Contents

Acknowledgements page xxiii
Symbols and Abbreviations xxv

Part I The Foundations

1 What This Book Is About 3
 1.1 My Goal in Writing This Book 3
 1.2 What My Account Leaves Out 5
 1.3 Affine Models 6
 1.4 A Simple Taxonomy 8
 1.5 The Choice of Variables 10
 1.5.1 Latent versus Observable Variables 10
 1.5.2 The Spanning Problem 15
 1.5.3 The Constraint Problem 16
 1.6 Why Do We Need No-Arbitrage Models After All? 19
 1.7 Stamp Collecting and Shallow versus Deep Explanations 20
 1.8 The Ideal Reader and Plan of the Book 21

2 Definitions, Notation and a Few Mathematical Results 24
 2.1 The Purpose of This Chapter 24
 2.2 The Building Blocks 24
 2.2.1 Arbitrage 24
 2.2.2 Pseudo-Arbitrage 25
 2.2.3 Sharpe Ratios 27
 2.2.4 Bond Prices and Yields 28
 2.2.5 Duration and Convexity 31
 2.2.6 Forward Rates 32
 2.3 Log Prices and Log Returns 33
 2.4 Dimensional Analysis 34
2.5 Appendix 2A: Vectors and Matrices 36
 2.5.1 Definition 36
 2.5.2 Transformations of Vectors 37
 2.5.3 Orthogonal Matrices 38
 2.5.4 Row Vectors 39
 2.5.5 Exponential of a Matrix 40
2.6 Appendix 2B: Mean-Reverting and AR(1) Processes 41
 2.6.1 The Ornstein–Uhlenbeck Process 41
 2.6.2 The AR(1) Process 42
 2.6.3 Parallels between AR(1) Processes and the Ornstein–Uhlenbeck Process 43
2.7 Appendix 2C: Some Results from Stochastic Calculus 44
 2.7.1 Ito’s Lemma 44
 2.7.2 Stochastic-Calculus Rules for $dp_t dx_t$ 45
 2.7.3 Expectations of Ito Integrals 46
 2.7.4 The Ito Isometry 47
 2.7.5 Risk-less Portfolios 48

3 Links among Models, Monetary Policy and the Macroeconomy 49
 3.1 The Purpose of This Chapter 49
 3.2 The Monetary Channels 50
 3.3 A Modelling Framework 52
 3.4 The Monetary Actions: A Simple Model 56
 3.5 Calibrating Reduced-Form Models 58
 3.5.1 General Considerations 58
 3.5.2 Assessing the Quality of the Calibration Process 60
 3.5.3 State Variables versus Model Parameters 61

4 Bonds: Their Risks and Their Compensations 63
 4.1 The Purpose of This Chapter 63
 4.2 Nominal Rates, Inflation and Real Rates: A Qualitative Discussion 64
 4.2.1 Inflation Risk 64
 4.2.2 Real-Rate Risk 65
 4.2.3 Putting the Pieces Together 66
 4.3 Real-World and Risk-Neutral Probabilities: The Market Price of Risk 68
 4.3.1 Introducing the P and Q Measures 69
 4.3.2 Introducing the Market Price of Risk 72
 4.4 An Important First Result: Bond Prices as Q-Expectations 76
 4.5 The Price Process and Its Expectations 77
 4.5.1 The General Case 77
Contents

