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1 Basic Concepts of Optical Fields

1.1 NATURE OF LIGHT
..............................................................................................................

Photonics addresses the control and use of light for various applications. Light is electromag-

netic radiation of frequencies in the range from 1 THz to 10 PHz, corresponding to wavelengths

between �300 μm and �30 nm in free space, which is generally divided into the infrared,

visible, and ultraviolet regions. In this spectral region, the electromagnetic radiation exhibits the

dual nature of photon and wave. The photon nature has to be considered in the generation,

amplification, frequency conversion, or detection of light, whereas the wave nature is important

in all processes but especially in the propagation, transmission, interference, modulation, or

switching of light.

1.1.1 Photon Nature of Light

The energy of a photon is determined by its frequency ν or, equivalently, its angular frequency

ω ¼ 2πν. Associated with its particle nature, a photon has a momentum determined by its

wavelength λ or, equivalently, its wavevector k. These characteristics are summarized below for

a photon in free space:

speed c ¼ λν;

energy hν ¼ ℏω ¼ pc;

momentum p ¼ hν=c ¼ h=λ, p ¼ ℏk.

The energy of a photon that has a wavelength of λ in free space can be calculated using the

formula:

hν ¼ 1:2398

λ
μm eV ¼ 1239:8

λ
nm eV: (1.1)

The photon energy at the optical wavelength of 1 μm is 1.2398 eV, and its frequency is

300 THz.

EXAMPLE 1.1

The visible spectrum ranges from 700 nm wavelength at the red end to 400 nm wavelength at

the violet end. What is the frequency range of the visible spectrum? What are the energies of

visible photons?
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Solution:

The 700 nm optical wavelength at the red end has a frequency of

νred ¼
c

λred
¼ 3� 108 m s�1

700 nm
¼ 429 THz

and a photon energy of

hνred ¼
1239:8

λred
nm eV ¼ 1239:8

700
eV ¼ 1:77 eV:

The 400 nm optical wavelength at the violet end has a frequency of

νviolet ¼
c

λviolet
¼ 3� 108 m s�1

400 nm
¼ 750 THz

and a photon energy of

hνviolet ¼
1239:8

λviolet
nm eV ¼ 1239:8

400
eV ¼ 3:10 eV:

Therefore, the frequency range of the visible spectrum is from 429 THz to 750 THz. Visible

photons have energies in the range from 1.77 eV to 3.10 eV.

The energy of a photon is determined only by its frequency or, equivalently, by its free-space

wavelength, but not by the light intensity. The intensity, I, of monochromatic light is related to

the photon flux density, or the number of photons per unit time per unit area, by

photon flux density ¼ I

hν
¼ I

ℏω
:

The photon flux, or the number of photons per unit time, of a monochromatic optical beam is

related to the beam power P by

photon flux ¼ P

hν
¼ P

ℏω
:

EXAMPLE 1.2

Find the photon flux of a monochromatic optical beam that has a power of P ¼ 1 W by taking

its wavelength at either end of the visible spectrum. What are the momentum carried by a red

photon and the momentum carried by a violet photon? What is the total momentum carried by

the beam in a time duration of Δt ¼ 1 s?
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Solution:

From Example 1.1, the photon energy of the 700 nm wavelength at the red end is

hνred ¼ 1:77 eV, and that of the 400 nm wavelength at the violet end is hνviolet ¼ 3:10 eV.

Therefore, the photon flux of a beam that has a power of P ¼ 1 W at the 700 nm red

wavelength is

red photon flux ¼ P

hνred
¼ 1

1:77� 1:6� 10�19
s�1 ¼ 3:53� 1018 s�1,

and the photon flux of a beam that has a power of P ¼ 1 W at the 400 nm violet wavelength is

violet photon flux ¼ P

hνviolet
¼ 1

3:10� 1:6� 10�19
s�1 ¼ 2:02� 1018 s�1:

The momentum carried by a red photon is

pred ¼
hνred

c
¼ 1:77� 1:6� 10�19

3� 108
N s ¼ 9:44� 10�28 N s,

and that carried by a violet photon is

pviolet ¼
hνviolet

c
¼ 3:10� 1:6� 10�19

3� 108
N s ¼ 1:65� 10�27 N s:

