Index

Note: page numbers followed by f or t respectively indicate figure or table.

actuarial yields, 431
Adams, Douglas, 431, 527
Adrian, T., 663
Adrian–Crump–Moench model, 663–687
10-year yield, 686f
1-year yield, 685f
3-year yield, 685f
5-year yield, 686f
affine model, link with, 677–679
discount factor, 677–679
estimation procedure, 676–677
expression for excess returns, 669–675
full-sample analysis, 680–683
high-level description, 665–667
May–September 2013 events, 683–685
observations, 679–680
overview, 663
state-price deflators, 667–671
strategy, 664–665
affine models
Adrian–Crump–Moench model, link with, 677–679
affine case, 78–79
completely, 178
convexity and, 373–374
definition of, 300–301
essentially, 178
implications of, 507–508
with many state variables, 285–291
changing variables, 291
expression for the variance for generic \(N \), 288–289
\(N = 2 \) case, 287–288
stability, 290–291
market equilibrium and, 536
market price of inflation risk, 239–240
multivariable exponentially, 292–293
no-arbitrage, 606–610
no-arbitrage conditions for real bonds, 238
overview, 6–8
principal component analysis (PCA), 618–662
ancillary results, 657–661
calibration, 643–649
constraints on reversion-speed matrix, 633–635
cross-sectional fit to yields, 643–644
dynamics of problem, 627–628
eigenvalues, 644
excess return vector, 641–643
existential dilemma, 654–657
geometry (kinematics) of problem, 626–627
identifiability, 629–631
level constant, \(u_t \), 644
linking \(P \) and \(Q \) measures, 625–626
notation, 626
overview, 618–620
\(P \) measures, 639–641
parameter constraints, 624–625
\(Q \)-measure reversion-speed matrix, 635–639
reversion-speed matrix, 631–632, 657–661
set-up of, 626–631
solution, 628–629
specified-variable models, 622–625
Index

affine models (cont.)
state variables as principal components, 632–633
switching regressors, 661–662
term premia, 649–653
affine term structures, 266–269
AR(1) process, 42–43
monetary actions, 57
Ornstein–Uhlenbeck process and, 43–44
arbitrage
defined, 24–25
pseudo-arbitrage, 25–26
type-I, 186–189
type-II, 189–192
arbitrage pricing model, 27
arbitrageurs, 158
Aristotle, 185
Arrow–Debreu prices, 209
asset pricing, building-blocks approach in, 208–211
asset-pricing models, 27
assets returns, probability distribution of, 533
Augustine, Saint, 355
autoregression coefficient, 516
axis rotation, 98–103

Bacon, Francis, 714
Bank of England, 145
bat coefficients, 482–488
Bauer, M.D., 347–348
Becket, Thomas, 61
behaviour complexity, 635
BEI. See break-even inflation
beliefs, heterogeneity of, 535
Bernanke, Ben, 51, 83, 595, 684, 686
Berra, Yogi, 391, 533
biased estimator, 414f
Black, F., 329, 333
Black–Derman–Toy (1990) model, 10
blue dots, 145, 539
Bomfin, B.N., 330, 332, 343, 347
bond prices
convexity and, 157–158
doubly-mean reverting Vasicek model, 561–562
expectations, 77–79
affine case, 78–79
general case, 77–78
in risk-neutral measure, 211–213
formation of, 541–542
as function of short rate, 265
Ito's Lemma, 148, 179, 220, 353, 426
log, 33–34
partial differential equation and, 264–266
as Q-expectations, 76–77
Q-expectations, 76–77
in Vasicek model, 165
volatility, 31
yields and, 28–31
bonds
convexity, 31–32
duration, 31–32
inflation-linked, 79
long-term investor, 195
price formation, 541–542
real, 79
risks
inflation, 64–65
real-rate, 65–66
on-the-run, off-the run, 612–613
shallow versus deep explanations for, 20–21
volatility of, 194, 222
Brace–Gatarek–Musiela (1997) model, 10
break-even inflation (BEI)
for 2, 5, and 10 years, 86
expectations
under different measures, 234–235
under P, 230–232
under Q, 232–233
under T, 233–234
inflation expectations and, 229–235
real rates and, 122–128, 124f
time-t, maturity-T, 80
VIX index and, 93
volatilities, 127f
break-even volatility, 351–357
Brown, R.H., 149
Brownian bridge, 30
Brownian diffusion, 163, 164, 171, 207, 264, 355
Brownian motion, 41, 44, 45, 74, 144, 167, 197
Index

