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Introduction

This two-volume book provides the analog, in quantum field theory, of the

deformation quantization approach to quantum mechanics. In this introduc-

tion, we start by recalling how deformation quantization works in quantum

mechanics.

The collection of observables in a quantum mechanical system forms an

associative algebra. The observables of a classical mechanical system form a

Poisson algebra. In the deformation quantization approach to quantum mechan-

ics, one starts with a Poisson algebra Acl and attempts to construct an associa-

tive algebra Aq, which is an algebra flat over the ring C[[h̄]], together with an

isomorphism of associative algebras Aq/h̄ ∼= Acl. In addition, if a, b ∈ Acl, and

ã, b̃ are any lifts of a, b to Aq, then

lim
h̄→0

1

h̄
[̃a, b̃] = {a, b} ∈ Acl.

Thus, Acl is recovered in the h̄ → 0 limit, i.e., the classical limit.

We will describe an analogous approach to studying perturbative quantum

field theory. To do this, we need to explain the following.

• The structure present on the collection of observables of a classical field

theory. This structure is the analog, in the world of field theory, of the com-

mutative algebra that appears in classical mechanics. We call this structure a

commutative factorization algebra.

• The structure present on the collection of observables of a quantum field

theory. This structure is that of a factorization algebra. We view our defini-

tion of factorization algebra as a differential geometric analog of a definition

introduced by Beilinson and Drinfeld. However, the definition we use is very

closely related to other definitions in the literature, in particular to the Segal

axioms.
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2 Introduction

• The additional structure on the commutative factorization algebra associ-

ated to a classical field theory that makes it “want” to quantize. This struc-

ture is the analog, in the world of field theory, of the Poisson bracket on the

commutative algebra of observables.

• The deformation quantization theorem we prove. This states that, provided

certain obstruction groups vanish, the classical factorization algebra asso-

ciated to a classical field theory admits a quantization. Further, the set of

quantizations is parametrized, order by order in h̄, by the space of deforma-

tions of the Lagrangian describing the classical theory.

This quantization theorem is proved using the physicists’ techniques of pertur-

bative renormalization, as developed mathematically in Costello (2011b). We

claim that this theorem is a mathematical encoding of the perturbative methods

developed by physicists.

This quantization theorem applies to many examples of physical interest,

including pure Yang–Mills theory and σ -models. For pure Yang–Mills the-

ory, it is shown in Costello (2011b) that the relevant obstruction groups van-

ish and that the deformation group is one-dimensional; thus there exists a

one-parameter family of quantizations. In Li and Li (2016), the topological

B-model with target a complex manifold X is constructed; the obstruction to

quantization is that X be Calabi–Yau. Li and Li show that the observables and

correlations functions recovered by their quantization agree with well-known

formulas. Grady, Li, and Li (2015) describe a one-dimensional σ -model with a

smooth symplectic manifold as target and show how it recovers Fedosov quan-

tization. Other examples are considered in Costello (2010, 2011a), Costello

and Li (2011), and Gwilliam and Grady (2014).

We will explain how (under certain additional hypotheses) the factorization

algebra associated to a perturbative quantum field theory encodes the correla-

tion functions of the theory. This fact justifies the assertion that factorization

algebras encode a large part of quantum field theory.

This work is split into two volumes. Volume 1 develops the theory of factor-

ization algebras and explains how the simplest quantum field theories – free

theories – fit into this language. We also show in this volume how factor-

ization algebras provide a convenient unifying language for many concepts

in topological and quantum field theory. Volume 2, which is more techni-

cal, derives the link between the concept of perturbative quantum field the-

ory as developed in Costello (2011b) and the theory of factorization

algebras.
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1.1 The Motivating Example of Quantum Mechanics 3

1.1 The Motivating Example of Quantum Mechanics

The model problems of classical and quantum mechanics involve a particle

moving in some Euclidean space R
n under the influence of some fixed field.