4.5.2 The Affine Case 78
4.6 Nominal Rates, Inflation and Real Rates: Definitions 79
5 The Risk Factors in Action 81
5.1 The Purpose of This Chapter 81
5.2 Expectations and Risk Premia during an Important Market Period 81
5.2.1 An Account of What Happened 81
5.2.2 Possible Explanations of What Happened 85
5.3 How Can We Estimate Risk Premia? 87
5.4 Different Types of Risk Premia 88
5.5 What Are Investors Compensated For? 91
5.5.1 Decomposition of the Risk Premium 91
5.5.2 ‘Which’ Liquidity Are TIPS-Investors Compensated For? 93
5.6 What Is and What Is Not a True Risk Premium 94
5.7 Does It Matter if a Risk Premium Is ‘Really’ a Risk Premium? 96
6 Principal Components: Theory 98
6.1 The Purpose of This Chapter 98
6.2 What Are Principal Components? 98
6.2.1 The Axis Rotation 98
6.2.2 The Signal and the Noise 103
6.3 How Many Principal Components Do We Need for Yields? 103
6.4 First Conclusions 104
6.5 Some Mathematical Results 105
7 Principal Components: Empirical Results 108
7.1 The Purpose of This Chapter 108
7.2 Nominal Rates 108
7.2.1 Descriptive Features 108
7.2.2 Mean-Reverting Properties – Each PC in Isolation 112
7.2.3 The Joint Mean-Reverting Behaviour of Principal Components 116
7.3 Real Rates and Break-Even Inflation 122
7.4 Correlation between Nominal, Inflation and Real Principal Components 128

Part II The Building Blocks: A First Look

8 Expectations 137
8.1 The Purpose of This Chapter 137
8.2 Linking Expectations with No-Arbitrage 137
 8.2.1 A One-Factor World 138
 8.2.2 Moving to Many Factors 141
8.3 An Example: A Mean-Reverting Process for the Short Rate 143
8.4 Expectations and Survey Data 145

9 Convexity: A First Look 147
 9.1 The Purpose of This Chapter 147
 9.2 Where Does Convexity Come from? 147
 9.3 The Links between Convexity and Jensen’s Inequality 149
 9.3.1 A Special but Important Case: Gaussian Random Variables 150
 9.4 What Does Convexity Depend On? 152
 9.5 Why Convexity Is Different 154
 9.6 Why Isn’t Convexity ‘Always Good’? 156
 9.7 Who Sets the Price of Convexity? A Bit of Story-Telling 157

10 A Preview: A First Look at the Vasicek Model 160
 10.1 The Purpose of This Chapter 160
 10.2 The Vasicek Model 161
 10.3 Properties of the Vasicek Model 161
 10.3.1 Distributional Properties of the Vasicek Model 161
 10.3.2 Bond Prices in the Vasicek Model 165
 10.3.3 The Duration in the Vasicek Model 165
 10.3.4 Yield Volatilities in the Vasicek Model 168
 10.4 Rate Expectations and the Shape of the Vasicek Yield Curve 168
 10.5 Convexity in the Vasicek Model 170
 10.5.1 An Expression for Convexity 170
 10.5.2 Convexity and the Volatility of Yields 171
 10.5.3 How Big Should One Expect the Convexity Effect to Be? 172
 10.5.4 What Is the ‘Right’ Reversion Speed? 173
 10.6 The Risk Premium in the Vasicek Model 175
 10.7 The Functional Form of the Market Price of Risk 176
 10.8 The Link between the Market Price of Risk and the Sharpe Ratio 178
 10.9 Appendix 10A: Proof that
 \[r_t = \left\{ e^{-\kappa(t-t_0)} \right\} r_0 + \left\{ 1 - e^{-\kappa(t-t_0)} \right\} \theta + \int_{t_0}^t e^{-\kappa(t-s)} \sigma dz_s \] 181

Part III The Conditions of No-Arbitrage

11 No-Arbitrage in Discrete Time 185
 11.1 The Purpose of This Chapter 185
Table of Contents

11.2 Type-I Arbitrage 186
11.3 Bounds to the Price-Correction Term: Type-I Arbitrage 188
11.4 Bounds to the Price-Correction Term: Type-II Arbitrage 189
11.5 A Useful Rewriting 192
11.6 Extension to Many Factors 193
11.7 The Task of the Long-Term Bond Investor 195

12 No-Arbitrage in Continuous Time 196
12.1 The Purpose of This Chapter 196
12.2 Constructing a Risk-Less Portfolio: The Market Price of Risk Again 196
12.3 Interpretations of the Market Price of Risk 199
12.4 Excess Returns 200
12.5 What the Market Price of Risk Can Depend On 201
12.6 Appendix 12A: The Market Price of Risk and Excess Return with Many Factors 202

