Bond Pricing and Yield-Curve Modelling

A Structural Approach

This book provides the theoretical foundations (no-arbitrage, convexity, expectations, affine modelling) for a treatment of government bond markets; presents and critically discusses the wealth of empirical findings that have appeared in the literature in the last decade; and introduces the ‘structural’ models that are used by central banks, institutional investors, sovereign wealth funds, academics and advanced practitioners to model the yield curve, to answer policy questions, to estimate the magnitude of the risk premium, to gauge market expectations and to assess investment opportunities. The book weaves precise theory with up-to-date empirical evidence to build, with the minimum mathematical sophistication required for the task, a critical understanding of what drives the government bond market.

Riccardo Rebonato is Professor of Finance at the EDHEC Business School and the EDHEC Risk Institute and holds the EDHEC PIMCO Research Chair. He has been Global Head of Fixed Income and FX Analytics at PIMCO and Head of Research, Risk Management and Derivatives Trading at several major international banks. He has previously held academic positions at Imperial College and Oxford University, and has been a board director for the International Swaps and Derivatives Association (ISDA) and the Global Association of Risk Professionals (GARP). He currently sits on the board of The Nine Dots Prize. He is the author of several books and articles in finance and risk management, including *Portfolio Management under Stress* (2004).
Bond Pricing and
Yield-Curve Modelling
A Structural Approach

Riccardo Rebonato
EDHEC Business School
EDHEC Risk Institute
To the memory of my father, to my wife and to my son, with thanks.
Contents

<table>
<thead>
<tr>
<th>Acknowledgements</th>
<th>page xxiii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbols and Abbreviations</td>
<td>xxv</td>
</tr>
</tbody>
</table>

Part I The Foundations

<table>
<thead>
<tr>
<th>1 What This Book Is About</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 My Goal in Writing This Book</td>
<td>3</td>
</tr>
<tr>
<td>1.2 What My Account Leaves Out</td>
<td>5</td>
</tr>
<tr>
<td>1.3 Affine Models</td>
<td>6</td>
</tr>
<tr>
<td>1.4 A Simple Taxonomy</td>
<td>8</td>
</tr>
<tr>
<td>1.5 The Choice of Variables</td>
<td>10</td>
</tr>
<tr>
<td>1.5.1 Latent versus Observable Variables</td>
<td>10</td>
</tr>
<tr>
<td>1.5.2 The Spanning Problem</td>
<td>15</td>
</tr>
<tr>
<td>1.5.3 The Constraint Problem</td>
<td>16</td>
</tr>
<tr>
<td>1.6 Why Do We Need No-Arbitrage Models After All?</td>
<td>19</td>
</tr>
<tr>
<td>1.7 Stamp Collecting and Shallow versus Deep Explanations</td>
<td>20</td>
</tr>
<tr>
<td>1.8 The Ideal Reader and Plan of the Book</td>
<td>21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 Definitions, Notation and a Few Mathematical Results</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 The Purpose of This Chapter</td>
<td>24</td>
</tr>
<tr>
<td>2.2 The Building Blocks</td>
<td>24</td>
</tr>
<tr>
<td>2.2.1 Arbitrage</td>
<td>24</td>
</tr>
<tr>
<td>2.2.2 Pseudo-Arbitrage</td>
<td>25</td>
</tr>
<tr>
<td>2.2.3 Sharpe Ratios</td>
<td>27</td>
</tr>
<tr>
<td>2.2.4 Bond Prices and Yields</td>
<td>28</td>
</tr>
<tr>
<td>2.2.5 Duration and Convexity</td>
<td>31</td>
</tr>
<tr>
<td>2.2.6 Forward Rates</td>
<td>32</td>
</tr>
<tr>
<td>2.3 Log Prices and Log Returns</td>
<td>33</td>
</tr>
<tr>
<td>2.4 Dimensional Analysis</td>
<td>34</td>
</tr>
</tbody>
</table>
Contents

2.5 Appendix 2A: Vectors and Matrices 36
 2.5.1 Definition 36
 2.5.2 Transformations of Vectors 37
 2.5.3 Orthogonal Matrices 38
 2.5.4 Row Vectors 39
 2.5.5 Exponential of a Matrix 40

2.6 Appendix 2B: Mean-Reverting and AR(1) Processes 41
 2.6.1 The Ornstein–Uhlenbeck Process 41
 2.6.2 The AR(1) Process 42
 2.6.3 Parallels between AR(1) Processes and the Ornstein–Uhlenbeck Process 43

2.7 Appendix 2C: Some Results from Stochastic Calculus 44
 2.7.1 Ito’s Lemma 44
 2.7.2 Stochastic-Calculus Rules for dp, dx_t 45
 2.7.3 Expectations of Ito Integrals 46
 2.7.4 The Ito Isometry 47
 2.7.5 Risk-less Portfolios 48

3 Links among Models, Monetary Policy and the Macroeconomy 49
 3.1 The Purpose of This Chapter 49
 3.2 The Monetary Channels 50
 3.3 A Modelling Framework 52
 3.4 The Monetary Actions: A Simple Model 56
 3.5 Calibrating Reduced-Form Models 58
 3.5.1 General Considerations 58
 3.5.2 Assessing the Quality of the Calibration Process 60
 3.5.3 State Variables versus Model Parameters 61