Our main goal in this section is to describe these model problems in a way that

makes the idea of a factorization algebra (Section 6.1 in Chapter 6) emerge

naturally, but we also hope to give mathematicians some sense of the physical

meaning of terms such as “field” and “observable.” We will not worry about

making precise definitions, since that’s what this book aims to do. As a narra-

tive strategy, we describe a kind of cartoon of a physical experiment, and we

ask that physicists accept this cartoon as a friendly caricature elucidating the

features of physics we most want to emphasize.

1.1.1 A Particle in a Box

For the general framework we want to present, the details of the physical sys-

tem under study are not so important. However, for concreteness, we focus

attention on a very simple system: that of a single particle confined to some

region of space. We confine our particle inside some box and occasionally take

measurements of this system. The set of possible trajectories of the particle

around the box constitutes all the imaginable behaviors of this particle; we

might describe this space of behaviors mathematically as Maps(I, Box), where

I ⊂ R denotes the time interval over which we conduct the experiment. We

say the set of possible behaviors forms a space of fields on the timeline of the

particle.

The behavior of our theory is governed by an action functional, which is a

function on Maps(I, Box). The simplest case typically studied is the massless

free field theory, whose value on a trajectory f : I → Box is

S(f ) =

∫

t∈I

(f (t), f̈ (t)) dt.

Here we use (−, −) to denote the usual inner product on R
n, where we view

the box as a subspace of Rn, and f̈ to denote the second derivative of f in the

time variable t.

The aim of this section is to outline the structure one would expect the

observables – that is, the possible measurements one can make of this system –

should satisfy.
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4 Introduction

1.1.2 Classical Mechanics

Let us start by considering the simpler case where our particle is treated as

a classical system. In that case, the trajectory of the particle is constrained

to be in a solution to the Euler–Lagrange equations of our theory, which is a

differential equation determined by the action functional. For example, if the

action functional governing our theory is that of the massless free theory, then

a map f : I → Box satisfies the Euler–Lagrange equation if it is a straight

line. (Since we are just trying to provide a conceptual narrative here, we will

assume that Box becomes all of Rn so that we do not need to worry about what

happens at the boundary of the box.)

We are interested in the observables for this classical field theory. Since the

trajectory of our particle is constrained to be a solution to the Euler–Lagrange

equation, the only measurements one can make are functions on the space of

solutions to the Euler–Lagrange equation.

If U ⊂ R is an open subset, we will let Fields(U) denote the space of fields

on U, that is, the space of maps f : U → Box. We will let

EL(U) ⊂ Fields(U)

denote the subspace consisting of those maps f : U → Box that are solutions

to the Euler–Lagrange equation. As U varies, EL(U) forms a sheaf of spaces

on R.

We will let Obscl(U) denote the commutative algebra of functions on EL(U)

(the precise class of functions we consider discussed later). We will think of

Obscl(U) as the collection of observables for our classical system that depend

only upon the behavior of the particle during the time period U. As U varies,

the algebras Obscl(U) vary and together constitute a cosheaf of commutative

algebras on R.

1.1.3 Measurements in Quantum Mechanics

The notion of measurement is fraught in quantum theory, but we will take

a very concrete view. Taking a measurement means that we have a physical

measurement device (e.g., a camera) that we allow to interact with our system

for a period of time. The measurement is then how our measurement device

has changed due to the interaction. In other words, we couple the two physical

systems so that they interact, then decouple them and record how the mea-

surement device has modified from its initial condition. (Of course, there is a

symmetry in this situation: both systems are affected by their interaction, so a

measurement inherently disturbs the system under study.)
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1.1 The Motivating Example of Quantum Mechanics 5

The observables for a physical system are all the imaginable measurements

we could take of the system. Instead of considering all possible observables,

we might also consider those observables that occur within a specified time

period. This period can be specified by an open interval U ⊂ R.

Thus, we arrive at the following principle.

Principle 1. For every open subset U ⊂ R, we have a set Obs(U) of observ-

ables one can make during U.

Our second principle is a minimal version of the linearity implied by, e.g.,

the superposition principle.

Principle 2. The set Obs(U) is a complex vector space.

We think of Obs(U) as being the collection of ways of coupling a measure-

ment device to our system during the time period U. Thus, there is a natural

map Obs(U) → Obs(V) if U ⊂ V is a shorter time interval. This means that

the space Obs(U) forms a precosheaf.