13 No-Arbitrage with State Price Deflators 206
13.1 The Purpose of This Chapter 206
13.2 A Bird’s Eye View of the ‘Traditional’ and ‘Modern’ Approaches 207
13.3 Pricing Assets: The Building-Blocks Approach 208
13.4 A Beautiful Result: The Change of Measure 211
13.4.1 Prices as Expectations in the Risk-Neutral Measure – Again 211
13.4.2 The Equivalence of the State-Price Deflator and the Stochastic Discount Factor 213
13.5 The Process for the State-Price Deflator 214
13.6 Special Assets: Discount Bonds 216
13.7 Deriving the Drift of the State-Price Deflator 216
13.8 The Short Rate Again 218
13.9 Deriving the Volatility of the State-Price Deflator 219
13.9.1 Evaluation of the Three Terms 220
13.9.2 The Link between the Volatility of the State-Price Deflator and the Market Price of Risk 221
13.9.3 Where Does the Volatility of Bonds Come from? 222
13.9.4 Summary of Results 223

14 No-Arbitrage Conditions for Real Bonds 224
14.1 The Purpose of This Chapter 224
14.2 The Expression for the Real State-Price Deflator 224
Contents

14.3 The Process for the Real State-Price Deflator 226
14.4 The Link between Break-Even Inflation and Inflation Expectations 229
14.4.1 Inflation Expectation Under P 230
14.4.2 Inflation Expectation under Q 232
14.4.3 Inflation Expectation under T 233
14.4.4 Inflation Expectations under Different Measures 234
14.5 The Risk Premium as a Covariance 235
14.6 Moving to an Affine World 238
14.7 The Market Price of Inflation Risk – Affine Models 239

15 Links with an Economics-Based Description of Rates 241
15.1 The Purpose of This Chapter 241
15.2 First Derivation of the SDF 242
15.3 From the SDF to Risk Premia 245
15.4 Real versus Nominal Prices 248
15.5 Idiosyncratic Risk 249
15.6 The Links between the SDF and the Risk-Less Rate 250
15.6.1 The No-Uncertainty Case 251
15.6.2 Reintroducing Uncertainty 252
15.6.3 But Does It Work? 253
15.7 SDFs in Continuous and Discrete Time 256
15.8 A More General Result for the Sharpe Ratio 257

