

Index

Note: page numbers followed by f or t respectively indicate figure or table.

```
actuarial yields, 431
                                               market price of inflation risk,
Adams, Douglas, 431, 527
                                                   239-240
Adrian, T., 663
                                               multivariable exponentially, 292-293
Adrian-Crump-Moench model, 663-687
                                               no-arbitrage, 606-610
  10-year yield, 686f
                                               no-arbitrage conditions for real bonds,
  1-year yield, 685f
                                                   238
  3-year yield, 685f
                                              overview, 6-8
  5-year yield, 686f
                                               principal component analysis (PCA),
  affine model, link with, 677-679
                                                   618-662
  discount factor, 677-679
                                                 ancillary results, 657-661
  estimation procedure, 676–677
                                                 calibration, 643-649
  expression for excess returns, 669-675
                                                 constraints on reversion-speed
  full-sample analysis, 680–683
                                                   matrix, 633-635
  high-level description, 665-667
                                                 cross-sectional fit to yields,
  May-September 2013 events, 683-685
                                                   643-644
  observations, 679-680
                                                 dynamics of problem, 627-628
  overview, 663
                                                 eigenvalues, 644
                                                 excess return vector, 641–643
  state-price deflators, 667-671
  strategy, 664–665
                                                 existential dilemma, 654–657
affine models
                                                 geometry (kinematics) of problem,
  Adrian-Crump-Moench model, link
                                                    626-627
       with, 677-679
                                                 identifiability, 629-631
  affine case, 78-79
                                                 level constant, u_t, 644
                                                 linking \mathbb{P} and \mathbb{Q} measures, 625–626
  completely, 178
  convexity and, 373-374
                                                 notation, 626
  definition of, 300-301
                                                 overview, 618-620
  essentially, 178

ℙ measures, 639–641

  implications of, 507-508
                                                 parameter constraints, 624–625
  with many state variables, 285-291
                                                 Q-measure reversion-speed matrix,
    changing variables, 291
                                                   635-639
     expression for the variance for
                                                 reversion-speed matrix, 631-632,
       generic N, 288–289
                                                   657-661
    N = 2 case, 287–288
                                                 set-up of, 626-631
     stability, 290-291
                                                 solution, 628–629
  market equilibrium and, 536
                                                 specified-variable models, 622–625
```


affine models (cont.)	affine case, 78–79
state variables as principal	general case, 77-78
components, 632–633	in risk-neutral measure, 211–213
switching regressors, 661–662	formation of, 541–542
term premia, 649-653	as function of short rate, 265
affine term structures, 266–269	Ito's Lemma, 148, 179, 220, 353, 426
AR(1) process, 42–43	log, 33–34
monetary actions, 57	partial differential equation and,
Ornstein-Uhlenbeck process and,	264–266
43–44	as Q-expectations, 76–77
arbitrage	Q-expectations, 76–77
defined, 24–25	in Vasicek model, 165
pseudo-arbitrage, 25–26	volatility, 31
type-I, 186–189	yields and, 28–31
type-II, 189–192	bonds
arbitrage pricing model, 27	convexity, 31–32
arbitrageurs, 158	duration, 31–32
Aristotle, 185	inflation-linked, 79
Arrow–Debreu prices, 209	long-term investor, 195
asset pricing, building-blocks approach	price formation, 541–542
in, 208–211	real, 79
asset-pricing models, 27	risks
assets returns, probability distribution of,	inflation, 64-65
533	real-rate, 65–66
Augustine, Saint, 355	on-the-run, off-the run, 612-613
autoregression coefficient, 516	shallow versus deep explanations for,
axis rotation, 98–103	20–21
	volatility of, 194, 222
Bacon, Francis, 714	Brace-Gatarek-Musiela (1997) model,
Bank of England, 145	10
bat coefficients, 482–488	break-even inflation (BEI)
Bauer, M.D., 347-348	for 2, 5, and 10 years, 86
Becket, Thomas, 61	expectations
behaviour complexity, 635	under different measures, 234–235
BEI. See break-even inflation	under ℙ, 230–232
beliefs, heterogeneity of, 535	under Q, 232–233
Bernanke, Ben, 51, 83, 595, 684,	under T, 233–234
686	inflation expectations and, 229-235
Berra, Yogi, 391, 533	real rates and, 122–128, 124f
biased estimator, 414f	time- t , maturity- T , 80
Black, F., 329, 333	VIX index and, 93
Black-Derman-Toy (1990) model, 10	volatilities, 127f
blue dots, 145, 539	break-even volatility, 351–357
Bomfin, B.N., 330, 332, 343, 347	Brown, R.H., 149
bond prices	Brownian bridge, 30
convexity and, 157–158	Brownian diffusion, 163, 164, 171, 207,
doubly-mean reverting Vasicek model,	264, 355
561–562	Brownian motion, 41, 44, 45, 74, 144,
expectations, 77–79	167, 197