Brownian process, 48, 151
Brownian shocks, 288, 540, 636
building-blocks approach, 208–211, 564–568
Bundesbank, 329
Calasso, R., 618
calibration
 defined, 59
doubly-mean reverting Vasicek model, 569–573
PCA affine approach, 643–649
quality assessment, 60–61
reduced-form models, 58–62
stochastic-market-price-of-risk model, 698–705
Vasicek model, 276–277
Camus, Albert, 299
capital asset pricing model (CAPM), 27
 carry
 excess returns and, 425–430, 432
 portfolio convexity and, 393
 portfolio time decay and, 381–383
 roll-down and, 381–383
Cartesian coordinates, 89
central bank
 actions of, 539–540
 excess returns and, 542
 investor’s expectations, 541
 simulations, 542–546
central bankers, 51
Choleski decomposition, 288
Christensen, J.H.E., 347
Cieslak, A., 514–525
Cieslak–Povala factor, 514–525
 features of, 514–515
 forward-rate-based RPFs, 519–520
 implications for term-structure models, 522
 interpretation of, 522–525
 maturity-dependent cycle, 516
 methodology, 515–519
 set-up of, 514–515
 slope, 522–525
Cochrane, J.H., 475–477
Cochrane-Piazzesi (CP) factor, 475–478
 assessment of, 478
 bat factors and, 482–488
 constrained regression, 482–488
 slope factors and, 488–491
 slope robustness and, 491–496
cognitive biases, 533
compensation
 excess returns and, 201
 liquidity and, 93–94
 market price of risk and, 202
 per unit time, 74
 reasons for, 91–94
 decomposition of risk premium, 91–93
 liquidity, 93–94
 reasons for seeking, 452
 compensation term, 201
 completely affine models, 178
 conditional strategy, 393
 constant-maturity bonds, 425
 constrained regression, 482–488
 constraint problem, 16–18
 consumption, 66
 risk-less rate and, 253–255
 state-price deflators and, 215
 stochastic discount factor and, 242–243
continuous time
 no-arbitrage in, 196–205
 stochastic discount factor (SDF) in, 256–257
convexity, 147–159
adjustment, 675
in affine setting, 374–377
characteristics of, 154–156
contributions to yield curve, 134f
definition of, 147–149
doubly-mean reverting Vasicek model and, 573–574
duration and, 31–32, 156–157
empirical results, 391–411
GARCH model, 396–398
Gaussian random variables and, 150–152
hedging and, 155–156, 157
Jensen’s inequality and, 149–152
market-implied, 364
model-independent weights, 386–388
of portfolio, 377–380
predicted portfolio, 394
pricing of, 157–159
strategy, 393–395
Index

convexity (cont.)
- optimal weights, 395–396
- profitability, 402–404
- residuals, 405–411
- setting up, 395–398
- signal correlation, 405
- yield curve, 398–402
- yield volatilities, 396–398
- theoretical, 377–380, 394
 - as function of forward rates, 380
 - as function of market observables, 380–383
- portfolio time decay, 381–383
- up-and-down prices, 148r
- value of, 351–370, 392f, 573–574
 - analysis of, 365–368
 - break-even volatility, 351–357
 - empirical, 389–390
 - equivalent affine models, 373–374
 - expression for, 363–365
 - generalizations, 357–363
 - graphical interpretation, 368–369
 - model-based, 389–390
 - model-independent approach, 371–390
 - in Vasicek model, 170–175
 - break-even volatility, 351–357
 - effect of, 172–173
 - expression for, 170–171
 - generalizations, 357–363
 - right reversion speed, 173–175
 - value of, 170
 - yield volatility and, 171–172
 - volatility and, 152–153
 - yield curve and, 278
 - convexity-adjusted market yield, 541
 - correlation matrix, 109
 - coupon bonds, yield, 29–30
 - covariance, risk premium as, 235–237
 - covariance matrix
 - distinct elements, 101–103
 - orthogonalization, 109, 650
 - principal components and, 107, 126f, 127f
 - state variables, 289
 - yield, 305–306
 - Cox–Ingersoll–Ross model, 9, 268, 719
 - CP first factor, 500
 - Crump, R.K., 663

- inflation expectation, 239, 576–577, 582–583
- liquidity and, 583–584
- May–September 2013 events, 594–596
- no-arbitrage, 577–580
- nominal and real rate expectations, 588–596
- overview, 575
- parameter estimation procedure, 584–588
- risk premium, 582–583
- state variables, 581–582
- TIPS bonds and, 577
- decay, 116
- decay parameter, 616
- decomposition, 91–93
- delta, 157
- delta hedging, 155
- derivatives models, 19
- Descartes, Rene, 263
- Diebold–Rudebusch model, 602–617
 - definition of, 602–603
 - dynamic to no-arbitrage affine model, 606–610
 - liquidity, 612–617
 - versus Nelson–Siegel model, 603–604
 - on-the-run, off-the run bonds, 612–613
 - snapshot to dynamic models, 603–606
 - variables as principal components, 610–612
- dimensional analysis, 34–35
- discount bonds, 139
- convexity, 31–32
- definition, 64
- duration, 31–32
- prices as Q-expectations, 76–77
- prices in Vasicek model, 165
- state price deflators, 216
- yield, 28–30
- discrete time
 - no-arbitrage in, 185–195
 - stochastic discount factor (SDF) in, 256–257
- distribution
 - normal, 162
 - stationary, 162
- doubly-mean reverting Vasicek model, 310–311, 559–574
Index