Part IV Solving the Models

16 Solving Affine Models: The Vasicek Case 263
16.1 Purpose of This Chapter 263
16.2 The Replication Approach to Solving for Bond Prices: The Vasicek Model 264
16.2.1 The PDE Satisfied by Bond Prices 264
16.3 A Special Case: Affine Term Structures 266
16.4 The Vasicek Case 269
16.5 Affinity of the Vasicek Model under P and under Q 271
16.6 Observations about the Solution 272
16.6.1 Yields 272
16.6.2 The Volatility Structure 273
16.6.3 Forward Rates 273
16.6.4 Calibrating to the Volatility Structure: Factorization 276
16.6.5 Fitting to the Yield Curve 277
16.7 Why Do We Care about a Humped Volatility Curve? 281
16.8 How to Lengthen the Short Blanket 282
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 First Extensions</td>
</tr>
<tr>
<td>17.1 The Purpose of This Chapter</td>
</tr>
<tr>
<td>17.2 Affine Models with Many State Variables</td>
</tr>
<tr>
<td>17.2.1 The $N = 2$ Case</td>
</tr>
<tr>
<td>17.2.2 An Expression for the Variance for Generic N</td>
</tr>
<tr>
<td>17.2.3 Stability</td>
</tr>
<tr>
<td>17.2.4 Changing Variables</td>
</tr>
<tr>
<td>17.3 Multivariable Exponentially Affine Models</td>
</tr>
<tr>
<td>17.4 General Properties of the Solutions</td>
</tr>
<tr>
<td>17.4.1 Yields and Forward Rates</td>
</tr>
<tr>
<td>17.4.2 Distributional Properties</td>
</tr>
<tr>
<td>17.5 Appendix 17A: Derivation of the Variance of a One-Dimensional Mean-Reverting Process</td>
</tr>
<tr>
<td>17.6 Appendix 17B: Derivation of the Variance of a Multidimensional Mean-Reverting Process</td>
</tr>
<tr>
<td>17.7 Appendix 17C: Stability of the Mean-Reverting System</td>
</tr>
<tr>
<td>18 A General Pricing Framework</td>
</tr>
<tr>
<td>18.1 The Purpose of This Chapter</td>
</tr>
<tr>
<td>18.2 What Is an Affine Model?</td>
</tr>
<tr>
<td>18.3 The General Strategy</td>
</tr>
<tr>
<td>18.4 Summary of the Equations Derived in Appendix 18A</td>
</tr>
<tr>
<td>18.5 Various Additional Results</td>
</tr>
<tr>
<td>18.5.1 Expression for the Yield</td>
</tr>
<tr>
<td>18.5.2 Expression for the Yield Covariance Matrix and the Yield Volatilities</td>
</tr>
<tr>
<td>18.5.3 Expression for the Volatility of the Instantaneous Forward Rates</td>
</tr>
<tr>
<td>18.6 Derivation of the Mean and Variance of the State Variables</td>
</tr>
<tr>
<td>18.7 Now We Have Solved (Almost) Any Affine Model</td>
</tr>
<tr>
<td>18.7.1 Simple Vasicek</td>
</tr>
<tr>
<td>18.7.2 The Doubly-Mean-Reverting Vasicek Model</td>
</tr>
<tr>
<td>18.7.3 The Trebly-Mean-Reverting Vasicek Model</td>
</tr>
<tr>
<td>18.7.4 The Stochastic-Market-Price-of-Risk Model</td>
</tr>
<tr>
<td>18.8 Appendix 18A: Solving for $\mathbf{B}(\tau)$ and $A(\tau)$</td>
</tr>
<tr>
<td>18.8.1 Solving the ODE for $\mathbf{B}(\tau)$</td>
</tr>
<tr>
<td>18.8.2 Solving the ODE for $A(\tau)$</td>
</tr>
<tr>
<td>18.9 Appendix 18B</td>
</tr>
<tr>
<td>18.9.1 The Meaning of e^{A}</td>
</tr>
<tr>
<td>18.10 Explicit Calculation of the Formal Solution $\mathbf{x}(\tau) = e^{B} \mathbf{x}_{0}$</td>
</tr>
<tr>
<td>18.10.1 The Up-and-Down Theorem</td>
</tr>
<tr>
<td>18.10.2 Commutation Relationships for A and $f(A)$</td>
</tr>
</tbody>
</table>
Contents

18.10.3 Time Derivative of e^{At} 327
18.10.4 Integral of e^{At} 327
18.10.5 Evaluation of the Integral $\left[\int_0^T e^{-Lt} M e^{-Lt} \, d\tau \right]$ 328

19 The Shadow Rate: Dealing with a Near-Zero Lower Bound 329
 19.1 The Purpose of This Chapter 329
 19.2 Motivation: Why the Shadow Rate Matters 330
 19.3 How the Shadow Rate Affects the Whole Yield Curve 332
 19.4 The Modelling Approach 333
 19.4.1 The Setting 333
 19.4.2 An Approximate Solution 334
 19.5 Does It Matter? 339
 19.5.1 The Shadow and Short Rates Compared 339
 19.5.2 The Effect of the Shadow Rate on Long Yields 339
 19.5.3 Sensitivity of the Results to the Floor Level 343
 19.6 A Broader View of the Topic 343