Index 739

Brownian process, 48, 151 slope factors and, 488-491 Brownian shocks, 288, 540, 636 slope robustness and, 491-496 building-blocks approach, 208-211, cognitive biases, 533 564-568 compensation Bundesbank, 329 excess returns and, 201 liquidity and, 93-94 Calasso, R., 618 market price of risk and, 202 calibration per unit time, 74 reasons for, 91-94 defined, 59 doubly-mean reverting Vasicek model, decomposition of risk premium, 569-573 91-93 PCA affiline approach, 643-649 liquidity, 93-94 quality assessment, 60-61 reasons for seeking, 452 reduced-form models, 58-62 compensation term, 201 stochastic-market-price-of-risk model, completely affine models, 178 698-705 conditional strategy, 393 Vasicek model, 276–277 constant-maturity bonds, 425 Camus, Albert, 299 constrained regression, 482-488 capital asset pricing model (CAPM), 27 constraint problem, 16-18 carry consumption, 66 excess returns and, 425-430, 432 risk-less rate and, 253-255 portfolio convexity and, 393 state-price deflators and, 215 portfolio time decay and, 381-383 stochastic discount factor and, roll-down and, 381-383 242-243 continuous time Cartesian coordinates, 89 central bank no-arbitrage in, 196–205 actions of, 539-540 stochastic discount factor (SDF) in, 256-257 excess returns and, 542 convexity, 147-159 investor's expectations, 541 simulations, 542-546 adjustment, 675 central bankers, 51 in affine setting, 374–377 Choleski decomposition, 288 characteristics of, 154-156 Christensen, J.H.E., 347 contributions to yield curve, 134f Cieslak, A., 514-525 definition of, 147–149 Cieslak-Povala factor, 514-525 doubly-mean reverting Vasicek model features of, 514-515 and, 573-574 forward-rate-based RPFs, 519-520 duration and, 31-32, 156-157 implications for term-structure models, empirical results, 391–411 GARCH model, 396–398 interpretation of, 522-525 Gaussian random variables and, maturity-dependent cycle, 516 150-152 methodology, 515-519 hedging and, 155-156, 157 set-up of, 514-515 Jensen's inequality and, 149–152 slope, 522-525 market-implied, 364 Cochrane, J.H., 475-477 model-independent weights, 386-388 Cochrane-Piazzesi (CP) factor, 475-478 of portfolio, 377–380 assessment of, 478 predicted portfolio, 394 bat factors and, 482-488 pricing of, 157-159 constrained regression, 482-488 strategy, 393-395

convexity (cont.)	D'Amico-Kim-Wei model, 11, 575-601
optimal weights, 395–396	inflation expectation, 239, 576–577,
profitability, 402–404	582–583
residuals, 405–411	liquidity and, 583-584
setting up, 395–398	May-September 2013 events, 594-596
signal correlation, 405	no-arbitrage, 577–580
yield curve, 398–402	nominal and real rate expectations,
yield volatilities, 396–398	588–596
theoretical, 377–380, 394	overview, 575
as function of forward rates, 380	parameter estimation procedure,
as function of market observables,	584–588
380–383	risk premium, 582–583
portfolio time decay, 381–383	state variables, 581–582
up-and-down prices, 148t	TIPS bonds and, 577
value of, 351–370, 392f, 573–574	decay, 116
analysis of, 365–368	decay parameter, 616
break-even volatility, 351–357	decomposition, 91–93
empirical, 389–390	delta, 157
equivalent affine models, 373–374	delta hedging, 155
expression for, 363–365	derivatives models, 19
generalizations, 357–363	Descartes, Rene, 263
graphical interpretation, 368–369	Diebold-Rudebusch model, 602-617
model-based, 389-390	definition of, 602–603
model-independent approach,	dynamic to no-arbitrage affine model,
371–390	606–610
in Vasicek model, 170–175	liquidity, 612–617
break-even volatility, 351–357	versus Nelson-Siegel model, 603-604
effect of, 172–173	on-the-run, off-the run bonds, 612–613
expression for, 170–171	snapshot to dynamic models, 603-606
generalizations, 357–363	variables as principal components,
right reversion speed, 173–175	610–612
value of, 170	dimensional analysis, 34–35
yield volatility and, 171–172	discount bonds, 139
volatility and, 152–153	convexity, 31–32
yield curve and, 278	definition, 64
convexity-adjusted market yield, 541	duration, 31–32
correlation matrix, 109	prices as Q-expectations, 76–77
coupon bonds, yield, 29–30	prices in Vasicek model, 165
covariance, risk premium as, 235–237	state price deflators, 216
covariance matrix	yield, 28–30
distinct elements, 101–103	discrete time
orthogonalization, 109, 650	no-arbitrage in, 185–195
principal components and, 107, 126 <i>f</i> ,	stochastic discount factor (SDF) in,
127 <i>f</i>	256–257
state variables, 289	distribution
yield, 305–306	normal, 162
Cox-Ingersoll-Ross model, 9, 268, 719	stationary, 162
CP first factor, 500 Crump, R.K., 663	doubly-mean reverting Vasicek model,
Limma D.K. 663	310–311, 559–574