bond prices and, 561–562
building blocks, 564–568
calibration
to volatility structure, 569–571
to yield curve, 571–573
convexity and, 573–574
definition of, 560–561
quality of the fit, 569–573
volatility of instantaneous forward rate and, 562–564
Doyle, Arthur Conan, 449, 473
dp, dx, stochastic-calculus rules for, 45
drift, 16
risk-neutral, 267
of state price deflators, 215
drift term, 367
Duffie, D., 608
Duffie–Kan model, 292
duration, 31–32
convexity and, 31–32, 157
risk, 176
in Vasicek model, 165–168
duration hedging, 155
duration term, 201–202
duration-neutralized portfolio, 383–384, 393
dynamic models, 603–606
eigenvalues, 644
eigenvectors, 106
Einstein, Albert, 285
Eliot, T.S., 58
Ellenberg, J., 160
error, measurement of, 513
error bars, 8
especially affine models, 178
estimation procedure, 676–677
estimator
biased, 414f
unbiased, 414f
excess returns, 475–478
absolute value of, 462
Adrian–Crump–Moench model, 669–675
approximate results for the γ = n = 1 case, 421
biased vs. unbiased estimators, 414f
carry and, 425–430, 432
Cieslak–Povala factor, 515–525
Cochrane and Piazzesi study, 475–478
constrained regression, 482–488
decomposing and interpreting, 432–433
defining, 419–421
approximate results for the γ = n = 1 case, 420–421
general exact results, 419–420
special cases, 420–421
eyear work, 474–475
empirical results, 449–472
methodological dilemma, 454–455
questions, 450–452
regression results, 457–462
setting, 450–455
spanning, 452–454
unconditional results, 455–457
estimates of, 454
expected, 438–440
versus expected returns, 441–446
expression for, 669–675
forward-come-true condition, 432–433
as function of forward rates, 422
general expression, 419–420
investors’ compensation and, 452
link between tent and bat factors, 482–488
local expectation hypothesis, 415–419
Ludvigson and Ng (2009) study, 504–508
with many factors, 193, 202–205
market price of risk and, 433–436
market yields versus expected yields, 433–436
no-arbitrage, 200–201
nominal and real, 589–594
nominal bonds, 455–457
pure expectation hypothesis, 416
Radwanski factor, 498–504
real, 464–468
real bonds, 463
real economy and, 529–531
with real rates, 422–425
regression results
1- to 10-year returns, 457–459
5-year returns, 461–462
effective of regressors, 459–461
robustness of regressors, 459–461
roll-down and, 425–430
Index

excess returns (cont.)
slope and, 529–531
sources of predictability, 514–515
special cases, 420–421
tent shape and slope factors, 488–491
term premia and, 436–437
time-t, 193, 542
volatility and, 462–463
weak expectation hypothesis, 416
when to invest, 448
yield spreads and, 474–475
yield-curve spanning, 508–514

existence dilemma, 654–657
expectation hypothesis, 5, 154
local, 415–417
pure, 416
weak, 416
expectation vector, 307–308
expectations, 137–146
in 2009–2013 period, 83–87
contributions to yield curve, 134f
inflation, 230–235
under different measures, 234–235
under P, 230–232
under Q, 232–233
under T, 233–234
of Ito integrals, 46–47
no-arbitrage and, 137–143
multifactor, 141–143
one-factor world, 138–141
nominal and real rate, 588–596
prices, 77–79
affine case, 78–79
general case, 77–78
in risk-neutral measure, 211–213
Q-expectations, 76–77
rate, 168–169
risk premia and, 81–87
survey data and, 145–146
expected return, 192–193
versus realized excess returns, 441–446
roll-down, 446–447
expected yield, 433–436
exponential of matrix, 40

factor durations, 386
factorization, 276–277
fear index, 93
Fed Funds rate, 539
Federal Reserve Board, 145, 275, 335, 641
feedback rules, 52
Feynman, Richard, 266, 285
first extensions, 285–298
affine models with state variables,
285–291
changing variables, 291
expression for the variance for
generic N, 288–289
N = 2 case, 287–288
stability, 290–291
general properties of solutions,
293–295
distributional properties, 294–295
forward rates, 293–294
yields, 293–294
multivariable exponentially affine
models, 292–293
Fontaine, J.-S., 612–616
forward, return-predicting factors and,
519–520
forward premium, 422
forward rates, 32–33
convexity and, 154
definition of, 32
excess returns and, 476
excess returns as function of, 422
future rates and, 432–433, 542
instantaneous, 306–307, 562–564
return-predicting factors and, 519–520
theoretical convexity as function of,
380
Vasicek model, 273–275
volatility of, 306–307, 562–564
yields and, 293–294
forward rates-based factors
Cieslak–Povala factor and, 519–520
limitations of, 520–522
forward-looking information, 719–720
FRB/US optimal control model, 52
Frish, Ragnar, 497
Froot, K.A., 415, 417
funding advantage, 357, 367, 428, 474
future rates, 432–433
future yield, 428
Index