The total momentum carried by an optical beam that has a power of P during a time duration of

Δt is independent of the optical wavelength:

total momentum ¼ photon fluxð ÞpΔt ¼ P

hν
� hν
c
Δt ¼ PΔt

c
:

Therefore, irrespective of whether the wavelength of the beam is at the red or the violet end, the

total momentum carried by the beam in a time duration of Δt ¼ 1 s is

total momentum ¼ PΔt

c
¼ 1� 1

3� 108
¼ 3:33� 10�9 N:

1.1.2 Wave Nature of Light

An optical wave is characterized by the space and time dependence of the optical field, which is

composed of coupled electric and magnetic fields governed by Maxwell’s equations. It varies

with time at an optical carrier frequency, and it propagates in a spatial direction determined by a

wavevector. The behavior of an optical wave is strongly dependent on the optical properties of

the medium. An optical field is a vectorial field characterized by five parameters: polarization,

magnitude, phase, wavevector, and frequency. Polarization and wavevector are vectorial

quantities; magnitude, frequency, and phase are scalar quantities. The general properties of

optical fields are described in the following sections.
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1.2 OPTICAL FIELDS AND MAXWELL ’S EQUATIONS
..............................................................................................................

An electromagnetic field in a medium is characterized by four vectorial fields:

electric field E r; tð Þ V m�1,

electric displacement D r; tð Þ C m�2,

magnetic field H r; tð Þ A m�1,

magnetic induction B r; tð Þ T or Wb m�2:

The response of a medium to an electromagnetic field generates the polarization and the

magnetization:

polarization (electric polarization) P r; tð Þ C m�2,

magnetization (magnetic polarization) M r; tð Þ A m�1:

The electric field E r; tð Þ and the magnetic induction B r; tð Þ are the macroscopic forms of the

microscopic fields seen by the charge and current densities in the medium. The polarization

P r; tð Þ and the magnetizationM r; tð Þ are the macroscopically averaged densities of microscopic

electric dipoles and magnetic dipoles that are induced by the presence of the electromagnetic

field in the medium. These macroscopic forms are obtained by averaging over a volume that is

small compared to the dimension of the optical wavelength but is large compared to the atomic

dimension. The electric displacement D r; tð Þ and the magnetic field H r; tð Þ are macroscopic

fields defined as

D r; tð Þ ¼ ϵ0E r; tð Þ þ P r; tð Þ, (1.2)

and

H r; tð Þ ¼ 1

μ0
B r; tð Þ �M r; tð Þ, (1.3)

where ϵ0 � 1=36π � 10�9 F m�1 ¼ 8:854� 10�12 F m�1 is the electric permittivity of free

space and μ0 ¼ 4π � 10�7 H m�1 is the magnetic permeability of free space. In addition to the

induced charge density and current density that respectively generate electric dipoles and

magnetic dipoles for P r; tð Þ and M r; tð Þ, an independent charge or current density, or both,

from external sources may exist:

charge density ρ r; tð Þ C m�3,

current density J r; tð Þ A m�2:

The behavior of a space- and time-varying electromagnetic field in a medium is governed by

space- and time-dependent macroscopic Maxwell’s equations:

∇� E ¼ � ∂B

∂t
, Faraday’s law; (1.4)

∇�H ¼ ∂D

∂t
þ J, Ampère’s law; (1.5)
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∇ �D ¼ ρ, Gauss’s law; Coulomb’s law; (1.6)

∇ �B ¼ 0, absence of magnetic monopoles: (1.7)

Note that Gauss’s law in the form of (1.6) is equivalent to Coulomb’s law because one can be

derived from the other. The current and charge densities are constrained by the continuity

equation:

∇ � J þ ∂ρ

∂t
¼ 0, conservation of charge: (1.8)

The total current density in an optical medium has two contributions: the polarization current

from the bound charges of the medium and the current from free charge carriers, thus

Jtotal ¼ Jbound þ Jfree. The free-carrier current has two possible origins, one from the response

of the conduction electrons and holes of the medium to the optical field and the other from an

external current source: Jfree ¼ Jcond þ Jext. Both Jbound and Jcond are induced by the optical

field; thus

Jtotal ¼ Jbound þ Jfree ¼ Jbound þ Jcond þ Jext ¼ Jind þ Jext, (1.9)

where Jind ¼ Jbound þ Jcond: Similarly, the total charge density can be decomposed as