Index 741

bond prices and, 561-562 Cochrane and Piazzesi study, 475-478 building blocks, 564-568 constrained regression, 482-488 calibration decomposing and interpreting, to volatility structure, 569-571 432-433 to yield curve, 571-573 defining, 419-421 convexity and, 573-574 approximate results for the definition of, 560-561 $\gamma = n = 1$ case, 420–421 quality of the fit, 569–573 general exact results, 419-420 volatility of instantaneous forward rate special cases, 420-421 and, 562-564 early work, 474-475 Doyle, Arthur Conan, 449, 473 empirical results, 449-472 $dp_t dx_t$, stochastic-calculus rules for, 45 methodological dilemma, 454-455 drift 16 questions, 450-452 risk-neutral, 267 regression results, 457–462 of state price deflators, 215 setting, 450-455 spanning, 452-454 drift term, 367 Duffie, D., 608 unconditional results, 455-457 Duffie-Kan model, 292 estimates of, 454 duration, 31-32 expected, 438-440 convexity and, 31-32, 157 versus expected returns, 441-446 expression for, 669-675 risk, 176 in Vasicek model, 165-168 forward-come-true condition, 432-433 duration hedging, 155 as function of forward rates, 422 duration term, 201-202 general expression, 419-420 duration-neutralized portfolio, 383-384, investors' compensation and, 452 link between tent and bat factors, 393 dynamic models, 603-606 482-488 local expectation hypothesis, 415–419 eigenvalues, 644 Ludvigson and Ng (2009) study, eigenvectors, 106 504-508 Einstein, Albert, 285 with many factors, 193, 202-205 Eliot, T.S., 58 market price of risk and, 433-436, 451 Ellenberg, J., 160 market yields versus expected yields, error, measurement of, 513 433-436 error bars, 8 no-arbitrage, 200-201 essentially affine models, 178 nominal and real, 589-594 nominal bonds, 455-457 estimation procedure, 676–677 pure expectation hypothesis, 416 estimator biased, 414f Radwanski factor, 498–504 unbiased, 414f real, 464-468 excess returns, 475-478 real bonds, 463 absolute value of, 462 real economy and, 529-531 Adrian-Crump-Moench model, with real rates, 422-425 669-675 regression results approximate results for the $\gamma = n = 1$ 1- to 10-year returns, 457-459 case, 421 5-year returns, 461–462 biased vs. unbiased estimators, 414f effective of regressors, 459-461 carry and, 425-430, 432 robustness of tent shape, 478-482 Cieslak-Povala factor, 515-525 roll-down and, 425-430

excess returns (cont.)	Fed Funds rate, 539
slope and, 529–531	Federal Reserve Board, 145, 275, 335,
sources of predictability, 514–515	641
special cases, 420–421	feedback rules, 52
tent shape and slope factors, 488-491	Feynman, Richard, 266, 285
term premia and, 436–437	first extensions, 285–298
time- <i>t</i> , 193, 542	affine models with state variables,
volatility and, 462-463	285–291
weak expectation hypothesis, 416	changing variables, 291
when to invest, 448	expression for the variance for
yield spreads and, 474-475	generic N, 288–289
yield-curve spanning, 508–514	N = 2 case, 287–288
existential dilemma, 654–657	stability, 290–291
expectation hypothesis, 5, 154	general properties of solutions,
local, 415–417	293–295
pure, 416	distributional properties, 294-295
weak, 416	forward rates, 293–294
expectation vector, 307-308	yields, 293–294
expectations, 137–146	multivariable exponentially affine
in 2009-2013 period, 83-87	models, 292–293
contributions to yield curve, 134f	Fisher, Nychka and Zervos (1995) model
inflation, 230–235	9
under different measures, 234-235	Fontaine, JS., 612-616
under \mathbb{P} , 230–232	forward, return-predicting factors and,
under \mathbb{Q} , 232–233	519–520
under \mathbb{T} , 233–234	forward premium, 422
of Ito integrals, 46–47	forward rates, 32–33
no-arbitrage and, 137–143	convexity and, 154
multifactor, 141-143	definition of, 32
one-factor world, 138-141	excess returns and, 476
nominal and real rate, 588-596	excess returns as function of, 422
prices, 77–79	future rates and, 432-433, 542
affine case, 78–79	instantaneous, 306-307, 562-564
general case, 77–78	return-predicting factors and, 519-520
in risk-neutral measure, 211-213	theoretical convexity as function of,
Q-expectations, 76–77	380
rate, 168–169	Vasicek model, 273–275
risk premia and, 81–87	volatility of, 306-307, 562-564
survey data and, 145-146	yields and, 293–294
expected return, 192-193	forward rates-based factors
versus realized excess returns,	Cieslak-Povala factor and, 519-520
441–446	limitations of, 520–522
roll-down, 446–447	forward-looking information, 719-720
expected yield, 433-436	FRB/US optimal control model, 52
exponential of matrix, 40	Frish, Ragnar, 497
	Froot, K.A., 415, 417
factor durations, 386	funding advantage, 357, 367, 428, 474
factorization, 276–277	future rates, 432–433
fear index, 93	future yield, 428