gamma, 155, 157
gamma trading, 154, 394
Garcia, R., 612–616
Gaussian distribution, 146, 294, 307
Gaussian normal variable, 561–562
Gaussian random variables, 150–152
Gedanken Monte Carlo evolution, 510
generalized auto regressive conditional heteroscedasticity (GARCH), 396–398
Girsanov’s theorem, 364
Great Moderation, 65
Great Recession of 2007–2009, 82, 125
Great Repression, 51, 347
Green’s functions, 209
Greenspan, Alan, 95
Hawking, Stephen, 688
Hazlitt, William, 108, 157
Heath–Jarrow–Merton model, 10, 621
hedge funds, 158
Herder, Johann Gottfried, 714
heterogenous-expectations model, 534–538
Hull, J., 560
Hull and White (1990) model, 10
Hume, David, 50
humped volatility curve, 281–282
identifiability, 629–631
idiosyncratic risk, 249–250
inflation
break-even. See break-even inflation (BEI)
D’Amico–Kim–Wei model, 576–577
empirical findings, 576–577
expectations
under different measures, 234–235
under P, 230–232
under Q, 232–233
under T, 233–234
expected, 65, 78–79
nominal rates and, 128–131
real principal components and, 128–131
risk, 64–65
target, 535
time series of, 517
weighted moving average of past data, 517
inflation expectations
D’Amico–Kim–Wei model, 582–583
Radwanski factor, 501–502
inflation fans, 145
inflation risk premium, 65, 88–89, 470–472
inflation-linked bonds, 79
inflation-predicted slope, 524
instantaneous forward rates, 562–564
for time-homogenous model, 380
volatility of, 306–307, 562–564
institutional investors, 157–158
insurance companies, 157
integration constant vector, 650
interest rates, unit-root problem, 116
investment/savings (IS) curve, 331
investors, expectations, 541
Ito integrals
expectations of, 46–47, 151
lognormal case, 47
normal case, 46
Ito isometry, 47–48
Ito’s Lemma, 44–45
bond price, 148, 179, 220, 353, 426
bond volatility, 140, 171, 274–276, 384, 563
convexity and, 148, 153
duration in Vasicek model, 165
Jensen convexity, 237
Jensen’s inequality, 153; 253, 347
convexity and, 149–152
definition of, 145
Kalman filtering, 11, 676
Kan, R., 608
Keynesian economics, 331
Keynesian liquidity trap, 331
Kim–Wright model, 95–96, 193
Krippner, L., 347
Kroeneker delta, 286, 301, 357, 375
latent variables, 10–14
level constant, u, 644
linear transformations, 112
liquidity
compensation for TIPS investors and, 93–94
D’Amico–Kim–Wei model and, 583–584
Diebold–Rudebusch model, 612–617
liquidity factor, 93
liquidity-preference/money-supply (LM) curve, 331
local expectation hypothesis, 415–417
definitions of, 416–417
testing, 417–419
log prices, 33–34
log returns, 33–34
Longstaff-and-Schwartz model, 11, 268
long-term bond investors, tasks of, 195
Long-Term Capital Management, 532
Ludvigson, S.C., 504–508
M measures, 69–72
macro-dynamic term structure models (MSTMs), 525
macroeconomic variables, 15, 550, 553
market equilibrium, 536
market observables, 377–380
market price of risk, 72–76
ab initio, 201–202
affine function of state variables, 335
affine models, 239–240
compensation and, 202
in continuous time, 196–200
excess return with many factors and, 202–205
excess returns and, 433–436, 451
functional form of, 176–178
interpretations of, 199–200
P measures, 69–72
Q measures, 69–72
real-world probabilities, 68–76
risk-less portfolios and, 196–199
risk-neutral probabilities, 68–76
Sharpe ratio and, 178–181
stochastic, 312–313
time dependence of, 202
type-II arbitrage, 192
volatility of state price deflator and, 221–222
market yield
convexity-adjusted, 541
versus expected yield, 433–436
matrices
defined, 36–37
exponential of, 40
orthogonal, 38–39
May–September 2013 events
Adrian–Crump–Moench model, 683–685
D’Amico–Kim–Wei model, 594–596
mean, 146
mean-reverting process, 112–114
doubly-mean reverting Vasicek model, 310–311
inflation and, 534
multidimensional, variance of, 296–297
one-dimensional, variance of, 295–296
Ornstein–Uhlenbeck process, 41–42
principal components, 112–116
for short rate, 143–145
stability of, 297–298
treibly-mean reverting Vasicek model, 311–312
tucking-in effect of, 333
measurement error, 677
measurement of error, 513
median, 146
mispricing, 158
model parameters, 61–62
model-independent weights, 386–388
models. See also specific models
as enforcers of cross-sectional restrictions, 718–719
as enforcers of parsimony, 716–718
as enhancers of understanding, 721–723
as integrators, 720–721
principal component-based, 620–622
as regurgitators, 714–716
as revealers of forward-looking informations, 719–720
specified-variable, 622–625
Modulo convexity, 435
Moench, E., 663
monetary actions, 539–540
simple model for, 56–58
monetary channels, 50–52
Index

monetary intervention, 51–52
Monte Carlo simulation, 138, 141, 144, 331
most likely outcome, 146