ρtotal ¼ ρbound þ ρfree ¼ ρbound þ ρcond þ ρext ¼ ρind þ ρext: (1.10)

In an optical medium, charge conservation requires that an increase of charge density induced

by an optical field at a location is always accompanied by a reduction at another location,

resulting in no net macroscopic induced charge density. Therefore, ρind ¼ 0 and ρtotal ¼ ρext for

a macroscopic optical field. By contrast, an induced macroscopic current density of Jind 6¼ 0

can exist in an optical medium.

In an optical medium that is free of external sources, Jext ¼ 0 and ρtotal ¼ ρext ¼ 0, but

Jtotal ¼ Jbound þ Jcond ¼ Jind 6¼ 0: Both Jbound and Jcond are induced currents in response to an

optical field. The bound-electron polarization current Jbound is a displacement current that is

always included in the ∂D=∂t term but not in the J term in (1.5). The conduction current Jcond is

also an induced current, but it is carried by free charge carriers in the medium. In the case when

both external current and external charge are absent, the form of Maxwell’s equations depends

on how the conduction current is treated. There are generally two alternatives.

1. Being an induced current, Jcond can be considered as a displacement current to be included

in the ∂D=∂t term so that J ¼ 0 in (1.5). Then, Maxwell’s equations are

∇� E ¼ � ∂B

∂t
, (1.11)

∇�H ¼ ∂D

∂t
, (1.12)

∇ �D ¼ 0, (1.13)

∇ �B ¼ 0, (1.14)

1.2 Optical Fields and Maxwell’s Equations 5

www.cambridge.org/9781107164284
www.cambridge.org


Cambridge University Press
978-1-107-16428-4 — Principles of Photonics
Jia-Ming Liu 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

where D is the electric displacement that includes optical-field-induced responses from all

bound and conduction charges in the medium.

2. Being a current carried by free charge carriers, Jcond can be separated from the ∂D=∂t term so

that J ¼ Jcond in (1.5). Then, Maxwell’s equations have the form:

∇� E ¼ � ∂B

∂t
, (1.15)

∇�H ¼ ∂Dbound

∂t
þ Jcond, (1.16)

∇ �Dbound ¼ 0, (1.17)

∇ �B ¼ 0, (1.18)

with ∇ � Jcond ¼ 0, where Dbound is the electric displacement that includes only the contri-

bution from bound charges and excludes that from the conduction current.

These two alternative forms of Maxwell’s equations are equivalent. The form using (1.16) is

taken only when a specific effect of the conduction current is considered, as in Section 2.4.

Otherwise, the form using (1.12) is generally taken. Therefore, we use the general form given in

(1.11)–(1.14) unless the situation calls for specific attention to a conduction current.

1.2.1 Transformation Properties

Maxwell’s equations and the continuity equation are the basic physical laws that govern the

behavior of electromagnetic fields. They are invariant under the transformation of space

inversion, in which the spatial vector r is changed to r0 ¼ �r, i.e., r ! �r, or x; y; zð Þ !
�x;�y;�zð Þ, and under the transformation of time reversal, in which the time variable t is

changed to t0 ¼ �t, i.e., t ! �t: This means that the form of these equations is not changed

when we perform the space-inversion transformation or the time-reversal transformation, or

both together.

The field quantities that appear in Maxwell’s equations, however, do not have to be invariant

under space inversion or time reversal. Their transformation properties are summarized as

follows.

1. Electrical fields: The electric field vectors E, D, and P are polar vectors associated with the

charge-density distribution. They change sign under space inversion but not under time

reversal.

2. Magnetic fields: The magnetic field vectors B,H, and M are axial vectors associated with

the current-density distribution. They change sign under time reversal but not under space

inversion.

3. Charge density: The charge density ρ is a scalar. It does not change sign under either space

inversion or time reversal.