> Index 743

gamma, 155, 157 time series of, 517 gamma trading, 154, 394 Garcia, R., 612-616 Gaussian distribution, 146, 294, 307 Gaussian normal variable, 561-562 Gaussian random variables, 150-152 Gedanken Monte Carlo evolution, 510 generalized auto regressive conditional heteroscedasticity (GARCH), 396-398 Girsanov's theorem, 364 Great Moderation, 65 Great Recession of 2007-2009, 82, 125 Great Repression, 51, 347 Green's functions, 209 Greenspan, Alan, 95 Hawking, Stephen, 688 Hazlitt, William, 108, 157 Heath-Jarrow-Merton model, 10, 621 hedge funds, 158 Herder, Johann Gottfried, 714 heterogenous-expectations model, 534-538 Hull, J., 560 Hull and White (1990) model, 10 Hume, David, 50 humped volatility curve, 281-282 identifiability, 629-631 idiosyncratic risk, 249-250 inflation break-even. See break-even inflation D'Amico-Kim-Wei model, 576-577 empirical findings, 576–577 expectations under different measures, 234–235 under ℙ, 230–232 under ℚ, 232–233 under \mathbb{T} , 233–234 expected, 65, 78–79 nominal rates and, 128-131 real principal components and, 128-131 risk, 64-65

weighted moving average of past data, 517 inflation expectations D'Amico-Kim-Wei model, 582-583 Radwanski factor, 501-502 inflation fans, 145 inflation risk premium, 65, 88-89, 470-472 inflation-linked bonds, 79 inflation-predicted slope, 524 instantaneous forward rates, 562-564 for time-homogenous model, 380 volatility of, 306-307, 562-564 institutional investors, 157–158 insurance companies, 157 integration constant vector, 650 interest rates, unit-root problem, 116 investment/savings (IS) curve, 331 investors, expectations, 541 Ito integrals expectations of, 46-47, 151 lognormal case, 47 normal case, 46 Ito isometry, 47–48 Ito's Lemma, 44–45 bond price, 148, 179, 220, 353, 426 bond volatility, 140, 171, 274-276, 384, 563 convexity and, 148, 153 duration in Vasicek model, 165 Jensen convexity, 237

Jensen's inequality, 153f, 253, 347 convexity and, 149-152 definition of, 145

Kalman filtering, 11, 676 Kan, R., 608 Keynesian economics, 331 Keynesian liquidity trap, 331 Kim-Wright model, 95-96, 193 Krippner, L., 347 Kroeneker delta, 286, 301, 357, 375

latent variables, 10-14 level constant, u_t , 644 linear transformations, 112

target, 535

liquidity	market yield
compensation for TIPS investors and,	convexity-adjusted, 541
93–94	versus expected yield, 433–436
D'Amico-Kim-Wei model and,	matrices
583–584	defined, 36–37
Diebold-Rudebusch model, 612-617	exponential of, 40
liquidity factor, 93	orthogonal, 38–39
liquidity-preference/money-supply (LM)	May–September 2013 events
curve, 331	Adrian-Crump-Moench model,
local expectation hypothesis, 415–417	683–685
definitions of, 416–417	D'Amico-Kim-Wei model, 594-596
testing, 417–419	mean, 146
log prices, 33–34	mean-reverting process, 112–114
log returns, 33–34	doubly-mean reverting Vasicek model,
Longstaff-and-Schwartz model, 11,	310–311
268	inflation and, 534
long-term bond investors, tasks of,	multidimensional, variance of,
195	296–297
Long-Term Capital Management, 532	one-dimensional, variance of, 295–296
Ludvigson, S.C., 504–508	Ornstein–Uhlenbeck process, 41–42
244 rg50n, 5.0., 50 r 500	principal components, 112–116
M measures, 69–72	for short rate, 143–145
macro-dynamic term structure models	stability of, 297–298
(MSTMs), 525	trebly-mean reverting Vasicek model,
macroeconomic variables, 15, 550, 553	311–312
market equilibrium, 536	tucking-in effect of, 333
market observables, 377–380	measurement error, 677
market observables, 377–360 market price of risk, 72–76	measurement of error, 513
ab initio, 201–202	median, 146
affine function of state variables, 335	mispricing, 158
affine models, 239–240	
	model parameters, 61–62
compensation and, 202	model-independent weights, 386–388
in continuous time, 196–200	models. See also specific models as enforcers of cross-sectional
excess return with many factors and,	
202–205	restrictions, 718–719
excess returns and, 433–436, 451	as enforcers of parsimony, 716–718
functional form of, 176–178	as enhancers of understanding,
interpretations of, 199–200	721–723
P measures, 69–72	as integrators, 720–721
Q measures, 69–72	principal component-based, 620–622
real-world probabilities, 68–76	as regurgitators, 714–716
risk-less portfolios and, 196–199	as revealers of forward-looking
risk-neutral probabilities, 68–76	informations, 719–720
Sharpe ratio and, 178–181	specified-variable, 622–625
stochastic, 312–313	Modulo convexity, 435
time dependence of, 202	Moench, E., 663
type-II arbitrage, 192	monetary actions, 539–540
volatility of state price deflator and,	simple model for, 56–58
221–222	monetary channels, 50–52