4 Bonds: Their Risks and Their Compensations 63
 4.1 The Purpose of This Chapter 63
 4.2 Nominal Rates, Inflation and Real Rates: A Qualitative Discussion 64
 4.2.1 Inflation Risk 64
 4.2.2 Real-Rate Risk 65
 4.2.3 Putting the Pieces Together 66
 4.3 Real-World and Risk-Neutral Probabilities: The Market Price of Risk 68
 4.3.1 Introducing the \mathbb{P} and \mathbb{Q} Measures 69
 4.3.2 Introducing the Market Price of Risk 72
 4.4 An Important First Result: Bond Prices as \mathbb{Q}-Expectations 76
 4.5 The Price Process and Its Expectations 77
 4.5.1 The General Case 77
Contents

4.5.2 The Affine Case 78
4.6 Nominal Rates, Inflation and Real Rates: Definitions 79

5 The Risk Factors in Action 81
5.1 The Purpose of This Chapter 81
5.2 Expectations and Risk Premia during an Important Market Period 81
5.2.1 An Account of What Happened 81
5.2.2 Possible Explanations of What Happened 85
5.3 How Can We Estimate Risk Premia? 87
5.4 Different Types of Risk Premia 88
5.5 What Are Investors Compensated For? 91
5.5.1 Decomposition of the Risk Premium 91
5.5.2 ‘Which’ Liquidity Are TIPS-Investors Compensated For? 93
5.6 What Is and What Is Not a True Risk Premium 94
5.7 Does It Matter if a Risk Premium Is ‘Really’ a Risk Premium? 96

6 Principal Components: Theory 98
6.1 The Purpose of This Chapter 98
6.2 What Are Principal Components? 98
6.2.1 The Axis Rotation 98
6.2.2 The Signal and the Noise 103
6.3 How Many Principal Components Do We Need for Yields? 103
6.4 First Conclusions 104
6.5 Some Mathematical Results 105

7 Principal Components: Empirical Results 108
7.1 The Purpose of This Chapter 108
7.2 Nominal Rates 108
7.2.1 Descriptive Features 108
7.2.2 Mean-Reverting Properties – Each PC in Isolation 112
7.2.3 The Joint Mean-Reverting Behaviour of Principal Components 116
7.3 Real Rates and Break-Even Inflation 122
7.4 Correlation between Nominal, Inflation and Real Principal Components 128

Part II The Building Blocks: A First Look

8 Expectations 137
8.1 The Purpose of This Chapter 137
Contents

8.2 Linking Expectations with No-Arbitrage 137
 8.2.1 A One-Factor World 138
 8.2.2 Moving to Many Factors 141
8.3 An Example: A Mean-Reverting Process for the Short Rate 143
8.4 Expectations and Survey Data 145

9 Convexity: A First Look 147
 9.1 The Purpose of This Chapter 147
 9.2 Where Does Convexity Come from? 147
 9.3 The Links between Convexity and Jensen’s Inequality 149
 9.3.1 A Special but Important Case: Gaussian Random Variables 150
 9.4 What Does Convexity Depend On? 152
 9.5 Why Convexity Is Different 154
 9.6 Why Isn’t Convexity ‘Always Good’? 156
 9.7 Who Sets the Price of Convexity? A Bit of Story-Telling 157

10 A Preview: A First Look at the Vasicek Model 160
 10.1 The Purpose of This Chapter 160
 10.2 The Vasicek Model 161
 10.3 Properties of the Vasicek Model 161
 10.3.1 Distributional Properties of the Vasicek Model 161
 10.3.2 Bond Prices in the Vasicek Model 165
 10.3.3 The Duration in the Vasicek Model 165
 10.3.4 Yield Volatilities in the Vasicek Model 168
 10.4 Rate Expectations and the Shape of the Vasicek Yield Curve 168
 10.5 Convexity in the Vasicek Model 170
 10.5.1 An Expression for Convexity 170
 10.5.2 Convexity and the Volatility of Yields 171
 10.5.3 How Big Should One Expect the Convexity Effect to Be? 172
 10.5.4 What Is the ‘Right’ Reversion Speed? 173
 10.6 The Risk Premium in the Vasicek Model 175
 10.7 The Functional Form of the Market Price of Risk 176
 10.8 The Link between the Market Price of Risk and the Sharpe Ratio 178
 10.9 Appendix 10A: Proof that
 \[r_t = \left(e^{-\kappa(t-t_0)}\right) + \left(1 - e^{-\kappa(t-t_0)}\right) \theta + \int_0^t e^{-\kappa(t-s)} \sigma d\zeta_s \]
 181

Part III The Conditions of No-Arbitrage

11 No-Arbitrage in Discrete Time 185
 11.1 The Purpose of This Chapter 185
Contents

11.2 Type-I Arbitrage
11.3 Bounds to the Price-Correction Term: Type-I Arbitrage
11.4 Bounds to the Price-Correction Term: Type-II Arbitrage
11.5 A Useful Rewriting
11.6 Extension to Many Factors
11.7 The Task of the Long-Term Bond Investor