1.1.4 Combining Observables

Measurements (and so observables) differ qualitatively in the classical and

quantum settings. If we study a classical particle, the system is not notice-

ably disturbed by measurements, and so we can do multiple measurements at

the same time. (To be a little less sloppy, we suppose that by refining our mea-

suring devices, we can make the impact on the particle as small as we would

like.) Hence, on each interval J we have a commutative multiplication map

Obs(J) ⊗ Obs(J) → Obs(J). We also have maps Obs(I) ⊗ Obs(J) → Obs(K)

for every pair of disjoint intervals I, J contained in an interval K, as well as the

maps that let us combine observables on disjoint intervals.

For a quantum particle, however, a measurement typically disturbs the sys-

tem significantly. Taking two measurements simultaneously is incoherent, as

the measurement devices are coupled to each other and thus also affect each

other, so that we are no longer measuring just the particle. Quantum observ-

ables thus do not form a cosheaf of commutative algebras on the interval. How-

ever, there are no such problems with combining measurements occurring at

different times. Thus, we find the following.

Principle 3. If U, U′ are disjoint open subsets of R, and U, U′ ⊂ V where V is

also open, then there is a map

⋆ : Obs(U) ⊗ Obs(U′) → Obs(V).
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6 Introduction

If O ∈ Obs(U) and O′ ∈ Obs(U′), then O ⋆ O′ is defined by coupling our

system to measuring device O during the period U and to device O′ during the

period U′.

Further, there are maps for a finite collection of disjoint time intervals con-

tained in a long time interval, and these maps are compatible under com-

position of such maps. (The precise meaning of these terms is detailed in

Section 3.1 in Chapter 3.)

1.1.5 Perturbative Theory and the Correspondence Principle

In the bulk of this two-volume book, we will be considering perturbative quan-

tum theory. For us, this adjective “perturbative” means that we work over the

base ring C[[h̄]], where at h̄ = 0 we find the classical theory. In perturbative

theory, therefore, the space Obs(U) of observables on an open subset U is a

C[[h̄]]-module, and the product maps are C[[h̄]]-linear.

The correspondence principle states that the quantum theory, in the h̄ → 0

limit, must reproduce the classical theory. Applied to observables, this leads to

the following principle.

Principle 4. The vector space Obsq(U) of quantum observables is a flat C[[h̄]]-

module such that modulo h̄, it is equal to the space Obscl(U) of classical

observables.

These four principles are at the heart of our approach to quantum field the-

ory. They say, roughly, that the observables of a quantum field theory form

a factorization algebra, which is a quantization of the factorization algebra

associated to a classical field theory. The main theorem presented in this two-

volume book is that one can use the techniques of perturbative renormalization

to construct factorization algebras perturbatively quantizing a certain class of

classical field theories (including many classical field theories of physical and

mathematical interest). As we have mentioned, this first volume focuses on

the general theory of factorization algebras and on simple examples of field

theories; this result is derived in Volume 2.

1.1.6 Associative Algebras in Quantum Mechanics

The principles we have described so far indicate that the observables of a quan-

tum mechanical system should assign, to every open subset U ⊂ R, a vector

space Obs(U), together with a product map

Obs(U) ⊗ Obs(U′) → Obs(V)
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if U, U′ are disjoint open subsets of an open subset V . This is the basic data of

a factorization algebra (see Section 3.1 in Chapter 3).

It turns out that in the case of quantum mechanics, the factorization alge-

bra produced by our quantization procedure has a special property: it is locally

constant (see Section 6.4 in Chapter 6). This means that the map Obs((a, b)) →

Obs(R) is an isomorphism for any interval (a, b). Let A denote the vector space

Obs(R); note that A is canonically isomorphic to Obs((a, b)) for any interval

(a, b).

The product map

Obs((a, b)) ⊗ Obs((c, d)) → Obs((a, d))

when a < b < c < d, becomes, via this isomorphism, a product map

m : A ⊗ A → A.

The axioms of a factorization algebra imply that this multiplication turns A

into an associative algebra. As we will see in Section 4.2 in Chapter 4, this

associative algebra is the Weyl algebra, which one expects to find as the algebra

of observables for quantum mechanics of a particle moving in R
n.