Index 745

monetary intervention, 51-52 type-I arbitrage, 186-189 Monte Carlo simulation, 138, 141, 144, type-II arbitrage, 189-192 331 no-arbitrage models, affine models, most likely outcome, 146 606-610 noise, 103-104 N = 2 case, 287–288 nominal bonds, 88, 122, 455-457 Nelson-Siegel model, 9, 479, 603-604 1- to 10-year returns, 457–459 Nelson-Siegel-Svensson model, 603 5-year returns, 461–462 Ng, S., 504-508 excess returns, 455-457, 589-594 Nietzsche, Friedrich W., 185 inflation premium in, 470-472 no-arbitrage nominal yield, 79 affine models, 606-610 rate expectations, 588-594 in continuous time, 196-205 regression results, 457-462 excess returns, 200-201 regressors, 459-461 market price of risk, 196-200 yield components, 66-68 D'Amico-Kim-Wei model, 577-580 nominal prices, 248–249 in discrete time, 185-195 nominal rates, 79-80, 108-122 expectations and, 137-143 descriptive features, 108-112 inflation and, 128-131 multifactor, 141-143 one-factor world, 138-141 mean-reverting properties, 112-116 real principal components and, expected return, 192–193 extension to many factors, 193-194 128-131 long-term bond investors and, 195 nominal yield, 79 models non-intercept regression coefficients, need for, 19-20 475tstructural, 9 non-overlapping returns, 454 for real bonds, 224-240 normal distribution, 162 affine models, 238 break-even inflation and inflation observable variables, 10-14 expectations, 229-235 one-factor world, 138-141 on-the-run, off-the run bonds, 612-613 market price of inflation risk, 239-240 optimal weights, 395-396 risk premium as covariance, option premium, 392 235-237 options, gamma, 155 state-price deflator, 224–229 ordinary differential equation (ODE), with state price deflators, 206-223 269-270, 302 affine process for state variables, building-blocks approach, 208-211 307-308 discount bonds, 216 drift of, 216-217 associated homogenous, 314-316 modern approach, 207–208 multivariable exponentially affine payoff, 210-213 models and, 292 prices as expectations in risk-neutral for $A(\tau)$, 316–323 measure, 211-213 ordinary least squares (OLS), 641, 676 process for, 214–216 Ornstein-Uhlenbeck process, 57, 539, short rate, 218 stochastic discount factor and, AR(1) process and, 43–44 213-214 definition of, 41–42 traditional approach, 207-208 N-dimensional, 623 volatility, 219-223 orthogonal matrices, 38-39

orthogonality, 107	expectations, 77–79
Orwell, George, 620	affine case, 78–79
overlapping returns, 454	general case, 77–78
over-reaction model, 538-539	in risk-neutral measure, 211–213
•	formation of, 541-542
ℙ measures, 69–72, 543	as function of short rate, 265
affinity of Vasicek model under,	Ito's Lemma, 148, 179, 220, 353, 426
271–272	log, 33–34
doubly-mean reverting Vasicek model and, 574	partial differential equation and, 264–266
Gaussian distribution and, 146	as Q-expectations, 76–77
inflation expectation under, 230–232	in Vasicek model, 165
linking with \mathbb{Q} measures, 625–626	volatility, 31
methodology, 515	yields and, 28–31
moving from \mathbb{Q} measures to, 639–641	pricing errors, 621
structural description with, 143	pricing framework, 299–328
parameter estimation procedure, 584–588	affine models, 300–301
parameters, 11	building-blocks approach, 208–211
partial differential equation (PDE),	calculation of formal solution,
207–208, 215, 302, 621	324–328
bond prices and, 264–266	commutation relationship for A and
no-arbitrage with state price deflators,	f(A), 325–326
207–208	integral of e^{At} , 327–328
shadow rate and, 333–334	time derivative of e^{At} , 327
payoff, 210–212, 248	up-and-down theorem, 325–326
P-distribution, 75–76	convexity and, 157–159
pension funds, 157	equations, 303–304
percentage return, 34	general strategy, 301–303
persistence, 112–113	instantaneous forward rates, 306–307
Piazzesi, M., 475–478	meaning of e^A , 323
Picasso, Pablo, 714	state variables, 307–309
portfolios	v, 305–306
duration-neutralized, 383–384, 393	yield, 304–305
increment over short time, 264	yield covariance matrix, 305–306
risk-less, 48	yield volatilities, 305–306
theoretical convexity of, 377–380	principal component analysis (PCA), 10
as function of forward rates, 380	affine approach, 618–662
as function of norward rates, 380 as function of market observables,	ancillary results, 657–661
380–383	calibration, 643–649
time decay, 381–383	constraints on reversion-speed
	matrix, 633–635
Povala, P., 514–525 power/logarithmic utility, 250	cross-sectional fit to yields, 643–644
precautionary savings, 253	dynamics of problem, 627–628
predictive regression, 452	eigenvalues, 644
priced return innovation, 675, 678	excess return vector, 641–643
-	
prices convexity and, 157–158	existential dilemma, 654–657 geometry (kinematics) of problem,
doubly-mean reverting Vasicek model,	626–627
561–562	identifiability, 629–631
JU1-JU2	10011111111111111111111111111111111111

