

Probabilistic Numerics

Probabilistic numerical computation formalises the connection between machine learning and applied mathematics. Numerical algorithms approximate intractable quantities from computable ones. They estimate integrals from evaluations of the integrand, or the path of a dynamical system described by differential equations from evaluations of the vector field. In other words, they infer a latent quantity from data. This book shows that it is thus formally possible to think of computational routines as learning machines, and to use the notion of Bayesian inference to build more flexible, efficient, or customised algorithms for computation.

The text caters for Masters' and PhD students, as well as postgraduate researchers in artificial intelligence, computer science, statistics, and applied mathematics. Extensive background material is provided along with a wealth of figures, worked examples, and exercises (with solutions) to develop intuition.

Philipp Hennig holds the Chair for the Methods of Machine Learning at the University of Tübingen, and an adjunct position at the Max Planck Institute for Intelligent Systems. He has dedicated most of his career to the development of Probabilistic Numerical Methods. Hennig's research has been supported by Emmy Noether, Max Planck and ERC fellowships. He is a co-Director of the Research Program for the Theory, Algorithms and Computations of Learning Machines at the European Laboratory for Learning and Intelligent Systems (ELLIS).

Michael A. Osborne is Professor of Machine Learning at the University of Oxford, and a co-Founder of Mind Foundry Ltd. His research has attracted £10.6M of research funding and has been cited over 15,000 times. He is very, very Bayesian.

Hans P. Kersting is a postdoctoral researcher at INRIA and École Normale Supérieure in Paris, working in machine learning with expertise in Bayesian inference, dynamical systems, and optimisation.

'This impressive text rethinks numerical problems through the lens of probabilistic inference and decision making. This fresh perspective opens up a new chapter in this field, and suggests new and highly efficient methods. A landmark achievement!'

- Zoubin Ghahramani, University of Cambridge

'In this stunning and comprehensive new book, early developments from Kac and Larkin have been comprehensively built upon, formalised, and extended by including modern-day machine learning, numerical analysis, and the formal Bayesian statistical methodology. Probabilistic numerical methodology is of enormous importance for this age of data-centric science and Hennig, Osborne, and Kersting are to be congratulated in providing us with this definitive volume.'

- Mark Girolami, University of Cambridge and The Alan Turing Institute

'This book presents an in-depth overview of both the past and present of the newly emerging area of probabilistic numerics, where recent advances in probabilistic machine learning are used to develop principled improvements which are both faster and more accurate than classical numerical analysis algorithms. A must-read for every algorithm developer and practitioner in optimization!'

- Ralf Herbrich, Hasso Plattner Institute

'Probabilistic numerics spans from the intellectual fireworks of the dawn of a new field to its practical algorithmic consequences. It is precise but accessible and rich in wide-ranging, principled examples. This convergence of ideas from diverse fields in lucid style is the very fabric of good science.'

- Carl Edward Rasmussen, University of Cambridge

'An important read for anyone who has thought about uncertainty in numerical methods; an essential read for anyone who hasn't'

- John Cunningham, Columbia University

'This is a rare example of a textbook that essentially founds a new field, re-casting numerics on stronger, more general foundations. A tour de force.'

- David Duvenaud, University of Toronto

'The authors succeed in demonstrating the potential of probabilistic numerics to transform the way we think about computation itself.'

- Thore Graepel, Senior Vice President, Altos Labs

> PHILIPP HENNIG Eberhard-Karls-Universität Tübingen, Germany

MICHAEL A. OSBORNE University of Oxford

HANS P. KERSTING École Normale Supérieure, Paris

PROBABILISTIC NUMERICS

COMPUTATION AS MACHINE LEARNING

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India
103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title:www.cambridge.org/9781107163447 DOI: 10.1017/9781316681411

© Philipp Hennig, Michael A. Osborne and Hans P. Kersting 2022

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2022

Printed in the United Kingdom by TJ Books Limited, Padstow Cornwall *A catalogue record for this publication is available from the British Library.*

ISBN 978-1-107-16344-7 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To our families.

Measurement owes its existence to Earth Estimation of quantity to Measurement Calculation to Estimation of quantity Balancing of chances to Calculation and Victory to Balancing of chances.

