Contents

About the Cover
Preface to the First Edition
Preface to the Second Edition

1 Vector and Tensor Calculus
- 1.1 Introduction
- 1.2 Definition of a Vector
- 1.3 Vector Operations
- 1.4 Decomposition of a Vector with Respect to a Basis
- 1.5 Some Mathematical Preliminaries on Second-Order Tensors
- Exercises

2 The Concepts of Force and Moment
- 2.1 Introduction
- 2.2 Definition of a Force Vector
- 2.3 Newton’s Laws
- 2.4 Vector Operations on the Force Vector
- 2.5 Force Decomposition
- 2.6 Drawing Convention
- 2.7 The Concept of Moment
- 2.8 Definition of the Moment Vector
- 2.9 The Two-Dimensional Case
- 2.10 Drawing Convention for Moments in Three Dimensions
- Exercises

3 Static Equilibrium
- 3.1 Introduction
- 3.2 Static Equilibrium Conditions
- 3.3 Free Body Diagram
- Exercises
4 The Mechanical Behaviour of Fibres

4.1 Introduction

4.2 Elastic Fibres in One Dimension

4.3 A Simple One-Dimensional Model of a Skeletal Muscle

4.4 Elastic Fibres in Three Dimensions

4.5 Small Fibre Stretches

Exercises

5 Fibres: Time-Dependent Behaviour

5.1 Introduction

5.2 Viscous Behaviour

5.2.1 Small Stretches: Linearization

5.3 Linear Visco-Elastic Behaviour

5.3.1 Superposition and Proportionality

5.3.2 Generalization for an Arbitrary Load History

5.3.3 Visco-Elastic Models Based on Springs and Dashpots: Maxwell Model

5.3.4 Visco-Elastic Models Based on Springs and Dashpots: Kelvin–Voigt Model

5.4 Harmonic Excitation of Visco-Elastic Materials

5.4.1 The Storage and the Loss Modulus

5.4.2 The Complex Modulus

5.4.3 The Standard Linear Model

5.5 Appendix: Laplace and Fourier Transforms

Exercises

6 Analysis of a One-Dimensional Continuous Elastic Medium

6.1 Introduction

6.2 Equilibrium in a Subsection of a Slender Structure

6.3 Stress and Strain

6.4 Elastic Stress–Strain Relation

6.5 Deformation of an Inhomogeneous Bar

Exercises

7 Biological Materials and Continuum Mechanics

7.1 Introduction

7.2 Orientation in Space

7.3 Mass within the Volume V

7.4 Scalar Fields

7.5 Vector Fields
Contents

7.6 Rigid Body Rotation 149
Exercises 151

8 Stress in Three-Dimensional Continuous Media 155
 8.1 Stress Vector 155
 8.2 From Stress to Force 156
 8.3 Equilibrium 157
 8.4 Stress Tensor 164
 8.5 Principal Stresses and Principal Stress Directions 172
 8.6 Mohr's Circles for the Stress State 175
 8.7 Hydrostatic Pressure and Deviatoric Stress 176
 8.8 Equivalent Stress 177
Exercises 178

9 Motion: Time as an Extra Dimension 183
 9.1 Introduction 183
 9.2 Geometrical Description of the Material Configuration 183
 9.3 Lagrangian and Eulerian Descriptions 185
 9.4 The Relation between the Material and Spatial Time Derivatives 188
 9.5 The Displacement Vector 190
 9.6 The Gradient Operator 192
 9.7 Extra Rigid Body Displacement 196
 9.8 Fluid Flow 198
Exercises 199

10 Deformation and Rotation, Deformation Rate and Spin 204
 10.1 Introduction 204
 10.2 A Material Line Segment in the Reference and Current Configurations 204
 10.3 The Stretch Ratio and Rotation 210
 10.4 Strain Measures and Strain Tensors and Matrices 214
 10.5 The Volume Change Factor 219
 10.6 Deformation Rate and Rotation Velocity 219
Exercises 222

11 Local Balance of Mass, Momentum and Energy 227
 11.1 Introduction 227
 11.2 The Local Balance of Mass 227
 11.3 The Local Balance of Momentum 228
Contents