Index 747

level constant, u_t , 644 pseudo-arbitrage, 25-26 linking \mathbb{P} and \mathbb{Q} measures, 625–626 pure expectation hypothesis, 416 notation, 626 overview, 618-620 Q measures, 69–72, 543 \mathbb{P} measures, 639–641 affinity of Vasicek model under, parameter constraints, 624–625 271-272 expectations and, 145 Q-measure reversion-speed matrix, 635-639 inflation expectation under, 232–233 linking with \mathbb{P} measures, 625–626 reversion-speed matrix, 631-632, 657-661 moving to \mathbb{P} measures, 639–641 set-up of, 626-631 nominal reversion, 579 solution, 628-629 principal components and, 104 specified-variable models, 622–625 reversion-speed matrix, 635-639, 654 state variables as principal structural description with, 143 components, 632–633 Q-distribution, 75–76 Q-expectations, 76-77 switching regressors, 661–662 term premia, 649-653 quality of the fit, 569–573 axis rotation, 98-103 quantitative easing, 329 mathematical results, 106-107 original data redundancy in, 105 R^2 statistic, 91t, 573–574 Radon-Nykodim derivative, 217 overview, 98 redundancy in original data, 105 Radwanski, J.F., 498-504 Radwanski factor, 498-504 signal-to-noise ratio and, 104-105 variables in, 105 CP first factor, 500 principal components, 98-104 excess return as function of forward premia, 499 autocorrelation functions, 117f axis rotation, 98-103 features and highlights, 498 break-even inflation, 122-128 inflation expectation factor, 501–502 correlation plot, 118f realized forward premium for maturity, inflation and, 128-131 499 joint mean-reverting behaviour of, random shock, 534 116-122 random variables, Gaussian, 150-152 mean-reverting properties, 112-116 models based on, 620-622 economics-based description of, noise, 103-104 241 - 260nominal rates, 108-122 idiosyncratic risk, 249-250 nominal rates and, 128-131 real versus nominal prices, 248-249 risk premium, 245-248 real rates, 122-128 signal, 103-104 SDF in continuous and discrete variables as, 610-612 time, 256-257 yields and, 104 Sharpe ratio, 257-260 probabilities stochastic discount factor, 242-245 real-world, 68-76 riskless, 250-255 risk-neutral, 68-76 real bonds, 79 probability distribution excess returns, 589-594 of asset returns, 533 no-arbitrage for, 224-240 risk-neutral, 534 affine models, 238 break-even inflation and inflation subjective, 534 profits and losses (P&Ls), 403-411 expectations, 229-235

real bonds (cont.)	risk magnitude term, 201
market price of inflation risk,	risk premia, 87–88, 721–723. See also
239–240	term premia
risk premium as covariance,	central bankers and, 51
235–237	convexity and, 154
state-price deflator, 224–229	as covariance, 235–237
rate expectations, 588–594	D'Amico-Kim-Wei model, 582-583
regression results, 463	decomposition of, 91–93
real prices, 248–249	expectations and, 81–87
real rates, 79–80, 122–128	inflation, 65, 88–89, 470–472
excess returns with, 422–425	liquidity and, 93–94
time series of, 123f	for long-yield US Treasury, 341f
real state-price deflator	monetary policy and, 96
definition of, 225–226	real-rate, 468–470
expression for, 224–226	Sharpe ratio and, 97
process for, 226–229	stochastic discount factor and,
real yield, 79	245–248
volatilities, 127 <i>f</i>	time series of, 342f
real-activity factor, 506	true, 94–96
real-estate risk, 65–66	type-II arbitrage, 192
real-rate risk premium, 468–470	types of, 88–91
real-world probabilities, 68–76	in Vasicek model, 175–176
reduced-form models	risk-less portfolios, 48
calibration of, 58–62	market price of risk and, 196–199
model parameters, 61–62	risk-less rate
state variables, 61–62	consumption and, 253-255
reference bond, 204	no-uncertainty case, 251–252
regression, constrained, 482–488	stochastic discount factor and, 250-256
regression coefficients, 452	uncertainty reintroduction, 252-253
replication approach, 264–265	risk-neutral measures, 531-533
repressed markets, 561	risk-neutral probabilities, 68-76
residuals, 405–411, 677	risks, 34
return pricing error, 675, 678	aversion to, 176
return-predicting factor (RPFs),	common proxy for, 26
forward-rate-based, 519-520	duration, 176
returns	factors, 194
log, 33–34	idiosyncratic, 249-250
percentage, 34	inflation, 64–65
reversion speed, 173–174	market price of. See market price of
reversion-level vector, 119	risk
reversion-speed matrix	overview, 63–64
constraints on, 633-635, 657-661	real-estate, 65-66
diagonal, 287, 290, 631-632	robustness of, 475–477
nominal rates and, 119–120, 120t	roll-down, 381-383, 393, 425-430,
non-diagonal, 287	446–447
Q-measure, 635–639, 650, 654	portfolio time decay and, 381-383
risk assessment, predictability from,	row vectors, 39-40
533	Rudebusch, G.D., 347–348
risk aversion, 74-75, 250	Russell, Bertrand, 688