> **Sun Tzu** – *The Art of War* §4.18: Tactical Dispositions Translation by Lionel Giles, 1910

Contents

Acknowledgements		
Symbols and Notation	xi	
Introduction	1	
I Mathematical Background	17	
1 Key Points	19	
2 Probabilistic Inference	21	
3 Gaussian Algebra	23	
4 Regression	27	
5 Gauss-Markov Processes: Filtering and SDEs	41	
6 Hierarchical Inference in Gaussian Models	55	
7 Summary of Part I	61	
II Integration	63	
8 Key Points	65	
9 Introduction	69	
10 Bayesian Quadrature	75	
11 Links to Classical Quadrature	87	
12 Probabilistic Numerical Lessons from Integration	107	
13 Summary of Part II and Further Reading	119	
III Linear Algebra	123	
14 Key Points	125	
15 Required Background	127	
16 Introduction	131	
17 Evaluation Strategies	137	
18 A Review of Some Classic Solvers	143	
19 Probabilistic Linear Solvers: Algorithmic Scaffold	149	
20 Computational Constraints	169	
21 Uncertainty Calibration	175	

	\sim
V111	Contents

22 Proofs	183
23 Summary of Part III	193
IV Local Optimisation	195
24 Key Points	197
25 Problem Setting	199
26 Step-Size Selection – a Case Study	203
27 Controlling Optimisation by Probabilistic Estimates	221
28 First- and Second-Order Methods	229
V Global Optimisation	243
29 Key Points	245
30 Introduction	247
31 Bayesian Optimisation	251
32 Value Loss	259
33 Other Acquisition Functions	267
34 Further Topics	275
VI Solving Ordinary Differential Equations	279
35 Key Points	281
36 Introduction	285
37 Classical ODE Solvers as Regression Methods	289
38 ODE Filters and Smoothers	295
39 Theory of ODE Filters and Smoothers	317
40 Perturbative Solvers	331
41 Further Topics	339
VII The Frontier	349
42 So What?	351
VIII Solutions to Exercises	357
References	369
Index	395

Acknowledgements

Many people helped in the preparation of this book. We, the authors, extend our gratitude to the following people, without whom this book would have been impossible.

We are particularly grateful to Mark Girolami for his involvement during the early stages of this book as a project. Though he could not join as an author in the end, he provided a lot of support and motivation to make this book a reality.

We would like to deeply thank the many people who offered detailed and thoughtful comments on drafts of the book: Ondrej Bajgar, Nathanael Bosch, Jon Cockayne, Michael Cohen, Paul Duckworth, Nina Effenberger, Carl Henrik Ek, Giacomo Garegnani, Roman Garnett, Alexandra Gessner, Saad Hamid, Marius Hobbhahn, Toni Karvonen, Nicholas Krämer, Emilia Magnani, Chris Oates, Jonathan Schmidt, Sebastian Schulze, Thomas Schön, Arno Solin, Tim J. Sullivan, Simo Särkkä, Filip Tronarp, Ed Wagstaff, Xingchen Wan, and Richard Wilkinson.

Philipp Hennig

I would like to thank my research group, not just for thorough proof-reading, but for an intense research effort that contributed substantially to the results presented in this book. And, above all, for wagering some of their prime years, and their career, on me, and on the idea of probabilistic numerics:

Edgar Klenske, Maren Mahsereci, Michael Schober, Simon Bartels, Lukas Balles, Alexandra Gessner, Filip de Roos, Frank Schneider, Emilia Magnani, Niklas Wahl and Hans-Peter Wieser, Felix Dangel, Frederik Künstner, Jonathan Wenger, Agustinus Kristiadi, Nicholas Krämer, Nathanael Bosch, Lukas Tatzel, Thomas Gläßle, Julia Grosse, Katharina Ott, Marius Hobbhahn, Motonobu Kanagawa, Filip Tronarp, Robin Schmidt, Jonathan Schmidt, Marvin Pförtner, Nina Effenberger, and Franziska Weiler.

I am particularly grateful to those among this group who

x Acknowledgements

have contributed significantly to the development of the probnum library, which would not exist at all, not even in a minimal state, without their commitment.

Last but not least, I am grateful to my wife Maike Kaufman. And to my daughters Friederike und Iris. They both arrived while we worked on this book and drastically slowed down progress on it in the most wonderful way possible.