N = 2 case, 287–288
Nelson–Siegel model, 9, 479, 603–604
Nelson–Siegel–Svensson model, 603
Ng, S., 504–508
Nietzsche, Friedrich W., 185

no-arbitrage
affine models, 606–610
in continuous time, 196–205
excess returns, 200–201
market price of risk, 196–200
D’Amico–Kim–Wei model, 577–580
in discrete time, 185–195
expectations and, 137–143
multifactor, 141–143
one-factor world, 138–141
expected return, 192–193
extension to many factors, 193–194
long-term bond investors and, 195
models
need for, 19–20
structural, 9
for real bonds, 224–240
affine models, 238
break-even inflation and inflation expectations, 229–235
market price of inflation risk, 239–240
risk premium as covariance, 235–237
state-price deflator, 224–229
with state price deflators, 206–223
building-blocks approach, 208–211
discount bonds, 216
drift of, 216–217
modern approach, 207–208
payoff, 210–213
prices as expectations in risk-neutral measure, 211–213
process for, 214–216
short rate, 218
stochastic discount factor and, 213–214
traditional approach, 207–208
volatility, 219–223
type-I arbitrage, 186–189
type-II arbitrage, 189–192
no-arbitrage models, affine models, 606–610
noise, 103–104
nominal bonds, 88, 122, 455–457
1- to 10-year returns, 457–459
5-year returns, 461–462
excess returns, 455–457, 589–594
inflation premium in, 470–472
nominal yield, 79
rate expectations, 588–594
regression results, 457–462
regressors, 459–461
yield components, 66–68
nominal prices, 248–249
nominal rates, 79–80, 108–122
descriptive features, 108–112
inflation and, 128–131
mean-reverting properties, 112–116
real principal components and, 128–131
nominal yield, 79
non-intercept regression coefficients, 475
non-overlapping returns, 454
normal distribution, 162
observable variables, 10–14
one-factor world, 138–141
on-the-run, off-the run bonds, 612–613
optimal weights, 395–396
option premium, 392
options, gamma, 155
ordinary differential equation (ODE), 269–270, 302
affine process for state variables, 307–308
associated homogenous, 314–316
multivariable exponentially affine models and, 292
for A(τ), 316–323
ordinary least squares (OLS), 641, 676
Ornstein–Uhlenbeck process, 57, 539, 669
AR(1) process and, 43–44
definition of, 41–42
N-dimensional, 623
orthogonal matrices, 38–39
orthogonality, 107
Orwell, George, 620
overlapping returns, 454
over-reaction model, 538–539

P measures, 69–72, 543
affinity of Vasicek model under, 271–272
doubly-mean reverting Vasicek model and, 574
Gaussian distribution and, 146
inflation expectation under, 230–232
linking with Q measures, 625–626
methodology, 515
moving from Q measures to, 639–641
structural description with, 143
parameter estimation procedure, 584–588
parameters, 11
partial differential equation (PDE), 207–208, 215, 302, 621
bond prices and, 264–266
no-arbitrage with state price deflators, 207–208
shadow rate and, 333–334
payoff, 210–212, 248
P-distribution, 75–76
pension funds, 157
percentage return, 34
persistence, 112–113
Piazzesi, M., 475–478
Picasso, Pablo, 714
portfolios
duration-neutralized, 383–384, 393
increment over short time, 264
risk-less, 48
theoretical convexity of, 377–380
as function of forward rates, 380
as function of market observables, 380–383
time decay, 381–383
Povala, P., 514–525
power/logarithmic utility, 250
precautionary savings, 253
predictive regression, 452
priced return innovation, 675, 678
prices
convexity and, 157–158
doubly-mean reverting Vasicek model, 561–562
expectations, 77–79
affine case, 78–79
general case, 77–78
in risk-neutral measure, 211–213
formation of, 541–542
as function of short rate, 265
Ito's Lemma, 148, 179, 220, 353, 426
log, 33–34
partial differential equation and, 264–266
as Q-expectations, 76–77
in Vasicek model, 165
volatility, 31
yields and, 28–31
pricing errors, 621
pricing framework, 299–328
affine models, 300–301
building-blocks approach, 208–211
calculation of formal solution, 324–328
commutation relationship for A and f(A), 325–326
integral of e^At, 327–328
time derivative of e^At, 327
up-and-down theorem, 325–326
convexity and, 157–159
equations, 303–304
general strategy, 301–303
instantaneous forward rates, 306–307
meaning of e^At, 323
state variables, 307–309
v, 305–306
yield, 304–305
yield covariance matrix, 305–306
yield volatilities, 305–306
principal component analysis (PCA), 10
affine approach, 618–662
ancillary results, 657–661
calibration, 643–649
constraints on reversion-speed matrix, 633–635
cross-sectional fit to yields, 643–644
dynamics of problem, 627–628
eigenvalues, 644
excess return vector, 641–643
existential dilemma, 654–657
geometry (kinematics) of problem, 626–627
identifiability, 629–631
Index