12 No-Arbitrage in Continuous Time
12.1 The Purpose of This Chapter
12.2 Constructing a Risk-Less Portfolio: The Market Price of Risk Again
12.3 Interpretations of the Market Price of Risk
12.4 Excess Returns
12.5 What the Market Price of Risk Can Depend On
12.6 Appendix 12A: The Market Price of Risk and Excess Return with Many Factors

13 No-Arbitrage with State Price Deflators
13.1 The Purpose of This Chapter
13.2 A Bird’s Eye View of the ‘Traditional’ and ‘Modern’ Approaches
13.3 Pricing Assets: The Building-Blocks Approach
13.4 A Beautiful Result: The Change of Measure
13.4.1 Prices as Expectations in the Risk-Neutral Measure – Again
13.4.2 The Equivalence of the State-Price Deflator and the Stochastic Discount Factor
13.5 The Process for the State-Price Deflator
13.6 Special Assets: Discount Bonds
13.7 Deriving the Drift of the State-Price Deflator
13.8 The Short Rate Again
13.9 Deriving the Volatility of the State-Price Deflator
13.9.1 Evaluation of the Three Terms
13.9.2 The Link between the Volatility of the State-Price Deflator and the Market Price of Risk
13.9.3 Where Does the Volatility of Bonds Come from?
13.9.4 Summary of Results

14 No-Arbitrage Conditions for Real Bonds
14.1 The Purpose of This Chapter
14.2 The Expression for the Real State-Price Deflator
Contents

14.3 The Process for the Real State-Price Deflator 226
14.4 The Link between Break-Even Inflation and Inflation Expectations 229
14.4.1 Inflation Expectation Under \mathbb{P} 230
14.4.2 Inflation Expectation under \mathbb{Q} 232
14.4.3 Inflation Expectation under \mathbb{T} 233
14.4.4 Inflation Expectations under Different Measures 234
14.5 The Risk Premium as a Covariance 235
14.6 Moving to an Affine World 238
14.7 The Market Price of Inflation Risk – Affine Models 239

15 Links with an Economics-Based Description of Rates 241
15.1 The Purpose of This Chapter 241
15.2 First Derivation of the SDF 242
15.3 From the SDF to Risk Premia 245
15.4 Real versus Nominal Prices 248
15.5 Idiosyncratic Risk 249
15.6 The Links between the SDF and the Risk-Less Rate 250
15.6.1 The No-Uncertainty Case 251
15.6.2 Reintroducing Uncertainty 252
15.6.3 But Does It Work? 253
15.7 SDFs in Continuous and Discrete Time 256
15.8 A More General Result for the Sharpe Ratio 257

Part IV Solving the Models

16 Solving Affine Models: The Vasicek Case 263
16.1 Purpose of This Chapter 263
16.2 The Replication Approach to Solving for Bond Prices: The Vasicek Model 264
16.2.1 The PDE Satisfied by Bond Prices 264
16.3 A Special Case: Affine Term Structures 266
16.4 The Vasicek Case 269
16.5 Affinity of the Vasicek Model under \mathbb{P} and under \mathbb{Q} 271
16.6 Observations about the Solution 272
16.6.1 Yields 272
16.6.2 The Volatility Structure 273
16.6.3 Forward Rates 273
16.6.4 Calibrating to the Volatility Structure: Factorization 276
16.6.5 Fitting to the Yield Curve 277
16.7 Why Do We Care about a Humped Volatility Curve? 281
16.8 How to Lengthen the Short Blanket 282
Contents

17 First Extensions 285
 17.1 The Purpose of This Chapter 285
 17.2 Affine Models with Many State Variables 285
 17.2.1 The \(N = 2 \) Case 287
 17.2.2 An Expression for the Variance for Generic \(N \) 288
 17.2.3 Stability 290
 17.2.4 Changing Variables 291
 17.3 Multivariable Exponentially Affine Models 292
 17.4 General Properties of the Solutions 293
 17.4.1 Yields and Forward Rates 293
 17.4.2 Distributional Properties 294
 17.5 Appendix 17A: Derivation of the Variance of a One-Dimensional Mean-Reverting Process 295
 17.6 Appendix 17B: Derivation of the Variance of a Multidimensional Mean-Reverting Process 296
 17.7 Appendix 17C: Stability of the Mean-Reverting System 297

