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Preface

This book is dedicated to the study of Banach spaces.

While this is an introduction, because we trace this study back to its origins,
it is indeed a “specialized course”,1 in the sense that we assume that the reader
is familiar with the general notions of Functional Analysis, as taught in late
undergraduate or graduate university programs. Essentially, we assume that
the reader is familiar with, for example, the first ten chapters of Rudin’s book,
Real and Complex Analysis (Rudin 2); Queffélec–Zuily would also suffice.

It is also a “specialized course” because the subjects that we have chosen to
study are treated in depth.

Moreover, as this is a textbook, we have taken the position to completely
prove all the results “from scratch” (i.e. without referring within the proof to
a “well-known result” or admitting a difficult auxiliary result), by including
proofs of theorems in Analysis, often classical, that are not usually taught
in French universities (as, for example, the interpolation theorems and the
Marcel Riesz theorem in Chapter 7 of Volume 1, or Rademacher’s theorem
in Chapter 1 of Volume 2). The exceptions are a few results at the end of the
chapters, which should be considered as complementary, and are not used in
what follows.

We have also included a relatively lengthy first chapter introducing the
fundamental notions of Probability.

As we have chosen to illustrate our subject with applications to “thin sets”
coming from Harmonic Analysis, we have also included in Volume 1 an Annex
devoted to compact Abelian groups.

This makes for quite a thick book,2 but we hope that it can therefore be used
without the reader having to constantly consult other texts.

1 The French version of this book appeared in the collection “Cours Spécialisés” of the Société
Mathématique de France.

2 However, divided into two parts in the English version.
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xiv Preface

We have emphasized the aspects linked to Analysis and Probability; in
particular, we have not addressed the geometric aspects at all; for these we
refer, for example, to the classic Day, to Beauzamy or to more specialized
books such as Benyamini–Lindenstrauss, Deville–Godefroy–Zizler or
Pisier 2.

We have hardly touched on the study of operators on Banach spaces,
for which we refer to Tomczak-Jaegermann and to Pisier 2; Diestel–
Jarchow–Tonge and Pietsch–Wenzel are also texts in which the part
devoted to operators is more important. Dunford–Schwartz remains a very
good reference.

Even though Probability plays a large role here, this is not a text about Prob-
ability in Banach spaces, a subject perfectly covered in Ledoux–Talagrand.

Probability and Banach spaces were quick to get on well together. Although
the study of random variables with values in Banach spaces began as early
as the 1950s (R. Fortet and E. Mourier; we also cite Beck [1962]), their
contribution to the study of Banach spaces themselves only appeared later, for
example, citing only a few, Bretagnolle, Dacunha-Castelle and Krivine [1966],
and Rosenthal [1970] and [1973]. However, it was only with the introduction of
the notions of type and cotype of Banach spaces (Hoffmann-Jørgensen [1973],
Maurey [1972 b] and [1972 c], Maurey and Pisier [1973]) that they proved to
be intimately linked with Banach spaces.

Moreover, Probability also arises in Banach spaces by other aspects; notably
it allows the derivation of the very important Dvoretzky’s theorem (Chapter 1
of Volume 2), thanks to the concentration of measure phenomenon, a subject
still highly topical (see the recent book of M. Ledoux, The Concentration

of Measure Phenomenon, Mathematical Surveys and Monographs 89, AMS,
2001), dating back to Paul Lévy, and whose importance for Banach spaces
was seen by Milman at the beginning of the 1970s.

We will also use Probability in a third manner, through the method of selec-
tors, due to Erdös around 1955,3 and afterwards used heavily by Bourgain,
which allows us to make random constructions.

For all that, we do not limit ourselves to the probabilistic aspects; we also
wish to show how the study of Banach spaces and of classical analysis interact
(the construction by Davie, in Chapter 2 of Volume 2, of Banach spaces
without the approximation property is typical in this regard); in particular we
have concentrated on the application to thin sets in Harmonic Analysis.

Even if we have privileged these two points of view, we have nonetheless
tried to give a global view of Banach spaces (with the exception of the

3 Actually, this method traces back at least to Cramér [1935] and [1937].

www.cambridge.org/9781107162624
www.cambridge.org


Cambridge University Press
978-1-107-16262-4 — Introduction to Banach Spaces: Analysis and Probability
Daniel Li , Hervé Queffélec , Translated by Danièle Gibbons , Greg Gibbons 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Preface xv

geometric aspect, as already mentioned), with the concepts and fundamental
results up through the end of the 1990s.