11.4 The Local Balance of Mechanical Power 230
11.5 Lagrangian and Eulerian Descriptions of the Balance Equations 231
Exercises 233

12 Constitutive Modelling of Solids and Fluids 235
12.1 Introduction 235
12.2 Elastic Behaviour at Small Deformations and Rotations 236
12.3 The Stored Internal Energy 242
12.4 Elastic Behaviour at Large Deformations and/or Large Rotations 244
 12.4.1 Material Frame Indifference 244
 12.4.2 Strain Energy Function 250
 12.4.3 The Incompressible Neo-Hookean Model 252
 12.4.4 The Incompressible Mooney–Rivlin Model 255
 12.4.5 Compressible Neo-Hookean Elastic Solid 256
12.5 Constitutive Modelling of Viscous Fluids 261
12.6 Newtonian Fluids 262
12.7 Non-Newtonian Fluids 263
12.8 Diffusion and Filtration 264
Exercises 264

13 Solution Strategies for Solid and Fluid Mechanics Problems 270
13.1 Introduction 270
13.2 Solution Strategies for Deforming Solids 270
 13.2.1 General Formulation for Solid Mechanics Problems 271
 13.2.2 Geometrical Linearity 272
 13.2.3 Linear Elasticity Theory, Dynamic 273
 13.2.4 Linear Elasticity Theory, Static 273
 13.2.5 Linear Plane Stress Theory, Static 274
 13.2.6 Boundary Conditions 278
13.3 Solution Strategies for Viscous Fluids 280
 13.3.1 General Equations for Viscous Flow 281
 13.3.2 The Equations for a Newtonian Fluid 282
 13.3.3 Stationary Flow of an Incompressible Newtonian Fluid 282
 13.3.4 Boundary Conditions 283
 13.3.5 Elementary Analytical Solutions 283
13.4 Diffusion and Filtration 285
Exercises 287

14 Solution of the One-Dimensional Diffusion Equation by Means of the Finite Element Method 292
14.1 Introduction 292
Contents

14.2 The Diffusion Equation 293
14.3 Method of Weighted Residuals and Weak Form 295
14.4 Polynomial Interpolation 297
14.5 Galerkin Approximation 300
14.6 Solution of the Discrete Set of Equations 307
14.7 Isoparametric Elements and Numerical Integration 308
14.8 Basic Structure of a Finite Element Program 312
Exercises 319

15 Solution of the One-Dimensional Convection–Diffusion Equation by Means of the Finite Element Method 327
15.1 Introduction 327
15.2 The Convection–Diffusion Equation 327
15.3 Temporal Discretization 330
15.4 Spatial Discretization 333
Exercises 338

16 Solution of the Three-Dimensional Convection–Diffusion Equation by Means of the Finite Element Method 342
16.1 Introduction 342
16.2 Diffusion Equation 343
16.3 Divergence Theorem and Integration by Parts 344
16.4 Weak Form 345
16.5 Galerkin Discretization 345
16.6 Convection–Diffusion Equation 348
16.7 Isoparametric Elements and Numerical Integration 349
16.8 Example 353
Exercises 356

17 Shape Functions and Numerical Integration 363
17.1 Introduction 363
17.2 Isoparametric, Bi-Linear Quadrilateral Element 365
17.3 Linear Triangular Element 367
17.4 Lagrangian and Serendipity Elements 370
17.4.1 Lagrangian Elements 371
17.4.2 Serendipity Elements 373
17.5 Numerical Integration 373
Exercises 377
Contents

18 Infinitesimal Strain Elasticity Problems \hspace{1cm} 382
 18.1 Introduction \hspace{1cm} 382
 18.2 Linear Elasticity \hspace{1cm} 382
 18.3 Weak Formulation \hspace{1cm} 384
 18.4 Galerkin Discretization \hspace{1cm} 385
 18.5 Solution \hspace{1cm} 391
 Exercises \hspace{1cm} 394

References \hspace{1cm} 399
Index \hspace{1cm} 401