4. Current density: The current density J is a polar vector that is the product of charge density

and velocity: J ¼ ρv. It changes sign under either space inversion or time reversal following

the sign change of the velocity vector under either transformation.
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1.2.2 Optical Response of a Medium

Polarization and magnetization are generated in a medium by the response of the medium to the

electric and magnetic fields, respectively: P r; tð Þ depends on E r; tð Þ, and M r; tð Þ depends on
B r; tð Þ: At an optical frequency, the magnetization vanishes:M ¼ 0: Therefore, it is always true

for an optical field that

B r; tð Þ ¼ μ0H r; tð Þ: (1.19)

Because μ0 is a constant that is independent of the medium, the magnetic induction B r; tð Þ can
be replaced by μ0H r; tð Þ for any equations that describe optical fields, including Maxwell’s

equations, thus effectively eliminating one field variable. Note that this is not true at DC or low

frequencies, however, because a nonzero DC or low-frequency magnetization,M 6¼ 0, can exist

in any material. Indeed, it is possible to change the optical properties of a medium through a

magnetization induced by a DC or low-frequency magnetic field, leading to the functioning of

magneto-optics. It should be noted that even for magneto-optics, the magnetization is induced

by a DC or low-frequency magnetic field that is separate from the optical field. No magnetiza-

tion is induced by the magnetic component of the optical field.

The optical properties of a material are completely determined by the relation between P r; tð Þ
and E r; tð Þ: This relation is generally characterized by an electric susceptibility tensor, χ,

through the following definition for electric polarization,

P r; tð Þ ¼ ϵ0

ð

t

�∞

ððð

all r0

χ r� r0; t � t0ð Þ �Eðr0, t0Þdr0dt0: (1.20)

The relation between D r; tð Þ and E r; tð Þ is characterized by the electric permittivity tensor, ϵ, of
the medium:

D r; tð Þ ¼ ϵ0E r; tð Þ þ P r; tð Þ ¼
ð

t

�∞

ððð

all r0

ϵ r� r0; t � t0ð Þ �Eðr0, t0Þdr0dt0: (1.21)

From (1.20) and (1.21), the relationship between χ and ϵ in the real space and time domain is

ϵ r; tð Þ ¼ ϵ0 δ rð Þδ tð ÞIþ χ r; tð Þ½ �, (1.22)

where I is the identity tensor that has the form of a 3� 3 unit matrix and the delta functions are

Dirac delta functions:
ÐÐÐ

all r
δðrÞdr and

Ð

∞

�∞
δðtÞdt ¼ 1. The relation in (1.22) indicates that χ and

ϵ contain exactly the same information about the medium: one is known when the other is known.

Because χ and, equivalently, ϵ represent the response of a medium to an optical field and thus

completely characterize the macroscopic electromagnetic properties of the medium, (1.20) and

(1.21) can be regarded as the definitions of P r; tð Þ and D r; tð Þ, respectively.

1.2.3 Boundary Conditions

At the interface of two media of different optical properties, as shown in Fig. 1.1, the optical

field components must satisfy certain boundary conditions. These boundary conditions can be

1.2 Optical Fields and Maxwell’s Equations 7
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derived from Maxwell’s equations given in (1.11)–(1.14). From (1.11) and (1.12), the tangen-

tial components of the fields at the boundary satisfy

n̂ � E1 ¼ n̂ � E2, (1.23)

n̂ �H1 ¼ n̂ �H2, (1.24)

where n̂ is the unit vector normal to the interface as shown in Fig. 1.1. From (1.13) and (1.14),

the normal components of the fields at the boundary satisfy

n̂ �D1 ¼ n̂ �D2, (1.25)

n̂ �B1 ¼ n̂ �B2: (1.26)

The tangential components of E and H are continuous across an interface, while the normal

components of D and B are continuous. Because B ¼ μ0H at an optical frequency, as discussed

above, (1.24) and (1.26) also imply that the tangential component of B and the normal

component of H are also continuous. Consequently, all of the magnetic field components in

an optical field are continuous across a boundary. Possible discontinuities in an optical field

exist only in the normal component of E or in the tangential component of D.

1.3 OPTICAL POWER AND ENERGY
..............................................................................................................