level constant, u, 644	pure expectation hypothesis, 416
linking \mathbb{P} and \mathbb{Q} measures, 625–626	pseudo-arbitrage, 25–26
notation, 626	
overview, 618–620	
\mathbb{P} measures, 639–641	
parameter constraints, 624–625	
\mathbb{Q}-measure reversion-speed matrix, 635–639	
reversion-speed matrix, 631–632, 657–661	
set-up of, 626–631	
solution, 628–629	
specified-variable models, 622–625	
state variables as principal components, 632–633	
switching regressors, 661–662	
term premia, 649–653	
axis rotation, 98–103	
mathematical results, 106–107	
original data redundancy in, 105	
overview, 98	
redundancy in original data, 105	
signal-to-noise ratio and, 104–105	
variables in, 105	
principal components, 98–104	
autocorrelation functions, 117f	
axis rotation, 98–103	
break-even inflation, 122–128	
correlation plot, 118f	
inflation and, 128–131	
joint mean-reverting behaviour of, 116–122	
mean-reverting properties, 112–116	
models based on, 620–622	
noise, 103–104	
nominal rates, 108–122	
nominal rates and, 128–131	
real rates, 122–128	
signal, 103–104	
variables as, 610–612	
yields and, 104	
probabilities	
real-world, 68–76	
risk-neutral, 68–76	
probability distribution	
of asset returns, 533	
risk-neutral, 534	
subjective, 534	
profits and losses (P&Ls), 403–411	
\mathbb{Q} measures, 69–72, 543	
affinity of Vasicek model under, 271–272	
expectations and, 145	
inflation expectation under, 232–233	
linking with \mathbb{P} measures, 625–626	
moving to \mathbb{P} measures, 639–641	
nominal reversion, 579	
principal components and, 104	
reversion-speed matrix, 635–639, 654	
structural description with, 143	
\mathbb{Q}-distribution, 75–76	
\mathbb{Q}-expectations, 76–77	
quality of the fit, 569–573	
quantitative easing, 329	
R^2 statistic, 91f, 573–574	
Radon–Nykodim derivative, 217	
Radwanski, J.F., 498–504	
Radwanski factor, 498–504	
CP first factor, 500	
excess return as function of forward premia, 499	
features and highlights, 498	
inflation expectation factor, 501–502	
realized forward premium for maturity, 499	
random shock, 534	
random variables, Gaussian, 150–152	
rates economic-based description of, 241–260	
idiosyncratic risk, 249–250	
real versus nominal prices, 248–249	
risk premium, 245–248	
SDF in continuous and discrete time, 256–257	
Sharpe ratio, 257–260	
stochastic discount factor, 242–245	
riskless, 250–255	
real bonds, 79	
excess returns, 589–594	
no-arbitrage for, 224–240	
affine models, 238	
break-even inflation and inflation expectations, 229–235	
real bonds (cont.)
market price of inflation risk, 239–240
risk premium as covariance, 235–237
state-price deflator, 224–229
rate expectations, 588–594
regression results, 463
real prices, 248–249
real rates, 79–80, 122–128
excess returns with, 422–425
time series of, 123
real state-price deflator
definition of, 225–226
expression for, 224–226
process for, 226–229
real yield, 79
volatilities, 127f
real-activity factor, 506
real-estate risk, 65–66
real-rate risk premium, 468–470
real-world probabilities, 68–76
reduced-form models
calibration of, 58–62
model parameters, 61–62
state variables, 61–62
reference bond, 204
regression, constrained, 482–488
regression coefficients, 452
replication approach, 264–265
repressed markets, 561
residuals, 405–411, 677
return pricing error, 675, 678
return-predicting factor (RPFs), forward-rate-based, 519–520
returns
log, 33–34
percentage, 34
reversion speed, 173–174
reversion-level vector, 119
reversion-speed matrix
constraints on, 633–635, 657–661
diagonal, 287, 290, 631–632
nominal rates and, 119–120, 120r
non-diagonal, 287
Q-matrix, 635–639, 650, 654
risk assessment, predictability from, 533
risk aversion, 74–75, 250
risk magnitude term, 201
risk premia, 87–88, 721–723. See also term premia
central bankers and, 51
convexity and, 154
as covariance, 235–237
D’Amico–Kim–Wei model, 582–583
decomposition of, 91–93
expectations and, 81–87
inflation, 65, 88–89, 470–472
liquidity and, 93–94
for long-yield US Treasury, 341f
monetary policy and, 96
real-rate, 468–470
Sharpe ratio and, 97
stochastic discount factor and, 245–248
time series of, 342f
type-II arbitrage, 192
types of, 88–91
in Vasicek model, 175–176
risk-less portfolios, 48
market price of risk and, 196–199
risk-less rate
consumption and, 253–255
no-uncertainty case, 251–252
stochastic discount factor and, 250–256
uncertainty reintroduction, 252–253
risk-neutral measures, 531–533
risk-neutral probabilities, 68–76
risks, 34
aversion to, 176
common proxy for, 26
duration, 176
factors, 194
idiosyncratic, 249–250
inflation, 64–65
market price of. See market price of risk
overview, 63–64
real-estate, 65–66
robustness of, 475–477
roll-down, 381–383, 393, 425–430, 446–447
portfolio time decay and, 381–383
row vectors, 39–40
Rudebusch, G.D., 347–348
Russell, Bertrand, 688
saving rate, 66
Schaefer, S.M., 149
SDF. See stochastic discount factor
shadow rate, 329–348
effect on long yields, 339–343, 344f
effect on whole yield curve, 332–333
importance of, 330–331
modelling approach, 333–339
normalized distance of, 336
versus short rate, 339
Sharpe ratio, 27–28
convexity and, 402t
definition, 27
definition of, 35
for excess return strategy, 455t, 526
market price of risk and, 178–181
risk premium and, 97
risk-adjusted return and, 533
stochastic discount factor and,
257–260
shock, 112–114
short rate, 218
bond prices as function of, 265,
561–562
discrete time, 515
future path of, 515
instantaneous, 228
mean-reverting process for, 143–145
risk premium and, 96
versus shadow rate, 339
signal, 103–104
signal-to-noise ratio, 104–105
singular value decomposition, 395–396
slope
excess returns and, 529–531
heterogenous-expectations model,
534–538
over-reaction model, 538–539
random shock and, 534
real economy and, 529–531
risk-neutral measures, 531–533
significance of, 534–539
subjective measures, 531–533
slope predictions, 488–491
slope risk factor, 193
slope robustness, 491–496
snapshot models, 9–10, 603–606
spanning, yield-curve, 508–514
spanning problem, 547–555
definition of, 547–548
empirical, 548–551
modelling choices, 552–555
state variables and, 14–16
theoretical, 551–552
specified-variable models, 17, 622–625
stability, 290–291
of affine modes with many state
variables, 290–291
of mean-reverting system, 297–298
standard deviation, 187–188
state price deflators, 206–223
Adrian–Crump–Moench model,
667–671
building-blocks approach, 208–211
definition of, 225
delivery time, 215–216
discount bonds, 216
drift of, 215, 216–217
modern approach, 207–208
no-arbitrage with, 206–223
nominal, 225
payoff, 210–213
prices as expectations in risk-neutral
measure, 211–213
process for, 213–214
for real bonds, 224–229
expression, 224–226
process for, 226–229
short rate, 218
stochastic discount factor and,
213–214
traditional approach, 207–208
volatility of, 215, 219–223
covariance term, 221
expectation term, 220
market price of risk and, 221–222
sources of, 222
state prices, 224–225
state variables, 61–62
affine function of, 78, 141
affine models with, 285–291
changing variables, 291
delivery time, 215–216
expression for the variance for
generic N, 288–289
N = 2 case, 287–288
stability, 290–291
covariance matrix, 289
D’Amico–Kim–Wei model, 581–582
Index