18 A General Pricing Framework 299
 18.1 The Purpose of This Chapter 299
 18.2 What Is an Affine Model? 300
 18.3 The General Strategy 301
 18.4 Summary of the Equations Derived in Appendix 18A 303
 18.5 Various Additional Results 304
 18.5.1 Expression for the Yield 304
 18.5.2 Expression for the Yield Covariance Matrix and the Yield Volatilities 305
 18.5.3 Expression for the Volatility of the Instantaneous Forward Rates 306
 18.6 Derivation of the Mean and Variance of the State Variables 307
 18.7 Now We Have Solved (Almost) Any Affine Model 309
 18.7.1 Simple Vasicek 309
 18.7.2 The Doubly-Mean-Reverting Vasicek Model 310
 18.7.3 The Trebly-Mean-Reverting Vasicek Model 311
 18.7.4 The Stochastic-Market-Price-of-Risk Model 312
 18.8 Appendix 18A: Solving for \(\vec{\mathbf{B}}(\tau) \) and \(\mathbf{A}(\tau) \) 313
 18.8.1 Solving the ODE for \(\vec{\mathbf{B}}(\tau) \) 314
 18.8.2 Solving the ODE for \(\mathbf{A}(\tau) \) 316
 18.9 Appendix 18B 323
 18.9.1 The Meaning of \(e^{\mathbf{A}} \) 323
 18.10 Explicit Calculation of the Formal Solution \(\mathbf{x}_\tau = e^{\mathbf{B}_\tau} \mathbf{x}_0 \) 324
 18.10.1 The Up-and-Down Theorem 325
 18.10.2 Commutation Relationships for \(\mathbf{A} \) and \(f(\mathbf{A}) \) 326
xv

Contents

18.10.3 Time Derivative of e^{At} 327
18.10.4 Integral of e^{At} 327
18.10.5 Evaluation of the Integral $\left[\int_0^T e^{-Lt} Me^{-L \tau} d\tau \right]$ 328

19 The Shadow Rate: Dealing with a Near-Zero Lower Bound 329
19.1 The Purpose of This Chapter 329
19.2 Motivation: Why the Shadow Rate Matters 330
19.3 How the Shadow Rate Affects the Whole Yield Curve 332
19.4 The Modelling Approach 333
19.4.1 The Setting 333
19.4.2 An Approximate Solution 334
19.5 Does It Matter? 339
19.5.1 The Shadow and Short Rates Compared 339
19.5.2 The Effect of the Shadow Rate on Long Yields 339
19.5.3 Sensitivity of the Results to the Floor Level 343
19.6 A Broader View of the Topic 343

Part V The Value of Convexity

20 The Value of Convexity 351
20.1 The Purpose of This Chapter 351
20.2 Break-Even Volatility – The Vasicek Setting 351
20.3 Problems with the Vasicek Version of the Break-Even Volatility 355
20.4 Generalizing to Many Factors 357
20.4.1 Calculating the Terms c_1, c_2, c_3 and \tilde{c}_4 360
20.4.2 Expressing the Convexity in Terms of Yield Volatilities 362
20.5 What to Do with This Expression for the Convexity 363
20.5.1 An Important Aside 364
20.6 An Intuitive Aside: Simplifying the Analysis 365
20.7 A Graphical Interpretation 368
20.8 Appendix 20A 369

21 A Model-Independent Approach to Valuing Convexity 371
21.1 The Purpose of This Chapter 371
21.2 Equivalent Affine Models 373
21.3 The Expression for Convexity in an Affine Setting 374
21.4 An Expression for the Theoretical Convexity of the Portfolio 377
21.5 Theoretical Convexity as a Function of Market Observables 380
21.5.1 Theoretical Portfolio Convexity as a Function of Forward Rates 380
Contents

21.5.2 The Portfolio Time Decay as a Function of ‘Carry’ and ‘Roll-Down’ 381
21.6 What These Results Imply 383
21.7 Linking the Term $\frac{1}{2} \text{Tr}[S^T D S]$ with Yield Volatilities 384
21.8 Making the Weights (Almost) Model Independent 386
21.9 How General Are the Results? 388
21.10 Model-Based or Empirical? 389

22 Convexity: Empirical Results 391
22.1 The Purpose of This Chapter 391
22.2 The Strategy: A Reminder 393
22.3 Setting Up the Strategy 395
22.3.1 Determining the Optimal Weights 395
22.3.2 Estimating the Yield Volatilities 396
22.4 Results 398
22.4.1 Is the Yield Curve Fairly Curved? 398
22.4.2 Why Are the Strategies Not Always Profitable? 402
22.4.3 Is the Strength of the Signal Correlated with the Money Made? 405
22.4.4 Explaining the Residuals – Residual Exposure? 406
22.4.5 Explaining the Residuals – Wrong Volatility Estimate? 409
22.5 Conclusions 411

Part VI Excess Returns

23 Excess Returns: Setting the Scene 415
23.1 The Purpose of This Chapter 415
23.2 The (Local) Expectation Hypothesis 415
23.3 What One Really Tests for When One Tests the (L)EH 417
23.4 Defining Excess Returns 419
23.4.1 General Exact Results 419
23.4.2 Special Cases 420
23.4.3 Approximate Results for the $\tau = n = 1$ Case 421
23.5 Expressing Excess Returns as a Function of Forward Rates 422
23.6 Excess Returns with Real Rates 422
23.7 Excess Returns: Links with Carry, Roll-Down and Related Market Lore 425
23.8 Why ‘Carry’ and ‘Roll-Down’ Matter 429