We point out that an interesting survey of what was known by the mid 1970s
was given by Pełczyński and Bessaga [1979].

This book is divided into 14 chapters, preceded by a preliminary chapter
and accompanied by an Annex. The first volume contains the first eight
chapters, including the preliminary chapter and the Annex; the second volume
contains the six remaining chapters. Moreover, it also contains three surveys,
by G. Godefroy, O. Guédon and G. Pisier, on the major results and directions
taken by Banach space theory since the publication of the French version
of this book (2004), as well as an original paper of L. Rodríguez-Piazza on
Sidon sets.

Each chapter is divided into sections, numbered by Roman numerals in
capital letters (I, II, III etc.), and each section into subsections, numbered by
Arabic numerals (I.1 etc.). The theorems, propositions, corollaries, lemmas,
definitions are numbered successively in the interior of each section; for
example in Chapter 5 of Volume 1, Section IV they thus appear successively
in the form: Proposition IV.1, Corollary IV.2, Definition IV.3, Theorem IV.4,
Lemma IV.5, ignoring the subsections. If we need to refer to one chapter from
another, the chapter containing the reference will be indicated.

At the end of each chapter, we have added comments. Certain of these cite
complementary results; others provide a few indications of the origin of the
theorems in the chapter. We have been told that “this is a good occasion to
antagonize a good many colleagues, those not cited or incorrectly cited.” We
have done our best to correctly cite, in the proper chronological order, the
authors of such and such result, of such and such proof. No doubt errors or
omissions have been made; they are only due to the limits of our knowledge.
When this is the case, we ask forgiveness in advance to the interested parties.
We make no pretension to being exhaustive, nor to be working as historians.
These indications should only be taken as incitements to the reader to refer
back to the original articles and as complements to the contents of the course.

The chapters end with exercises. Many of these propose proofs of recent,
and often important, results. In any case, we have attempted to decompose the
proofs into a number of questions (which we hope are sufficient) so that the
reader can complete all the details; just to make sure, in most cases we have
indicated where to find the corresponding article or book.

The citations are presented in the following manner: if it concerns a book,
the name of the author (or the authors) is given in small capitals, for example
Banach, followed by a number if there are several books by this author:
Rudin 3; if it concerns an article or contribution, it is cited by the name of
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xvi Preface

the author or authors, followed in brackets by the year of publication, followed
possibly by a lower-case letter: Salem and Zygmund [1954], James [1964 a].

We now come to a more precise description of what will be found in
this book.

In the Preliminary Chapter, we quickly present some useful properties
concerning the weak topology w = σ(E, E∗) of a Banach space E and the
weak∗ topology w∗ = σ(X∗, X) in a dual space X∗. Principally, we will prove
the Eberlein–Šmulian theorem about weakly compact sets and the Krein–
Milman theorem on extreme points. We then provide some information about
filters and countable ordinals.

Chapter 1 of Volume 1 is intended for readers who have never been
exposed to Probability Theory. With the exception of Section V concerning
martingales, which will not be used until Chapter 7, its contents are quite
elementary and very classical; let us say that they provide “Probability for
Analysts.” Moreover, in this book, we use little more than (but intensively!)
Gaussian random variables (occasionally stable variables), and the Bernoulli
or Rademacher random variables. The reader could refer to Barbe–Ledoux

or to Revuz.
Section III provides the theorems of Kolmogorov for the convergence

of series of independent random variables, and the equivalence theorem of
Paul Lévy.

In Section IV, we show Khintchine’s inequalities, which, even if elementary,
are of capital importance for Analysis. We also find here the majorant theorem
(Theorem IV.5) which will be very useful throughout the book.

Section V, a bit delicate for a novice reader of Probability, remains quite
classical; we introduce martingales and prove Doob’s theorems about their
convergence.

In Chapter 2 (Volume 1) we begin the actual study of Banach spaces. We
treat the Schauder bases, which provide a common and very practical tool.

After having shown in Section II that the projections associated with a basis
are continuous and given a few examples (canonical bases of c0, ℓp, Haar basis
in Lp(0, 1), Schauder basis of C([0, 1])), we prove that the space C([0, 1]) is
universal for the separable spaces, i.e. any separable Banach space is isometric
to a subspace of C([0, 1]).