Part V The Value of Convexity

20 The Value of Convexity 351
 20.1 The Purpose of This Chapter 351
 20.2 Break-Even Volatility – The Vasicek Setting 351
 20.3 Problems with the Vasicek Version of the Break-Even Volatility 355
 20.4 Generalizing to Many Factors 357
 20.4.1 Calculating the Terms $\vec{c}_1, \vec{c}_2, \vec{c}_3$ and \vec{c}_4 360
 20.4.2 Expressing the Convexity in Terms of Yield Volatilities 362
 20.5 What to Do with This Expression for the Convexity 363
 20.5.1 An Important Aside 364
 20.6 An Intuitive Aside: Simplifying the Analysis 365
 20.7 A Graphical Interpretation 368
 20.8 Appendix 20A 369

21 A Model-Independent Approach to Valuing Convexity 371
 21.1 The Purpose of This Chapter 371
 21.2 Equivalent Affine Models 373
 21.3 The Expression for Convexity in an Affine Setting 374
 21.4 An Expression for the Theoretical Convexity of the Portfolio 377
 21.5 Theoretical Convexity as a Function of Market Observables 380
 21.5.1 Theoretical Portfolio Convexity as a Function of Forward Rates 380
Contents

21.5.2 The Portfolio Time Decay as a Function of ‘Carry’ and ‘Roll-Down’ 381
21.6 What These Results Imply 383
21.7 Linking the Term $\frac{1}{2} \text{Tr}[S^T DS]$ with Yield Volatilities 384
21.8 Making the Weights (Almost) Model Independent 386
21.9 How General Are the Results? 388
21.10 Model-Based or Empirical? 389

22 Convexity: Empirical Results 391
22.1 The Purpose of This Chapter 391
22.2 The Strategy: A Reminder 393
22.3 Setting Up the Strategy
22.3.1 Determining the Optimal Weights 395
22.3.2 Estimating the Yield Volatilities 396
22.4 Results 398
22.4.1 Is the Yield Curve Fairly Curved? 398
22.4.2 Why Are the Strategies Not Always Profitable? 402
22.4.3 Is the Strength of the Signal Correlated with the Money Made? 405
22.4.4 Explaining the Residuals – Residual Exposure? 406
22.4.5 Explaining the Residuals – Wrong Volatility Estimate? 409
22.5 Conclusions 411

Part VI Excess Returns

23 Excess Returns: Setting the Scene 415
23.1 The Purpose of This Chapter 415
23.2 The (Local) Expectation Hypothesis 415
23.3 What One Really Tests for When One Tests the (L)EH 417
23.4 Defining Excess Returns 419
23.4.1 General Exact Results 419
23.4.2 Special Cases 420
23.4.3 Approximate Results for the $\tau = n = 1$ Case 421
23.5 Expressing Excess Returns as a Function of Forward Rates 422
23.6 Excess Returns with Real Rates 422
23.7 Excess Returns: Links with Carry, Roll-Down and Related Market Lore 425
23.8 Why ‘Carry’ and ‘Roll-Down’ Matter 429

24 Risk Premia, the Market Price of Risk and Expected Excess Returns 431
24.1 The Purpose of This Chapter 431
Contents

24.2 Decomposing and Interpreting the Approximate Excess Returns 432
 24.2.1 The ‘Carry’ Description 432
 24.2.2 The ‘Forwards-Come-True’ Condition 432
24.3 From Excess Returns to the Market Price of Risk 433
 24.3.1 Market Yields versus Expected Yields 433
24.4 The Link between Excess Returns and Term Premia 436
24.5 The Link between Term Premia and Expected Excess Returns 438
24.6 Reconciling Results 440
24.7 Expected versus Realized Excess Returns 441
24.8 Forwards-Come-True versus Yields-Don’t-Move: Roll-Down Again 446
24.9 When to Invest 448