24 Risk Premia, the Market Price of Risk and Expected Excess Returns 431
24.1 The Purpose of This Chapter 431
Contents

24.2 Decomposing and Interpreting the Approximate Excess Returns
 24.2.1 The ‘Carry’ Description
 24.2.2 The ‘Forwards-Come-True’ Condition
24.3 From Excess Returns to the Market Price of Risk
 24.3.1 Market Yields versus Expected Yields
24.4 The Link between Excess Returns and Term Premia
24.5 The Link between Term Premia and Expected Excess Returns
24.6 Reconciling Results
24.7 Expected versus Realized Excess Returns
24.8 Forwards-Come-True versus Yields-Don’t-Move: Roll-Down Again
24.9 When to Invest

25 Excess Returns: Empirical Results
 25.1 The Purpose of This Chapter
 25.2 Understanding the Empirical Setting
 25.2.1 The Empirical Questions
 25.2.2 A Very Important Caveat on Spanning
 25.2.3 The Methodological Dilemma
 25.3 Unconditional Results: Nominal Bonds
 25.4 Regression Results: Nominal Bonds
 25.4.1 1- to 10-Year Returns
 25.4.2 Effectiveness of Various Regressors
 25.4.3 5-Year Returns: Comparison with Cochrane–Piazzesi (2005)
 25.5 Where Has the Volatility Gone?
 25.6 Regression Results: Real Bonds
 25.7 The Data
 25.8 The Real Excess Returns
 25.9 Extracting the Real-Rate Risk Premium
 25.10 Estimating the Inflation Premium in Nominal Bonds
 25.10.1 Isolating the Liquidity Component

26 Excess Returns: The Recent Literature – I
 26.1 The Purpose of This Chapter
 26.2 The Early Work
 26.3 Cochrane and Piazzesi (2005)
 26.4 Critical Assessment of the Cochrane–Piazzesi Results
 26.5 Robustness of the Tent Shape: Tents versus Bats

© in this web service Cambridge University Press
www.cambridge.org
Contents

26.6 The Link Between the Tent and the Bat Factors: Constrained Regressions 482
 26.6.1 Constrained Regression: The Investigation Methodology 483
 26.6.2 Constrained Regression: Results 485
 26.6.3 Constrained Regression: First Conclusions 487
26.7 The Link between the Tent and the Slope Factors 488
 26.7.1 Tent versus Slope Shape Similarity: The Investigation Methodology 488
 26.7.2 Tent versus Slope Shape Similarity: Results 490
26.8 Exploring the Economic Robustness of Tent versus Slope Predictions 491
 26.8.1 Tent versus Slope Robustness: Methodology 491
 26.8.2 Tent versus Slope Robustness: Results 493
 26.8.3 Tent versus Slope Robustness: Conclusions 495

27 Excess Returns: The Recent Literature – II 497
 27.1 The Purpose of This Chapter 497
 27.2 The Work of Radwanski (2010) 498
 27.2.1 Features and Highlights of the Radwanski Results 498
 27.2.2 The Methodology and Results 499
 27.2.3 Comments and Conclusions 503
 27.3 The Work of Ludvigson and Ng (2009) 504
 27.3.1 Main Results 504
 27.3.2 The Spanning of Yield Curve Factors Revisited: Implication for Affine Models 507
 27.4 Yield-Curve Spanning: Why One May Need Five Factors After All 508
 27.4.1 The Essentially Affine Description 509
 27.4.2 Switching to Yields as State Variables 511
 27.4.3 Augmenting the State Vector 511
 27.4.4 Switching Back to an ‘Augmented’ Set of Yields as State Variables 512
 27.4.5 The Subtle Role of ‘Measurement Error’ 513
 27.4.6 Spanning in Principle versus Spanning in Practice 513
 27.5 The Work of Cieslak and Povala 514
 27.5.1 The Set-Up and Main Features 514
 27.5.2 The Investigation Methodology and Results 515
 27.5.3 The Link with Forward-Rate-Based RPFs 519
 27.5.4 Intrinsic Limitations of Forward-Rate-Based Factors 520
 27.5.5 Implications for Term-Structure Models 522
27.5.6 Re-Interpretation of the Cieslak–Povala RPF: Conditional Slope and Level 522
27.6 Related Work 525

28 Why Is the Slope a Good Predictor? 527
28.1 The Purpose of This Chapter 527
28.2 What Does Not Qualify as an Explanation 528
28.3 Excess Returns, the Slope and the Real Economy 529
28.4 The Data-Generating, Subjective and Risk-Neutral Measures 531
28.5 Does It Matter? 533
28.6 Why Is the Slope Significant? A Heterogeneous-Expectations Model 534
28.7 Why Is the Slope Significant? An Over-reaction Model 538
28.8 The Model in Detail 539
28.8.1 The Actions of the Central Bank 539
28.8.2 The Investors’ Expectations 541
28.8.3 The Bond Price Formation 541
28.8.4 The Excess Returns 542
28.8.5 The Simulations 542
28.8.6 Summary of Results 546