In Section III, we see how the use of bases, or more generally of basic
sequences, allows us to obtain structural results; notably, thanks to the
Bessaga–Pełczyński selection theorem, to show that any Banach space con-
tains a subspace with a basis. We next show a few properties of the spaces c0

and ℓp. Finally, we see how the spaces possessing a basis behave with respect
to duality; this leads to the notions of shrinking bases and boundedly complete
bases and to the corresponding structure theorems of James.
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Preface xvii

In Chapter 3 (Volume 1), we study the properties of unconditional conver-
gence (i.e. commutative convergence) of series in Banach spaces.

After having given different characterizations of this convergence (Propo-
sition II.2) and showed the Orlicz–Pettis theorem (Theorem II.3) in Section
II, we introduce in Section III the notion of unconditional basis, and show,
in particular, that the sequences of centered independent random variables are
basic and unconditional in the spaces Lp(P).

In Section IV, we study in particular the canonical basis of c0, and prove
the theorems of Bessaga and Pełczyński which, on one hand, characterize the
presence of c0 within a space by the existence of a scalarly summable sequence
that is not summable, and, on the other hand, state that a dual space containing
c0 must contain ℓ∞.

In Section V, we describe the James structure theorems characterizing,
among the spaces having an unconditional basis, those containing c0, or ℓ1,
or those that are reflexive.

All of the above work was done before 1960 and is now very classical.
In Section VI, we prove the Gowers dichotomy theorem, stating that

every Banach space contains a subspace with an unconditional basis
or a hereditarily indecomposable subspace (that is, none of its infinite-
dimensional closed subspaces can be decomposed as a direct sum of infinite-
dimensional closed subspaces). In addition, we provide a sketch of the
proof of the homogeneous subspace theorem: every infinite-dimensional
space that is isomorphic to all of its infinite-dimensional subspaces is
isomorphic to ℓ2.

In Chapter 4 (Volume 1), we study random variables with values in Banach
spaces.

Section II essentially states that the properties of convergence in probability,
almost surely, and in distribution, seen in Chapter 1 in the scalar case can
be generalized “as such” for the vector-valued case. Prokhorov’s theorem
(Theorem II.9) characterizes the families of relatively compact probabilities
on a Polish space. The conditional expectation, more delicate to define than in
the scalar case, is introduced, as well as martingales; the vectorial version of
Doob’s theorem (Theorem II.12) then easily follows from the scalar case.

In Section III we describe the important symmetry principle, also known as
the Paul Lévy maximal inequality, which allows us to obtain the equivalence
theorem for series of independent Banach-valued random variables between
convergence in distribution, almost sure and in probability.

The contraction principle of Section IV will be of fundamental importance
for all that follows; in its quantitative version, it essentially states that for a real
(respectively complex) Banach space E, the sequences of independent centered
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xviii Preface

random variables in Lp(E), 1 � p < +∞, are unconditional basic sequences
with constant 2 (respectively 4).

In Section V, we generalize the scalar Khintchine inequalities to the
vectorial case (Kahane inequalities); the proof is much more difficult than for
the scalar case. These inequalities will turn out to be very important when we
define the type and the cotype of Banach spaces (Chapter 5). The proof of the
Kahane inequalities uses probabilistic arguments; in Subsection V.3, we will
see how the use of the Walsh functions allowed Latała and Oleskiewicz, thanks
to a hypercontractive property of certain operators (Proposition V.6), to obtain,
in the case “L1 − L2,” the best constant for these inequalities (Theorem V.4).

Chapter 5 (Volume 1) introduces the fundamental notions of type and cotype
of Banach spaces.

It is now common practice to define these using Rademacher variables, but it
is often more interesting to use Gaussian variables, notably for their invariance
under rotation. We thus begin, in Section II, by providing some complements
of Probability; we first define Gaussian vectors, and show their invariance
under rotation (Proposition II.8); we take advantage of this to present the
vectorial version of the central limit theorem, which we will use in Chapter 4
of Volume 2. We next prove the existence of p-stable variables, also to be used
in Chapter 4 of Volume 2, and present the classical theorems of Schönberg on
the kernels of positive type, and of Bochner, which characterizes the Fourier
transforms of measures.