Michael A. Osborne

I would like to thank Isis Hjorth, for being the most valuable source of support I have in life, and our amazing children Osmund and Halfdan – I wonder what you will think of this book in a few years?

Hans P. Kersting

I would like to thank my postdoc adviser, Francis Bach, for giving me the freedom to allocate sufficient time to this book.

I am grateful to Dana Babin, my family, and my friends for their continuous love and support.

Symbols and Notation xi

Symbols and Notation

Bold symbols (x) are used for vectors, but only where the fact that a variable is a vector is relevant. Square brackets indicate elements of a matrix or vector: if $x = [x_1, ..., x_N]$ is a row vector, then $[x]_i = x_i$ denotes its entries; if $A \in \mathbb{R}^{n \times m}$ is a matrix, then $[A]_{ij} = A_{ij}$ denotes its entries. Round brackets (\cdot) are used in most other cases (as in the notations listed below).

Notation	Meaning
$a \propto c$	<i>a</i> is proportional to <i>c</i> : there is a constant <i>k</i> such that $a = k \cdot c$.
$A \wedge B$, $A \vee B$	The logical conjunctions "and" and "or"; i.e. $A \wedge B$ is true iff
	both <i>A</i> and <i>B</i> are true, $A \lor B$ is true iff $\neg A \land \neg B$ is false.
$A \otimes B$	The Kronecker product of matrices A , B . See Eq. (15.2).
$A \otimes B$	The symmetric Kronecker product. See Eq. (19.16).
$A \odot B$	The element-wise product (aka Hadamard product) of two
	matrices <i>A</i> and <i>B</i> of the same shape, i.e. $[A \odot B]_{ij} = [A]_{ij} \cdot [B]_{ij}$.
\vec{A} , $ abla \vec{A}$	\overrightarrow{A} is the vector arising from stacking the elements of a matrix A
	row after row, and its inverse $(A = \sharp \overrightarrow{A})$. See Eq. (15.1).
$cov_p(x, y)$	The covariance of x and y under p . That is,
	$\operatorname{cov}_p(x,y) := \mathbb{E}_p(x \cdot y) - \mathbb{E}_p(x)\mathbb{E}_p(y).$
$C^q(V, \mathbb{R}^d)$	The set of <i>q</i> -times continuously differentiable functions from
	V to \mathbb{R}^d , for some $q, d \in \mathbb{N}$.
$\delta(x-y)$	The Dirac delta, heuristically characterised by the property
	$\int f(x)\delta(x-y)dx = f(y) \text{ for functions } f: \mathbb{R} \to \mathbb{R}.$
δ_{ij}	The Kronecker symbol : $\delta_{ij} = 1$ if $i = j$, otherwise $\delta_{ij} = 0$.
det(A)	The determinant of a square matrix A .
diag(x)	The diagonal matrix with entries $[\operatorname{diag}(x)]_{ij} = \delta_{ij}[x]_i$.
$\mathrm{d}\omega_t$	The notation for an an Itô integral in a stochastic differential
	equation. See Definition 5.4.
$\operatorname{erf}(x)$	The error function $\operatorname{erf}(x) := \frac{2}{\sqrt{\pi}} \int_0^x \exp(-t^2) dt$.
$\mathbb{E}_p(f)$	The expectation of f under p . That is, $\mathbb{E}_p(f) := \int f(x) dp(x)$.
$\mathbb{E}_{ Y}(f)$	The expectation of f under $p(f \mid Y)$.
$\Gamma(z)$	The Gamma function $\Gamma(z) := \int_0^\infty x^{z-1} \exp(-x) dx$. See
	Eq. (6.1).
$G(\cdot; a, b)$	The Gamma distribution with shape $a > 0$ and rate $b > 0$, with
	probability density function $\mathcal{G}(z;a,b) := \frac{b^a z^{a-1}}{\Gamma(a)} e^{-bz}$.
$\mathcal{GP}(f;\mu,k)$	The Gaussian process measure on f with mean function μ and
J. 1. ,	covariance function (kernel) k . See §4.2
$\mathbb{H}_p(x)$	The (differential) entropy of the distribution $p(x)$.
, ,	That is, $\mathbb{H}_p(x) := -\int p(x) \log p(x) dx$. See Eq. (3.2).
$\mathbb{H}(x \mid y)$	The (differential) entropy of the cond. distribution $p(x \mid y)$.
	That is, $\mathbb{H}(x \mid y) := \mathbb{H}_{p(\cdot \mid y)}(x)$.
I(x;y)	The mutual information between random variables X and Y .
	That is, $I(x;y) := \mathbb{H}(x) - \mathbb{H}(x \mid y) = \mathbb{H}(y) - \mathbb{H}(y \mid x)$.