Index 749

saving rate, 66 definition of, 547-548 Schaefer, S.M., 149 empirical, 548-551 SDF. See stochastic discount factor modelling choices, 552-555 shadow rate, 329-348 state variables and, 14-16 effect on long yields, 339-343, 344f theoretical, 551-552 effect on whole yield curve, 332-333 specified-variable models, 17, 622-625 importance of, 330-331 stability, 290-291 of affine modes with many state modelling approach, 333–339 normalized distance of, 336 variables, 290-291 versus short rate, 339 of mean-reverting system, 297-298 Sharpe ratio, 27–28 standard deviation, 187-188 convexity and, 402t state price deflators, 206-223 definition, 27 Adrian-Crump-Moench model, definition of, 35 667-671 for excess return strategy, 455t, 526 building-blocks approach, 208-211 market price of risk and, 178-181 definition of, 225 risk premium and, 97 delivery time, 215-216 risk-adjusted return and, 533 discount bonds, 216 drift of, 215, 216-217 stochastic discount factor and, 257-260 modern approach, 207-208 shock, 112-114 no-arbitrage with, 206–223 short rate, 218 nominal, 225 bond prices as function of, 265, payoff, 210-213 561-562 prices as expectations in risk-neutral discrete time, 515 measure, 211-213 future path of, 515 process for, 213-214 for real bonds, 224-229 instantaneous, 228 mean-reverting process for, 143–145 expression, 224–226 risk premium and, 96 process for, 226-229 versus shadow rate, 339 short rate, 218 signal, 103-104 stochastic discount factor and, signal-to-noise ratio, 104-105 213-214 singular value decomposition, 395-396 traditional approach, 207-208 volatility of, 215, 219-223 slope excess returns and, 529-531 covariance term, 221 heterogenous-expectations model, expectation term, 220 534-538 market price of risk and, 221-222 over-reaction model, 538-539 sources of, 222 random shock and, 534 state prices, 224–225 real economy and, 529-531 state variables, 61-62 risk-neutral measures, 531-533 affine function of, 78, 141 significance of, 534-539 affine models with, 285-291 subjective measures, 531-533 changing variables, 291 slope predictions, 488-491 expression for the variance for slope risk factor, 193 generic N, 288-289 slope robustness, 491–496 N = 2 case, 287–288 snapshot models, 9-10, 603-606 stability, 290-291 spanning, yield-curve, 508–514 covariance matrix, 289 spanning problem, 547-555 D'Amico-Kim-Wei model, 581-582

state variables (cont.)	statistical models, 8–9
mean, 307–308	structural no-arbitrage models, 9
versus model parameters, 61-62	Taylor rules, 52–56
N-dimensional vector of, 300	Tegmark, M., 160
parameters and, 11	tents
as principal components, 632-633	bat factors and, 482-488
variance, 307–309	constrained regression, 482–488
yield as, 512	robustness of, 478–482
stationary distribution, 162	slope factors and, 488–491
statistical models, 8–10	versus slope predictions, 488-491
stochastic calculus, 44–48	versus slope robustness, 491–496
for $dp_t dx_t$, 45	term premia. See also risk premia
expectations of Ito integrals, 46–47	contributions to yield curve, 134f
Ito isometry, 47–48	excess returns and, 436–437
Ito's Lemma, 44–45	expected excess returns and, 438-440
lognormal case, 47	from PC-based affine model, 649–653
risk-less portfolios, 48	stochastic-market-price-of-risk model,
stochastic discount factor (SDF)	708–713
in continuous time, 256–257	term-structure models, infinity of,
in discrete time, 256–257	623–624
first derivation of, 242–245	Theil, Henri, 557
no-arbitrage, 578	theoretical convexity, 377–380
risk premium and, 245–248	as function of forward rates, 380
risk-less rate and, 250–256	portfolio time decay, 381–383
consumption, 253–255	theta, 157
no-uncertainty case, 251–252	time decay, 381–383
uncertainty reintroduction, 252–253	T-maturity bond
Sharpe ratio and, 257–260	carry strategy, 434
state-price deflators and, 213–214	excess returns, 139, 425, 436–437
stochastic-market-price-of-risk model,	expected excess returns, 438–440
312–313, 688–713	expected percentage return, 175
calibration of, 698–705	expected return, 179
definition of, 693–694	instantaneous expected return, 450
justification for, 691–693	risk factors, 194
measures, 694–696	term premia, 436–440
need for, 689–691	time- <i>t</i> price of, 216, 333–334
qualitative behaviour of, 696–698	volatility, 180
solution, 705–708	yield term premium, 435
term premia in, 708–713	transformations of vectors, 37–38
structural no-arbitrage models, 9	Treasury bonds
subjective measures, 531–533	10-year yields, 82–83, 82 <i>f</i> , 84 <i>f</i> –85 <i>f</i>
Summers, L., 183, 241	2-year yields, 82–83, 82 <i>f</i> , 84 <i>f</i> –85 <i>f</i>
survey data, 145–146	5-year yields, 82–83, 82 <i>f</i> , 84 <i>f</i> –85 <i>f</i> on-the-run, off-the run, 612–613
swaption, 169	on-the-run off-the run 617-613
T m 20001mg 222 224	Treasury Inflation Protected Securities
T measures, 233–234	Treasury Inflation Protected Securities (TIPS), 91–94, 122, 577
taxonomy, 8-10	Treasury Inflation Protected Securities (TIPS), 91–94, 122, 577 decomposition of risk premium and,
	Treasury Inflation Protected Securities (TIPS), 91–94, 122, 577