25 Excess Returns: Empirical Results 449
 25.1 The Purpose of This Chapter 449
 25.2 Understanding the Empirical Setting 450
 25.2.1 The Empirical Questions 450
 25.2.2 A Very Important Caveat on Spanning 452
 25.2.3 The Methodological Dilemma 454
 25.3 Unconditional Results: Nominal Bonds 455
 25.4 Regression Results: Nominal Bonds 457
 25.4.1 1- to 10-Year Returns 457
 25.4.2 Effectiveness of Various Regressors 459
 25.4.3 5-Year Returns: Comparison with Cochrane–Piazzesi (2005) 461
 25.5 Where Has the Volatility Gone? 462
 25.6 Regression Results: Real Bonds 463
 25.7 The Data 464
 25.8 The Real Excess Returns 464
 25.9 Extracting the Real-Rate Risk Premium 468
 25.10 Estimating the Inflation Premium in Nominal Bonds 470
 25.10.1 Isolating the Liquidity Component 471

26 Excess Returns: The Recent Literature – I 473
 26.1 The Purpose of This Chapter 473
 26.2 The Early Work 474
 26.3 Cochrane and Piazzesi (2005) 475
 26.4 Critical Assessment of the Cochrane–Piazzesi Results 478
 26.5 Robustness of the Tent Shape: Tents versus Bats 478
Contents

26.6 The Link Between the Tent and the Bat Factors: Constrained Regressions
 26.6.1 Constrained Regression: The Investigation Methodology
 26.6.2 Constrained Regression: Results
 26.6.3 Constrained Regression: First Conclusions

26.7 The Link between the Tent and the Slope Factors
 26.7.1 Tent versus Slope Shape Similarity: The Investigation Methodology
 26.7.2 Tent versus Slope Shape Similarity: Results

26.8 Exploring the Economic Robustness of Tent versus Slope Predictions
 26.8.1 Tent versus Slope Robustness: Methodology
 26.8.2 Tent versus Slope Robustness: Results
 26.8.3 Tent versus Slope Robustness: Conclusions

27 Excess Returns: The Recent Literature – II
 27.1 The Purpose of This Chapter
 27.2 The Work of Radwanski (2010)
 27.2.1 Features and Highlights of the Radwanski Results
 27.2.2 The Methodology and Results
 27.2.3 Comments and Conclusions
 27.3 The Work of Ludvigson and Ng (2009)
 27.3.1 Main Results
 27.3.2 The Spanning of Yield Curve Factors Revisited: Implication for Affine Models
 27.4 Yield-Curve Spanning: Why One May Need Five Factors After All
 27.4.1 The Essentially Affine Description
 27.4.2 Switching to Yields as State Variables
 27.4.3 Augmenting the State Vector
 27.4.4 Switching Back to an ‘Augmented’ Set of Yields as State Variables
 27.4.5 The Subtle Role of ‘Measurement Error’
 27.4.6 Spanning in Principle versus Spanning in Practice
 27.5 The Work of Cieslak and Povala
 27.5.1 The Set-Up and Main Features
 27.5.2 The Investigation Methodology and Results
 27.5.3 The Link with Forward-Rate-Based RPFs
 27.5.4 Intrinsic Limitations of Forward-Rate-Based Factors
 27.5.5 Implications for Term-Structure Models
Contents

27.5.6 Re-Interpretation of the Cieslak–Povala RPF: Conditional Slope and Level 522
27.6 Related Work 525

28 Why Is the Slope a Good Predictor? 527
28.1 The Purpose of This Chapter 527
28.2 What Does Not Qualify as an Explanation 528
28.3 Excess Returns, the Slope and the Real Economy 529
28.4 The Data-Generating, Subjective and Risk-Neutral Measures 531
28.5 Does It Matter? 533
28.6 Why Is the Slope Significant? A Heterogeneous-Expectations Model 534
28.7 Why Is the Slope Significant? An Over-reaction Model 538
28.8 The Model in Detail
28.8.1 The Actions of the Central Bank 539
28.8.2 The Investors’ Expectations 541
28.8.3 The Bond Price Formation 541
28.8.4 The Excess Returns 542
28.8.5 The Simulations 542
28.8.6 Summary of Results 546