state variables (cont.)
mean, 307–308
versus model parameters, 61–62
N-dimensional vector of, 300
parameters and, 11
as principal components, 632–633
variance, 307–309
yield as, 512
stationary distribution, 162
statistical models, 8–10
stochastic calculus, 44–48
for \(dp, dx\), 45
expectations of Itô integrals, 46–47
Itô isometry, 47–48
Itô’s Lemma, 44–45
lognormal case, 47
risk-less portfolios, 48
stochastic discount factor (SDF)
in continuous time, 256–257
in discrete time, 256–257
first derivation of, 242–245
no-arbitrage, 578
risk premium and, 245–248
risk-less rate and, 250–256
consumption, 253–255
no-uncertainty case, 251–252
uncertainty reintroduction, 252–253
Sharpe ratio and, 257–260
state-price deflators and, 213–214
stochastic-market-price-of-risk model,
312–313, 688–713
 calibration of, 698–705
definition of, 693–694
justification for, 691–693
measures, 694–696
need for, 689–691
qualitative behaviour of, 696–698
solution, 705–708
term premia in, 708–713
structural no-arbitrage models, 9
subjective measures, 531–533
Summers, L., 183, 241
survey data, 145–146
swaption, 169

\(\bar{T}\) measures, 233–234
taxonomy, 8–10
derivatives models, 10
snapshot models, 9–10

statistical models, 8–9
structural no-arbitrage models, 9
Taylor rules, 52–56
Tegmark, M., 160
tents
bat factors and, 482–488
constrained regression, 482–488
robustness of, 478–482
slope factors and, 488–491
versus slope predictions, 488–491
versus slope robustness, 491–496
term premia. See also risk premia
 contributions to yield curve, 134f
excess returns and, 436–437
expected excess returns and, 438–440
from PC-based affine model, 649–653
stochastic-market-price-of-risk model,
708–713
term-structure models, infinity of,
623–624
Theil, Henri, 557
theoretical convexity, 377–380
as function of forward rates, 380
portfolio time decay, 381–383
theta, 157
time decay, 381–383
\(T\)-maturity bond
carry strategy, 434
excess returns, 139, 425, 436–437
expected excess returns, 438–440
expected percentage return, 175
expected return, 179
instantaneous expected return, 450
risk factors, 194
term premia, 436–440
time-\(t\) price of, 216, 333–334
volatility, 180
yield term premium, 435
transformations of vectors, 37–38
Treasury bonds
10-year yields, 82–83, 82f, 84f–85f
2-year yields, 82–83, 82f, 84f–85f
5-year yields, 82–83, 82f, 84f–85f
on-the-run, off-the-run, 612–613
Treasury Inflation Protected Securities
(TIPS), 91–94, 122, 577
decomposition of risk premium and,
91–92
Treasury yields, 82–85

