D id. Therefore la ı la�1 D id D la�1 ı la , and so la is an isomorphism

sending e to a. Hence G is homogeneous when k is algebraically closed (but not

in general otherwise; see 1.6(b)).

Density of points

Because we allow nilpotents in the structure sheaf, a morphism X ! Y of

algebraic schemes is not in general determined by its effect on X.k/, even when

k is algebraically closed. We introduce some terminology to handle this.

DEFINITION 1.9. Let X be an algebraic scheme over k and S a subset of X.k/.

We say that S is schematically dense in X if the only closed subscheme Z of X

such that S � Z.k/ is X itself.

Let X D Spm.A/, and let S be a subset of X.k/. Let Z D Spm.A=a/ be

a closed subscheme of X . Then S � Z.k/ if and only if a � m for all m 2 S .

Therefore, S is schematically dense in X if and only if
T

fm j m 2 Sg D 0.

PROPOSITION 1.10. Let X be an algebraic scheme over k and S a subset of

X.k/ � jX j. The following conditions are equivalent:

(a) S is schematically dense in X I
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10 1. Definitions and Basic Properties

(b) X is reduced and S is dense in jX j;

(c) the family of homomorphisms

f 7! f .s/WOX ! �.s/ D k; s 2 S;

is injective.

PROOF. (a))(b). Let NS denote the closure of S in jX j. There is a unique

reduced subscheme Z of X with underlying space NS . As S � jZj, the scheme

Z D X , and so X is reduced with underlying space NS .

(b))(c). Let U be an open affine subscheme of X , and let A D OX .U /. Let

f 2 A be such that f .s/ D 0 for all s 2 S \jU j. Then f .u/ D 0 for all u 2 jU j

because S \ jU j is dense in jU j. This means that f lies in all maximal ideals

of A, and therefore lies in the radical of A, which is zero because X is reduced

(CA 13.11).

(c))(a). Let Z be a closed subscheme of X such that S � Z.k/. Because Z

is closed in X , the homomorphism OX ! OZ is surjective. Because S � Z.k/,

the maps f 7! f .s/WOX ! �.s/, s 2 S , factor through OZ , and so OX ! OZ

is injective, hence an isomorphism, which implies that Z D X . ✷

PROPOSITION 1.11. A schematically dense subset remains schematically dense

under extension of the base field.

PROOF. Let k0 be a field containing k, and let S � X.k/ be schematically dense

in X . We may suppose that X is affine, say, X D Spm.A/. Let s0WA ˝ k0 ! k0

be the map obtained from sWA ! �.s/ D k by extension of scalars. The family s0,

s 2 S , is injective because the family s, s 2 S , is injective and k0 is flat over k.✷

COROLLARY 1.12. If X admits a schematically dense subset S � X.k/, then it

is geometrically reduced.

PROOF. When regarded as a subset of X.ka/, S is schematically dense in Xka ,

which is therefore reduced. ✷

PROPOSITION 1.13. Let u;vWX � Y be morphisms from X to a separated

algebraic scheme Y over k. If S is schematically dense in X and u.s/ D v.s/ for

all s 2 S , then u D v.

PROOF. Because Y is separated, the equalizer of the pair of maps is closed in X .

As its underlying space contains S , it equals X . ✷

REMARK 1.14. Some of the above discussion extends to base rings. For ex-

ample, let X be an algebraic scheme over a field k and let S be a schematically

dense subset of X.k/. Let R be a k-algebra and, for s 2 S , let

s0 D s �Spm.k/ Spm.R/ � X 0 D X �Spm.k/ .R/:

As in the proof of 1.11, the family of maps OX 0 ! Os0.s0/ D R is injective.

It follows, as in the proof of 1.10, that the only closed R-subscheme of X 0

containing all s0 is X 0 itself.
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