This kind of geometric interpretation of algebra should be familiar to topol-

ogists: associative algebras are algebras over the operad of little intervals in

R, and this is precisely what we have described. As we explain in Section 6.4

in Chapter 6, this relationship continues and so our quantization theorem pro-

duces many new examples of algebras over the operad En of little n-discs.

An important point to take away from this discussion is that associative

algebras appear in quantum mechanics because associative algebras are con-

nected with the geometry of R. There is no fundamental connection between

associative algebras and any concept of “quantization”: associative algebras

appear only when one considers one-dimensional quantum field theories. As

we will see later, when one considers topological quantum field theories on

n-dimensional space–times, one finds a structure reminiscent of an En-algebra

instead of an E1-algebra.

Remark: As a caveat to the strong assertion in the preceding (and jumping

ahead of our story), note that for a manifold of the form X → R, one can push

forward a factorization algebra Obs on X ×R to a factorization algebra π∗ Obs

on R along the projection map π : X × R → R. In this case, π∗ Obs((a, b)) =

Obs(X × (a, b)). Hence, a quantization of a higher dimensional theory will

produce, via such pushforwards to R, deformations of associative algebras,

but knowing only the pushforward is typically insufficient to reconstruct the

factorization algebra on the higher dimensional manifold. ♦
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8 Introduction

1.2 A Preliminary Definition of Prefactorization Algebras

Below (see Section 3.1 in Chapter 3) we give a more formal definition, but here

we provide the basic idea. Let M be a topological space (which, in practice, will

be a smooth manifold).

Definition 1.2.1 A prefactorization algebra F on M, taking values in cochain

complexes, is a rule that assigns a cochain complex F(U) to each open set

U ⊂ M along with

(i) A cochain map F(U) → F(V) for each inclusion U ⊂ V .

(ii) A cochain map F(U1)⊗· · ·⊗F(Un) → F(V) for every finite collection

of open sets where each Ui ⊂ V and the Ui are disjoint.

(iii) The maps are compatible in a certain natural way. The simplest case of

this compatibility is that if U ⊂ V ⊂ W is a sequence of open sets, the

map F(U) → F(W) agrees with the composition through F(V)).

Remark: A prefactorization algebra resembles a precosheaf, except that we

tensor the cochain complexes rather than taking their direct sum. ♦

The observables of a field theory, whether classical or quantum, form a pref-

actorization algebra on the space–time manifold M. In fact, they satisfy a kind

of local-to-global principle in the sense that the observables on a large open set

are determined by the observables on small open sets. The notion of a factor-

ization algebra (Section 6.1 in Chapter 6) makes this local-to-global condition

precise.

1.3 Prefactorization Algebras in Quantum Field Theory

The (pre)factorization algebras of interest in this book arise from perturbative

quantum field theories. We have already discussed in Section 1.1 how factor-

ization algebras appear in quantum mechanics. In this section we will see how

this picture extends in a natural way to quantum field theory.

The manifold M on which the prefactorization algebra is defined is the

space–time manifold of the quantum field theory. If U ⊂ M is an open subset,

we will interpret F(U) as the collection of observables (or measurements) that

we can make that depend only on the behavior of the fields on U. Performing a

measurement involves coupling a measuring device to the quantum system in

the region U.

One can bear in mind the example of a particle accelerator. In that situation,

one can imagine the space–time M as being of the form M = A × (0, t), where

A is the interior of the accelerator and t is the duration of our experiment.
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1.3 Prefactorization Algebras in Quantum Field Theory 9

In this situation, performing a measurement on an open subset U ⊂ M is

something concrete. Let us take U = V × (ε, δ), where V ⊂ A is some small

region in the accelerator and where (ε, δ) is a short time interval. Performing

a measurement on U amounts to coupling a measuring device to our acceler-

ator in the region V , starting at time ε and ending at time δ. For example, we

could imagine that there is some piece of equipment in the region V of the

accelerator, which is switched on at time ε and switched off at time δ.