29 The Spanning Problem Revisited 547
29.1 The Purpose of This Chapter 547
29.2 What Is the Spanning Problem? 547
29.3 The Empirical Spanning Problem 548
29.4 The Theoretical Spanning Problem 551
29.5 The Modelling Choices to Handle the Spanning Problem 552

Part VII What the Models Tell Us

30 The Doubly Mean-Reverting Vasicek Model 559
30.1 The Purpose of This Chapter 559
30.2 The Doubly Mean-Reverting Vasicek Model 560
30.3 Bond Prices and Properties of the Solution 561
30.4 The Volatility of the Instantaneous Forward Rate 562
30.5 The Building Blocks 564
30.6 Initial Conclusions 568
30.7 Quality of the Fit 569
30.7.1 Calibrating the Model to the Volatility Structure 569
30.7.2 Calibrating the Model to the Yield Curve 571
30.8 The Value of Convexity 573
30.9 What Happened to the P-Measure? 574
31 Real Yields, Nominal Yields and Inflation: The D’Amico–Kim–Wei Model

31.1 The Purpose of This Chapter 575
31.2 Empirical Findings about Inflation 576
31.3 The No-Arbitrage Relationships 577
31.3.1 What the No-Arbitrage Relationships Really Imply 579
31.4 The Assumptions About the Process for the State Variables 581
31.5 Inflation Expectations and Risk Premia 582
31.6 Adding Liquidity 583
31.7 The Parameter Estimation Procedure and Results 584
31.7.1 The Difficulty of Parameter Estimation 586
31.8 Nominal and Real Rate Expectations and Risk Premia 588
31.8.1 Full-Sample Analysis 588
31.8.2 Prediction of Nominal and Real Excess Returns 589
31.8.3 Analysis of the May–September 2013 Events 594
31.9 Conclusions 596
31.10 Related Work 599

32 From Snapshots to Structural Models: The Diebold–Rudebusch Approach

32.1 The Purpose of This Chapter 602
32.2 Turning a Snapshot Model into a Dynamic Model 603
32.3 Turning a Dynamic Model into a No-Arbitrage Affine Model 606
32.4 Are the Variables Really Principal Components? 610
32.5 Dealing with Liquidity 612
32.5.1 On-the-Run, Off-the-Run Bonds 612
32.5.2 The Modelling Approach 613
32.5.3 The Results 615
32.5.4 Conclusions 616

33 Principal Components as State Variables of Affine Models: The PCA Affine Approach

33.1 The Purpose of This Chapter 618
33.2 Why PC-Based Models Are Special (Again) 620
33.3 Specified-Variable Models Revisited 622
33.3.1 Parameter Constraints for PCA Prespecified Models 624
33.4 Our Strategy to Link the P- and Q-Measures 625
33.5 The Set-Up 626
33.5.1 Notation 626
33.5.2 The Geometry (Kinematics) of the Problem 626
33.5.3 The Dynamics of the Problem 627
Contents

33.5.4 Solution 628
33.5.5 Necessary Conditions for Identifiability 629
33.6 Theoretical Results 631
33.6.1 Impossibility of Identification When K Is Diagonal 631
33.6.2 What Does It Mean to Require that the Factors \tilde{x}_t Should Be Principal Components? 632
33.6.3 Constraints on K for Identifiability 633
33.6.4 What the Q-measure Reversion-Speed Matrix Affects 635
33.7 Moving from the Q- to the P-Measure 639
33.8 Estimating the Parameters of \tilde{q}_0 and R 641
33.9 Calibration of the Model 643
33.9.1 Cross-Sectional Fit to Yields 643
33.9.2 Estimating the Values of the Eigenvalues \tilde{l} 644
33.9.3 Estimating the ‘Level’ Constant, u_r 644
33.10 Calibration Results 644
33.11 Generalizable Results on Term Premia from a PC-Based Affine Model 649
33.12 The Existential Dilemma 654
33.13 Appendix 33A: Proof of the Constraints on the Reversion-Speed Matrix K^Q 657
33.13.1 Preliminaries 657
33.13.2 Some Ancillary Results 658
33.13.3 The Derivation of the Main Result 659
33.13.4 The Conditions on the Vector \tilde{e} 660
33.14 Appendix 33B: Switching Regressors 661
34 Generalizations: The Adrian–Crump–Moench Model 663
34.1 The Purpose of This Chapter 663
34.2 The Strategy Behind the Adrian–Crump–Moench Model 664
34.3 A High-Level Description of the Model 665
34.4 State-Price Deflators: Generalizing the Results 667
34.5 Establishing an Expression for the Excess Returns 671
34.6 The Estimation Procedure 676
34.7 Establishing a Link with the Affine Model: The Discount Factor 677
34.8 Some Observations 679
34.9 Results 680
34.9.1 Full-Sample Analysis 680
34.9.2 Analysis of the May–September 2013 Events 683
34.10 Conclusions 687
Contents