Taking the dot product of H and (1.4) and that of E and (1.5) yields

H � ∇� Eð Þ ¼ �H � ∂B
∂t

, (1.27)

E � ∇�Hð Þ ¼ E � ∂D
∂t

þ E � J: (1.28)

Using the vector identity B � ∇� Að Þ � A � ∇� Bð Þ ¼ ∇ � A� Bð Þ, (1.27) and (1.28) can be

combined to give

Figure 1.1 Boundary between two media of different optical properties.
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�∇ � E�Hð Þ ¼ E � J þ E � ∂D
∂t

þH � ∂B
∂t

: (1.29)

Using (1.2) and (1.3) and rearranging (1.29), we obtain

E � J ¼ �∇ � E�Hð Þ � ∂

∂t

ϵ0

2
Ej j2 þ μ0

2
Hj j2

� �

� E � ∂P
∂t

þ μ0H � ∂M
∂t

� �

: (1.30)

Recall that power in an electric circuit is given by voltage times current and has the unit of

W ¼ V A (watts = volts � amperes). Similarly, in an electromagnetic field E � J is the power

density and has the unit of V A m�3, or W m�3. From (1.30), the total power dissipated by an

electromagnetic field in a volume of V is simply the integral of E � J over the volume:

ð

V

E �JdV ¼�
þ

A

E�H � n̂da� ∂

∂t

ð

V

ϵ0

2
Ej j2þ μ0

2
Hj j2

� �

dV�
ð

V

E � ∂P
∂t

þ μ0H � ∂M
∂t

� �

dV, (1.31)

where the first term on the right-hand side is a surface integral over the closed surface A of the

volume V and n̂ is the outward-pointing unit normal vector of the surface, as shown in Fig. 1.2.

Each term in (1.31) has the unit of power, and each has an important physical meaning.

1. The vectorial quantity

S ¼ E�H (1.32)

is called the Poynting vector of the electromagnetic field. It represents the instantaneous

magnitude and direction of the power flow of the field.

2. The scalar quantity

u0 ¼
ϵ0

2
Ej j2 þ μ0

2
Hj j2 (1.33)

has the unit of energy per unit volume and is the energy density stored in the propagating

field. It consists of two components, thus accounting for energies stored in both electric and

magnetic fields at any instant of time.

3. The last term in (1.31) also has two components associated with electric and magnetic fields,

respectively. The quantity

Wp ¼ E � ∂P
∂t

(1.34)

Figure 1.2 Boundary surface enclosing a volume element.
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is the power density expended by the electromagnetic field on the polarization. It is the rate

of energy transfer from the electromagnetic field to the medium on inducing the electric

polarization in the medium. Similarly, the quantity

Wm ¼ μ0H � ∂M
∂t

(1.35)

is the power density expended by the electromagnetic field on the magnetization.

With these physical meanings attached to the terms in (1.31), it can be seen that (1.31) simply

states the law of conservation of energy in any arbitrary volume element V in the medium. The

total electromagnetic energy in the medium equals that contained in the propagating field plus

that stored in the electric and magnetic polarizations.

For an optical field, E � J ¼ 0 and Wm ¼ 0 because J ¼ 0 and M ¼ 0, as discussed above.

Then, (1.31) becomes

�
þ

A

S � n̂da ¼ ∂

∂t

ð

V

u0dV þ
ð

V

WpdV, (1.36)

which states that the total optical power flowing into volume V through its boundary surface A

is equal to the rate of increase with time of the energy stored in the propagating fields in V plus

the power transferred to the polarization of the medium in this volume.

1.4 WAVE EQUATION
..............................................................................................................

By applying ∇� to (1.11) and using (1.19) and (1.12), we obtain the wave equation:

∇� ∇� Eþ μ0
∂
2
D

∂t2
¼ 0: (1.37)

By using (1.2), the wave equation can be expressed as

∇� ∇� Eþ 1

c2
∂
2
E

∂t2
¼ �μ0

∂
2
P

∂t2
, (1.38)

where

c ¼ 1
ffiffiffiffiffiffiffiffiffi

μ0ϵ0
p � 3� 108 m s�1 (1.39)

is the speed of light in free space.

The wave equation in (1.38) describes the space-and-time evolution of the electric field of the

optical wave. Its right-hand side can be regarded as the driving source for the optical wave; that

is, the polarization in a medium drives the evolution of an optical field. This wave equation can

take on various forms depending on the characteristics of the medium, as will be seen on

various occasions later. Here we leave it in this general form.
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