© in this web service Cambridge University Press
Index

- trebly-mean reverting Vasicek model, 311–312
- type-I arbitrage, 186–188
 - bounds to price-correction term, 188–189
 - probabilities without loss of generality, 186–187
 - standard deviation, 187–188
- type-II arbitrage, 189–192
- unbiased estimator, 414f
- uncertainty, 252–253
- unit-root problem, 116
- U.S. Treasuries, 122
 - risk premium, 154

variables
 - choice of, 10–18
 - constraint problem, 16–18
 - latent versus observable, 10–14
 - parameters and, 11
 - as principal components, 610–612
 - spanning problem, 14–16

variances, 16
 - for generic N, 288–289
 - of multidimensional; mean-reverting process, 296–297
 - of one-dimensional mean-reverting process, 295–296
 - of returns of strategy, 26
 - of state variables, 307–309

Vasicek model, 7, 11, 160–182
 - affine term structures, 266–269
 - affinity under P and under Q, 271–272
 - bond prices in, 165
 - break-even volatility and, 351–357
 - Brownian diffusion and, 171
 - convexity in, 170–175
 - break-even volatility, 351–357
 - effect of, 172–173
 - expression for, 170–171
 - generalizations, 357–363
 - right reversion speed, 173–175
 - value of, 170
 - vectors, 360–362
 - yield volatility and, 171–172
 - definition of, 161
 - doubly-mean reverting, 310–311, 559–574

duration in, 165–168
 - factorization, 276–277
 - forward rates, 273–275
 - humped volatility curve, 281–282
 - market price of risk and, 176–178
 - mean-reverting process for short rate, 143–145
 - ordinary differential equation and, 269–270
 - properties of, 161–168
 - distributional, 161–165
 - rate expectations, 168–169
 - replication approach, 264–266
 - risk premium in, 175–176
 - shape of yield curve, 168–169
 - simple, 309–310
 - trebly-mean reverting, 311–312
 - volatility structure, 273
 - calibration, 276–277
 - yield, 272–273
 - yield curve, 277–281
 - yield volatilities in, 168, 362–363

vector auto-regressive (VAR) models, 8
 - vectors
 - defined, 36–37
 - row, 39–40
 - transformations of, 37–38
 - VIX index, 92–94, 471–472
 - volatility, 31, 152–153
 - break-even, 351–357
 - convexity and, 171–172
 - doubly-mean reverting Vasicek model, 569–571
 - excess returns and, 462–463
 - humped volatility curve, 281–282
 - implied, 155
 - of instantaneous forward rate, 306–307, 562–564
 - Ito's Lemma, 140, 171, 274–276, 384, 563
 - matrix, 654
 - sources of, 222
 - of state price deflators, 215, 219–223, 669
 - covariance term, 221
 - expectation term, 220
 - market price of risk and, 221–222
 - sources of, 222

© in this web service Cambridge University Press www.cambridge.org
Index

volatility (cont.)
 Vasicek model, 273
 yield, 305–306
weak expectation hypothesis, 416
weights, model-independent, 386–388
Weinberg, Steven, 263, 557
White, A., 560
Williams, Bernard, 497
yield, 28–31
 actuarially expected, 431
 almost-collinearity of, 552
 bond prices and, 28–31
 components of, 66–68
 convexity-adjusted, 541
 cost, 392
 covariance matrix, 305–306
 cross-sectional fit to, 643–644
 curve, 277–281, 398–402
 doubly-mean reverting Vasicek model, 571–573
 monetary authorities and, 50–51
 shadow rate’s effect on, 332–333
 expression for, 304–305
 forward rates and, 293–294
 future, 428
 market versus expected, 433–436
nominal, 79
principal components, 104
real, 79
shadow rate’s effect on, 339–343, 344f
spreads as return-predicting factors, 474–475
as state variables, 512
Vasicek model, 272–273
volatilities
 estimation of, 396–398
 expression for, 305–306
 in Vasicek model, 168, 171–172
yield-curve modelling, 20–21
yield-curve spanning, 508–514
affine description of, 509–510
augmented set of yield as state variables, 512
measurement of error, 513
yields as state variables, 511
zero-cost portfolio
 arbitrage strategy, 25
 convexity and, 154
zero-interest-rate period (ZIRP), 57
zero-lower bound regime, 330