35 An Affine, Stochastic-Market-Price-of-Risk Model 688
 35.1 The Purpose of This Chapter 688
 35.2 Why Do We Need Another Affine Model? 689
 35.3 Another Justification for a Stochastic-Market-Price-of-Risk Model 691
 35.4 The Model 693
 35.5 In Which Measure(s) Are We Working? 694
 35.6 The Qualitative Behaviour of the Model 696
 35.7 Calibration of the Model 698
 35.8 Calibration Results 700
 35.9 Comments on the Solution 705
 35.10 Term Premia in the Stochastic-Market-Price-of-Risk Model 708

36 Conclusions 714
 36.1 What Have We Learnt? 714
 36.1.1 The Road Followed 714
 36.1.2 The Case for the Prosecution: Models as Regurgitators 715
 36.1.3 The Case for the Defence: Models as Enforcers of Parsimony 716
 36.1.4 The Case for the Defence: Models as Enforcers of Cross-Sectional Restrictions 718
 36.1.5 The Case for the Defence: Models as Revealers of Forward-Looking Informations 719
 36.1.6 The Case for the Defence: Models as Integrators 720
 36.1.7 The Case for the Defence: Models as Enhancers of Understanding 721

References 725

Index 737
Acknowledgements

I owe a great debt of gratitude to a number of friends and colleagues. First and foremost, an anonymous referee has produced the most thorough and constructively critical review of an earlier draft of this manuscript that I have ever received in my publishing career. If he or she had written this book, I am sure it would have been far better than what I managed to produce. Luckily (for me) he or she didn’t. Thank you.

My ex-colleagues at PIMCO have been a constant source of inspiration, illumination, challenge and insight. I have benefitted greatly from illuminating discussions with (in alphabetical order) Mr Mukundan Deverajan, Dr Soraya Kazziha, Mr Ravi Mattu, Dr Vasant Naik, Dr Niels Pedersen, Dr David Pottinton, Dr Vlad Putiatyn, Dr Wendong Qu, Mr Jeremy Rosten, Mr Ivan Saroka and Dr Chelsea Wang. These ex-colleagues have been generous with their time and suggestions beyond what is reasonable to expect.

Among friends, Dr Andrei Liasenko has shown great interest in several early drafts of the manuscript, corrected small and not-so-small mistakes and suggested a far more elegant (and, the reader will be happy to hear, simpler) proof for an important result in Chapter 33. Ms Jean Whitmore has made use of her unfailing good judgment to suggest ways in which an earlier version of the work could be improved.

Professors Francis Diebold, Michael Dempster, Rene Garcia, Lionel Martinelli and Raman Uppal have provided very useful comments. Prof Paolo Veronesi has pointed me in the direction of important material which has found its way into the book.

Several of my students, both from EDEHC and from my previous academic affiliation (The Mathematical Finance Department at Oxford University), have provided a springboard for discussing the ideas presented in this book. In particular, I would like to thank Dr Daniela Villegas, Dr Tramback, Dr Taku Hatano and Dr Alexey Eherekinski.

I have benefited greatly from discussion with Dr Taylor Spears, and with the delegates at the Global Derivatives conferences delegates in Amsterdam (2014–2015) and Budapest (2016).
xxiv Acknowledgements

The editors at Cambridge University Press have displayed an enthusiasm for the project that has delighted – and surprised – me, all the more because this is my second book with them. Special thanks go to Mr Chris Harrison for his help and guidance, Ms Karen Maloney for her enthusiasm and the production team for their endless patience. I am truly touched.

My father and my wife have given me all the support I could have wished for the project. My eight-year-old son has forgiven me, I hope, for not playing with him as much as I would have otherwise; perhaps he has been so understanding because he has had a chance to build a few thousand paper planes with the earlier drafts of this book.

Despite all this help and encouragement, and despite the care I have devoted to this work, I am sure that many errors still lurk in its 750-plus pages. It goes without saying that I am fully responsible for these errors; but I will say so nonetheless.
Symbols and Abbreviations

LATIN SYMBOLS

\(A_t \) = A scalar that enters the expression for \(P_T^t \), ie, for the price at time \(t \) of a zero-coupon bond of maturity \(T \), as in \(P_T^t = e^{A_T^t + (B_T^t)^T x_t} \)

\(B_t \) = A vector that enters the expression for \(P_T^t \), ie, for the price at time \(t \) of a zero-coupon bond of maturity \(T \), as in \(P_T^t = e^{A_T^t + (B_T^t)^T x_t} \)

\(BEI_{T, t} \) = Break-even inflation at time \(t \) for maturity \(T \)

\(c_t \) = Consumption at time \(t \)

\(Conv_T^t \) = Time-\(t \) convexity of a \(T \)-maturity (discount) bond

\(D = \sum_{i=1,n} a_i (B_i^t) (B_i^t)^T \) = Time-\(t \) duration of a \(T \)-maturity (discount) bond

\(E[I]_T^t \) = Time-\(t \) expected inflation per unit time over the period \([t, T]\)

\(f_T^t \) = Value at time \(t \) of an instantaneous forward rate expiring at time \(T \)

\(F_{T, T+\tau}^t \) = Value at time \(t \) of a discrete forward rate expiring at time \(T \) and covering a notional borrowing/lending period of length \(\tau \)