Index 751

trebly-mean reverting Vasicek model, duration in, 165-168 311-312 factorization, 276-277 type-I arbitrage, 186-188 forward rates, 273-275 bounds to price-correction term, humped volatility curve, 281-282 188-189 market price of risk and, 176-178 mean-reverting process for short rate, probabilities without loss of generality, 186-187 143-145 standard deviation, 187-188 ordinary differential equation and, 269-270 type-II arbitrage, 189–192 properties of, 161-168 unbiased estimator, 414f distributional, 161-165 uncertainty, 252-253 rate expectations, 168-169 unit-root problem, 116 replication approach, 264-266 U.S. Treasuries, 122 risk premium in, 175-176 risk premium, 154 shape of yield curve, 168–169 simple, 309-310 variables trebly-mean reverting, 311–312 choice of, 10-18 volatility structure, 273 constraint problem, 16-18 calibration, 276-277 latent versus observable, 10-14 yield, 272-273 parameters and, 11 yield curve, 277-281 as principal components, 610-612 yield volatilities in, 168, 362-363 vector auto-regressive (VAR) models, spanning problem, 14-16 variances, 16 for generic N, 288–289 vectors defined, 36-37 of multidimensional; mean-reverting process, 296-297 row, 39-40 of one-dimensional mean-reverting transformations of, 37-38 process, 295-296 VIX index, 92–94, 471–472 of returns of strategy, 26 volatility, 31, 152–153 of state variables, 307-309 break-even, 351-357 Vasicek model, 7, 11, 160-182 convexity and, 171-172 affine term structures, 266-269 doubly-mean reverting Vasicek model, affinity under \mathbb{P} and under \mathbb{Q} , 271–272 569-571 bond prices in, 165 excess returns and, 462-463 break-even volatility and, 351-357 humped volatility curve, 281-282 Brownian diffusion and, 171 implied, 155 convexity in, 170-175 of instantaneous forward rate, break-even volatility, 351–357 306-307, 562-564 effect of, 172-173 Ito's Lemma, 140, 171, 274-276, 384, expression for, 170-171 563 generalizations, 357-363 matrix, 654 right reversion speed, 173-175 sources of, 222 value of, 170 of state price deflators, 215, 219-223, vectors, 360-362 669 yield volatility and, 171-172 covariance term, 221 definition of, 161 expectation term, 220 doubly-mean reverting, 310-311, market price of risk and, 221-222 559-574 sources of, 222

752 Index

volatility (cont.) nominal, 79 Vasicek model, 273 principal components, 104 yield, 305-306 real, 79 shadow rate's effect on, 339-343, weak expectation hypothesis, 416 344f weights, model-independent, 386-388 spreads as return-predicting factors, Weinberg, Steven, 263, 557 474-475 White, A., 560 as state variables, 512 Williams, Bernard, 497 Vasicek model, 272–273 volatilities yield, 28-31 convexity and, 171-172, 362-363, actuarially expected, 431 384-385 estimation of, 396-398 almost-colinearity of, 552 bond prices and, 28-31 expression for, 305-306 in Vasicek model, 168, 171-172 components of, 66-68 convexity-adjusted, 541 yield-curve modelling, 20–21 cost, 392 yield-curve spanning, 508-514 covariance matrix, 305-306 affine description of, 509-510 cross-sectional fit to, 643-644 augmented set of yield as state curve, 277-281, 398-402 variables, 512 doubly-mean reverting Vasicek measurement of error, 513 model, 571-573 yields as state variables, 511 monetary authorities and, 50-51 shadow rate's effect on, 332-333 zero-cost portfolio expression for, 304-305 arbitrage strategy, 25 forward rates and, 293-294 convexity and, 154 future, 428 zero-interest-rate period (ZIRP), 57 market versus expected, 433–436 zero-lower bound regime, 330