1.3.1 Interpretation of the Prefactorization Algebra Axioms

Suppose that we have two different measuring devices, O1 and O2. We would

like to set up our accelerator so that we measure both O1 and O2.

There are two ways we can do this. We can insert O1 and O2 into disjoint

regions V1, V2 of our accelerator. Then we can turn O1 and O2 on at any times

we like, including for overlapping time intervals.

If the regions V1, V2 overlap, then we cannot do this. After all, it doesn’t

make sense to have two different measuring devices at the same point in space

at the same time.

However, we could imagine inserting O1 into region V1 during the time

interval (a, b); and then removing O1, and inserting O2 into the overlapping

region V2 for the disjoint time interval (c, d).

These simple considerations immediately suggest that the possible measure-

ments we can make of our physical system form a prefactorization algebra.

Let Obs(U) denote the space of measurements we can make on an open sub-

set U ⊂ M. Then, by combining measurements in the way outlined in the

preceding text, we would expect to have maps

Obs(U) ⊗ Obs(U′) → Obs(V)

whenever U, U′ are disjoint open subsets of an open subset V . The associativity

and commutativity properties of a prefactorization algebra are evident.

1.3.2 The Cochain Complex of Observables

In the approach to quantum field theory considered in this book, the factor-

ization algebra of observables will be a factorization algebra of cochain com-

plexes. That is, Obs assigns a cochain complex Obs(U) to each open U. One

can ask for the physical meaning of the cochain complex.

We will repeatedly mention observables in a gauge theory, as these kinds of

cohomological aspects are well known for such theores.
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10 Introduction

It turns out that the “physical” observables will be H0(Obs(U)). If O ∈

Obs0(U) is an observable of cohomological degree 0, then the equation O. = 0

can often be interpreted as saying that O is compatible with the gauge symme-

tries of the theory. Thus, only those observables O ∈ Obs0(U) that are closed

are physically meaningful.

The equivalence relation identifying O ∈ Obs0(U) with O + O.
′, where

O′ ∈ Obs−1(U), also has a physical interpretation, which will take a little more

work to describe. Often, two observables on U are physically indistinguishable

(that is, they cannot be distinguished by any measurement one can perform).

In the example of an accelerator outlined earlier, two measuring devices are

equivalent if they always produce the same expectation values, no matter how

we prepare our system, or no matter what boundary conditions we impose.

As another example, in the quantum mechanics of a free particle, the observ-

able measuring the momentum of a particle at time t is equivalent to that mea-

suring the momentum of a particle at another time t′. This is because, even at

the quantum level, momentum is preserved (as the momentum operator com-

mutes with the Hamiltonian).

From the cohomological point of view, if O, O′ ∈ Obs0(U) are both in the

kernel of the differential (and thus “physically meaningful”), then they are

equivalent in the sense described previously if they differ by an exact observ-

able.

It is a little more difficult to provide a physical interpretation for the other

cohomology groups Hn(Obs(U)). The first cohomology group H1(Obs(U))

contains anomalies (or obstructions) to lifting classical observables to the quan-

tum level. For example, in a gauge theory, one might have a classical observ-

able that respects gauge symmetry. However, it may not lift to a quantum

observable respecting gauge symmetry; this happens if there is a nontrivial

anomaly in H1(Obs(U)).

The cohomology groups Hn(Obs(U)), when n < 0, are best interpreted

as symmetries, and higher symmetries, of observables. Indeed, we have seen

that the physically meaningful observables are the closed degree 0 elements

of Obs(U). One can construct a simplicial set, whose n-simplices are closed

and degree 0 elements of Obs(U)⊗	∗(
n). The vertices of this simplicial set

are observables, the edges are equivalences between observables, the faces are

equivalences between equivalences, and so on.

The Dold–Kan correspondence (see Theorem A.2.7 in Appendix A) tells

us that the nth homotopy group of this simplicial set is H−n(Obs(U)). This

allows us to interpret H−1(Obs(U)) as being the group of symmetries of the

trivial observable 0 ∈ H0(Obs(U)), and H−2(Obs(U)) as the symmetries of

the identity symmetry of 0 ∈ H0(Obs(U)), and so on.
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