\(\{l_i\} = \) Eigenvalues of the reversion-speed matrix

\(m_{t+1} \) = Stochastic discount factor for time \(t + 1 \)

\(M_t \) = \(\beta u (c_t) \) stochastic discount factor in continuous time

\(p_{T_t}^t \) = Log price at time \(t \) of a zero-coupon bond of maturity \(T \)

\(p_s \) = Probability of reaching state \(s \)

\(P_T^t \) = Price at time \(t \) of a zero-coupon bond of maturity \(T \)

\(P_{t, T}^n \) = Price at time \(t \) of a real zero-coupon bond of maturity \(T \)

\(q_t = e^Q_t \)

\(Q_t \) = Value of the price process at time \(t \)

\(r_t \) = Value of the short rate at time \(t \)

\(r_f^t \) = Value of the real short rate at time \(t \)

\(r_f \) = Riskless rate

\(ret_T^t \) = Annualized return from investing in the \(T \)-maturity discount bond

\(R_f^t \) = Gross one-period riskless return

\(S \) = Volatility matrix for an affine model

\(S_t \) = Time-\(t \) price of a generic security
Symbols and Abbreviations

- \(sp_s \) = State price at time \(s \)
- \(SR \) = Sharpe Ratio
- \(u(c_t) \) = Utility for consumption at time \(t \)
- \(W \) = Initial wealth
- \(x_t \) = A scalar or a vector that denotes the state variables in an affine model
- \(xret_t \) = Annualized excess return from investing in the \(T \)-maturity discount bond
- \(y_T^r \) = Yield at time \(t \) of a zero-coupon bond of maturity \(T \)
- \(y_{\text{nom},T}^r \) = Nominal yield at time \(t \) of a zero-coupon bond of maturity \(T \)
- \(y_{\text{real},T}^r \) = Real yield at time \(t \) of a zero-coupon bond of maturity \(T \)

Greek Symbols

- \(\alpha_t^T \) = \(- \frac{1}{T-t} A_{t,T}^T \): One of the two quantities that links yields to state variables for affine models, as in \(y_t^r = \alpha_t^T + (\beta_t^T)^T x_t \)
- \(\beta_t^T \) = \(- \frac{1}{T-t} A_{t,T}^T \): One of the two quantities that links yields to state variables for affine models, as in \(y_t^r = \alpha_t^T + (\beta_t^T)^T x_t \)
- \(\beta \) = Time impatience term in the stochastic discount factor: \(m_{t+1} = \beta \frac{u'(G_{t+1})}{u'(C_t)} \)
- \(\kappa \) = Reversion speed in a one-dimensional mean-reverting process
- \(\theta \) = Reversion level (vector or scalar) for an affine model
- \(\Theta_t^T \equiv \left(\frac{\theta_t^T}{x_t} \right)^{-1} \)
- \(\lambda \) = Market price of risk
- \(\Lambda \) = Matrix of eigenvalues of the reversion-speed matrix
- \(\mu_t^{P(Q)} \) = Drift in the real-world (risk-neutral) measure of the short rate
- \(v_0 \) = The price of a security today
- \(\pi_s \) = State-price deflator
- \(\pi_{\text{real},T} \) = Real state-price deflator
- \(\sigma_P \) = Bond price volatility
- \(\sigma_r \) = Volatility of the short rate
- \(\sigma_N \) = Volatility of a yield of expiry \(T \)
- \(\tau \equiv T - t \)
- \(\omega_i \) = The \(i \)th weight in a portfolio

Fraktur and Calligraphic Symbols

- \(\mathfrak{C} \) = Convexity of a portfolio
- \(\mathfrak{C}_P^T \text{(Vasicek)} \) = Bond price convexity in the Vasicek model
- \(\mathfrak{C}_y^T \text{(Vasicek)} \) = Yield convexity in the Vasicek model
- \(Ci_{t,T}^r \) = Convexity term in the expression for break-even inflation in the real-world measure
- \(Ci_{t,T}^Q \) = Convexity term in the expression for break-even inflation in the risk-neutral measure
Symbols and Abbreviations

\(C_{i,T} \) = Convexity term in the expression for break-even inflation in the risk-neutral measure

\(K \) = Reversion speed matrix for an affine model

\(L_{T} \) = Liquidity component in the decomposition of break-even inflation:

\(BEI_{T} = \mathbb{E} \left(R_{T}^{T} \right)^{P} + P_{T}^{T} + L_{T} \)

\(M_{N}^{T} \) = The Ratio of the nominal stochastic discount factors: \(M_{N}^{T} = \frac{\pi^{N}(T)}{\pi^{N}(0)} \)

\(N(\mu, \sigma^{2}) \) = Normal distribution with mean, \(\mu \), and variance, \(\sigma^{2} \)

\(P_{T}^{T} \) = Risk premium required by an investor in order to bear inflation risk

\(\mathbb{P} \) = Real-world measure

\(Q \) = Risk-neutral measure

\(S \) = Subjective measure

\(S_{\tau} \) = The Set of all the possible future states at time \(\tau \)

\(T \) = Terminal measure