xii Symbols and Notation

Notation	Meaning
I, I_N	The identity matrix (of dimensionality <i>N</i>): $[I]_{ij} = \delta_{ij}$.
$\mathbb{I}(\cdot \in A)$	The indicator function of a set <i>A</i> .
$K_{ u}$	The modified Bessel function for some parameter $\nu \in \mathbb{C}$.
	That is, $K_{\nu}(x) := \int_0^{\infty} \exp(-x \cdot \cosh(t)) \cosh(\nu t) dt$.
$\mathcal L$	The loss function of an optimization problem (§26.1), or the
	log-likelihood of an inverse problem (§41.2).
\mathcal{M}	The $model \ \mathcal{M}$ capturing the probabilistic relationship between
	the latent object and computable quantities. See §9.3.
$\mathbb{N}, \mathbb{C}, \mathbb{R}, \mathbb{R}_+$	The natural numbers (excluding zero), the complex numbers,
	the real numbers, and the positive real numbers, respectively.
$\mathcal{N}(x;\mu,\Sigma)=p(x$	The vector x has the Gaussian probability density function
	with mean vector μ and covariance matrix Σ . See Eq. (3.1).
$\mathcal{N}(\mu, \Sigma) \sim X$	The random variable <i>X</i> is distributed according to a Gaussian
	distribution with mean μ and covariance Σ .
$\mathcal{O}(\cdot)$	Landau big-Oh : for functions f , g defined on \mathbb{N} , the notation
	$f(n) = \mathcal{O}(g(n))$ means that $f(n)/g(n)$ is bounded for $n \to \infty$.
$p(y \mid x)$	The conditional the probability density function for variable <i>Y</i>
	having value y conditioned on variable X having value x .
rk(A)	The rank of a matrix A .
$\operatorname{span}\{x_1,\ldots,x_n\}$	The linear span of $\{x_1,\ldots,x_n\}$.
$\operatorname{St}(\cdot;\mu,\lambda_1,\lambda_1)$	The Student's- <i>t</i> probability density function with parameters
	$\mu \in \mathbb{R}$ and $\lambda_1, \lambda_2 > 0$, see Eq. (6.9).
$\operatorname{tr}(A)$	The trace of matrix A , That is, $tr(A) = \sum_{i} [A]_{ii}$.
A^{\intercal}	The transpose of matrix A : $[A^{T}]_{ij} = [A]_{ji}$.
$\mathbb{U}_{a,b}$	The uniform distribution with probability density function
()	$p(u) := \mathbb{I}(u \in (a,b)), \text{ for } a < b.$
$V_p(x)$	The variance of x under p . That is, $\mathbb{V}_p(x) := \text{cov}_p(x, x)$.
$\mathbb{V}_{ Y}(f)$	The variance of f under $p(f \mid Y)$. That is, $\mathbb{H}(x \mid y) :=$
244/77	$-\int \log p(x \mid y) dp(x \mid y).$
$\mathcal{W}(V, u)$	The Wishart distribution with probability density function
	$W(x; V, \nu) \propto x ^{(\nu - N - 1)/2} e^{-1/2 \operatorname{tr}(V^{-1}x)}$. See Eq. (19.1).
$x \perp y$	<i>x</i> is orthogonal to <i>y</i> , i.e. $\langle x, y \rangle = 0$.
x := a	The object x is defined to be equal to a .
$x \stackrel{\Delta}{=} a$	The object <i>x</i> is equal to <i>a</i> by virtue of its definition.
$x \leftarrow a$	The object x is assigned the value of a (used in pseudo-code).
$X \sim p$	The random variable X is distributed according to p .
1 , 1 _d	A column vector of d ones, $1_d := [1, \dots, 1]^\intercal \in \mathbb{R}^d$.
$\nabla_x f(x,t)$	The gradient of f w.r.t. x . (We omit subscript x if redundant.)