29 The Spanning Problem Revisited 547
29.1 The Purpose of This Chapter 547
29.2 What Is the Spanning Problem? 547
29.3 The Empirical Spanning Problem 548
29.4 The Theoretical Spanning Problem 551
29.5 The Modelling Choices to Handle the Spanning Problem 552

Part VII What the Models Tell Us

30 The Doubly Mean-Reverting Vasicek Model 559
30.1 The Purpose of This Chapter 559
30.2 The Doubly Mean-Reverting Vasicek Model 560
30.3 Bond Prices and Properties of the Solution 561
30.4 The Volatility of the Instantaneous Forward Rate 562
30.5 The Building Blocks 564
30.6 Initial Conclusions 568
30.7 Quality of the Fit 569
30.7.1 Calibrating the Model to the Volatility Structure 569
30.7.2 Calibrating the Model to the Yield Curve 571
30.8 The Value of Convexity 573
30.9 What Happened to the P-Measure? 574
Contents

31 Real Yields, Nominal Yields and Inflation: The D’Amico–Kim–Wei Model
31.1 The Purpose of This Chapter
31.2 Empirical Findings about Inflation
31.3 The No-Arbitrage Relationships
31.3.1 What the No-Arbitrage Relationships Really Imply
31.4 The Assumptions About the Process for the State Variables
31.5 Inflation Expectations and Risk Premia
31.6 Adding Liquidity
31.7 The Parameter Estimation Procedure and Results
31.7.1 The Difficulty of Parameter Estimation
31.8 Nominal and Real Rate Expectations and Risk Premia
31.8.1 Full-Sample Analysis
31.8.2 Prediction of Nominal and Real Excess Returns
31.8.3 Analysis of the May–September 2013 Events
31.9 Conclusions
31.10 Related Work

32 From Snapshots to Structural Models: The Diebold–Rudebusch Approach
32.1 The Purpose of This Chapter
32.2 Turning a Snapshot Model into a Dynamic Model
32.3 Turning a Dynamic Model into a No-Arbitrage Affine Model
32.4 Are the Variables Really Principal Components?
32.5 Dealing with Liquidity
32.5.1 On-the-Run, Off-the-Run Bonds
32.5.2 The Modelling Approach
32.5.3 The Results
32.5.4 Conclusions

33 Principal Components as State Variables of Affine Models: The PCA Affine Approach
33.1 The Purpose of This Chapter
33.2 Why PC-Based Models Are Special (Again)
33.3 Specified-Variable Models Revisited
33.3.1 Parameter Constraints for PCA Prespecified Models
33.4 Our Strategy to Link the P- and Q-Measures
33.5 The Set-Up
33.5.1 Notation
33.5.2 The Geometry (Kinematics) of the Problem
33.5.3 The Dynamics of the Problem

31 Real Yields, Nominal Yields and Inflation: The D’Amico–Kim–Wei Model
31.1 The Purpose of This Chapter
31.2 Empirical Findings about Inflation
31.3 The No-Arbitrage Relationships
31.3.1 What the No-Arbitrage Relationships Really Imply
31.4 The Assumptions About the Process for the State Variables
31.5 Inflation Expectations and Risk Premia
31.6 Adding Liquidity
31.7 The Parameter Estimation Procedure and Results
31.7.1 The Difficulty of Parameter Estimation
31.8 Nominal and Real Rate Expectations and Risk Premia
31.8.1 Full-Sample Analysis
31.8.2 Prediction of Nominal and Real Excess Returns
31.8.3 Analysis of the May–September 2013 Events
31.9 Conclusions
31.10 Related Work

32 From Snapshots to Structural Models: The Diebold–Rudebusch Approach
32.1 The Purpose of This Chapter
32.2 Turning a Snapshot Model into a Dynamic Model
32.3 Turning a Dynamic Model into a No-Arbitrage Affine Model
32.4 Are the Variables Really Principal Components?
32.5 Dealing with Liquidity
32.5.1 On-the-Run, Off-the-Run Bonds
32.5.2 The Modelling Approach
32.5.3 The Results
32.5.4 Conclusions

33 Principal Components as State Variables of Affine Models: The PCA Affine Approach
33.1 The Purpose of This Chapter
33.2 Why PC-Based Models Are Special (Again)
33.3 Specified-Variable Models Revisited
33.3.1 Parameter Constraints for PCA Prespecified Models
33.4 Our Strategy to Link the P- and Q-Measures
33.5 The Set-Up
33.5.1 Notation
33.5.2 The Geometry (Kinematics) of the Problem
33.5.3 The Dynamics of the Problem

© in this web service Cambridge University Press
www.cambridge.org
Contents

- 33.5.4 Solution 628
- 33.5.5 Necessary Conditions for Identifiability 629
- 33.6 Theoretical Results 631
 - 33.6.1 Impossibility of Identification When K Is Diagonal 631
 - 33.6.2 What Does It Mean to Require that the Factors \mathbf{x}_t Should Be Principal Components? 632
 - 33.6.3 Constraints on K for Identifiability 633
 - 33.6.4 What the Q-measure Reversion-Speed Matrix Affects 635
- 33.7 Moving from the Q- to the P-Measure 639
- 33.8 Estimating the Parameters of \mathbf{q}_0 and R 641
- 33.9 Calibration of the Model 643
 - 33.9.1 Cross-Sectional Fit to Yields 643
 - 33.9.2 Estimating the Values of the Eigenvalues \mathbf{l} 644
 - 33.9.3 Estimating the ‘Level’ Constant, u_0 644
- 33.10 Calibration Results 644
- 33.11 Generalizable Results on Term Premia from a PC-Based Affine Model 649
- 33.12 The Existential Dilemma 654
- 33.13 Appendix 33A: Proof of the Constraints on the Reversion-Speed Matrix K^Q 657
 - 33.13.1 Preliminaries 657
 - 33.13.2 Some Ancillary Results 658
 - 33.13.3 The Derivation of the Main Result 659
 - 33.13.4 The Conditions on the Vector \mathbf{e} 660
- 33.14 Appendix 33B: Switching Regressors 661
- 34 Generalizations: The Adrian–Crump–Moench Model 663
 - 34.1 The Purpose of This Chapter 663
 - 34.2 The Strategy Behind the Adrian–Crump–Moench Model 664
 - 34.3 A High-Level Description of the Model 665
 - 34.4 State-Price Deflators: Generalizing the Results 667
 - 34.5 Establishing an Expression for the Excess Returns 671
 - 34.6 The Estimation Procedure 676
 - 34.7 Establishing a Link with the Affine Model: The Discount Factor 677
 - 34.8 Some Observations 679
 - 34.9 Results 680
 - 34.9.1 Full-Sample Analysis 680
 - 34.9.2 Analysis of the May–September 2013 Events 683
 - 34.10 Conclusions 687
35 An Affine, Stochastic-Market-Price-of-Risk Model

35.1 The Purpose of This Chapter 688
35.2 Why Do We Need Another Affine Model? 689
35.3 Another Justification for a Stochastic-Market-Price-of-Risk Model 691
35.4 The Model 693
35.5 In Which Measure(s) Are We Working? 694
35.6 The Qualitative Behaviour of the Model 696
35.7 Calibration of the Model 698
35.8 Calibration Results 700
35.9 Comments on the Solution 705
35.10 Term Premia in the Stochastic-Market-Price-of-Risk Model 708

36 Conclusions

36.1 What Have We Learnt? 714
36.1.1 The Road Followed 714
36.1.2 The Case for the Prosecution: Models As Regurgitators 715
36.1.3 The Case for the Defence: Models as Enforcers of Parsimony 716
36.1.4 The Case for the Defence: Models as Enforcers of Cross-Sectional Restrictions 718
36.1.5 The Case for the Defence: Models as Revealers of Forward-Looking Informations 719
36.1.6 The Case for the Defence: Models as Integrators 720
36.1.7 The Case for the Defence: Models as Enhancers of Understanding 721

References 725
Index 737