As notions of type and cotype are local, i.e. only involving the structure
of finite dimensional subspaces, we give a few words in Section III to
ultraproducts and to spaces finitely representable within another; we prove
the local reflexivity theorem of Lindenstrauss and Rosenthal, stating, more or
less, that the finite-dimensional subspaces of the bidual are almost isometric to
subspaces of the space itself.

In Section IV, we define the type and cotype, give a few examples (type
and cotype of Lp spaces, cotype 2 of the dual of a C∗-algebra), a few
properties, and see how these notions behave with duality; this leads to the
notion of K-convexity. We also show that in spaces having a non-trivial type,
respectively cotype, we can, in the definition, replace the Rademacher variables
by Gaussian variables (Theorem IV.8).

In Section V, we prove Kwapień’s theorem, stating that a space is isomor-
phic to a Hilbert space if, and only if, it has at the same time type 2 and
cotype 2; for this we first study the operators that factorize through a Hilbert
space.

In Section VI, we present a few applications, and in particular show how to
obtain the classical theorems of Paley and Carleman (Theorem VI.2).
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In Chapter 6 (Volume 1), we will study a very important notion, that
of a p-summing operator, brought out by Pietsch in 1967, and which soon
afterward allowed Lindenstrauss and Pełczyński to highlight the importance
of Grothendieck’s theorem, which, even though proven in the mid 1950s, had
not until then been properly understood.

We begin with an introduction showing that the 2-summing operators on a
Hilbert space are the Hilbert–Schmidt operators.

In Section II, after having given the definition and pointed out the ideal
property possessed by the space of p-summing operators, we prove the Pietsch
factorization theorem, stating that the p-summing operators T : X → Y are
those that factorize by the canonical injection (or rather its restriction to a
subspace) of a space C(K) in Lp(K, μ), where K is a compact (Hausdorff)
space and μ a regular probability measure on K; in particular the 2-summing
operators factorize through a Hilbert space. It easily follows that the p-
summing operators are weakly compact and are Dunford–Pettis operators.
We next prove, thanks to Khintchine’s inequalities, a theorem of Pietsch and
Pełczyński stating that the Hilbert–Schmidt operators on a Hilbert space are
not only 2-summing, but even 1-summing.

In Section III, we show Grothendieck’s inequality (Theorem III.3), stating
that scalar matrix inequalities are preserved when we replace the scalars by
elements of a Hilbert space, losing at most a constant factor KG, called the
Grothendieck constant. We then prove Grothendieck’s theorem: every operator
of a space L1(μ) into a Hilbert space is 1-summing. The proof is “local,”
meaning that it involves only the finite-dimensional subspaces; in passing we
also show that the finite-dimensional subspaces of Lp spaces can be embedded,
(1 + ε)-isomorphically, within spaces of sequences ℓN

p of finite dimension N.
We then give the dual form of this theorem: every operator of a space L∞(ν)

into a space L1(μ) is 2-summing.
In Section IV, we present a number of results, originally proven in different

ways, that can easily be obtained using the properties of p-summing operators
(note that these do not depend on Grothendieck’s theorem, contrary to what
might be suggested by the order of the presentation): the Dvoretzky–Rogers
theorem (every infinite-dimensional space contains at least one sequence
unconditionally convergent but not absolutely convergent), John’s theorem
(the Banach–Mazur distance of every space of dimension n to the space ℓn

2 is
�

√
n), and the Kadeč–Snobar theorem (in any Banach space, there exists, on

every subspace of dimension n, a projection of norm �
√

n). We then see that
Grothendieck’s theorem allows us to show that every normalized unconditional
basis of ℓ1 or of c0 is equivalent to their canonical basis (this is also true for
ℓ2, but this case is easy).
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Finally, Section V is devoted to Sidon sets (see Definition V.1). The
fundamental example is that of Rademacher variables in the dual of the Cantor
group � = {−1, +1}N; another example is that of powers of 3 in Z. We prove
a certain number of properties, functional, arithmetical and combinatorial,
demonstrating the “smallness” of Sidon sets; we show in passing the classical
inequality of Bernstein. Grothendieck’s theorem allows us to show that a set
	 is Sidon if and only if the space C	 is isomorphic to ℓ1. We next present
a theorem that is very important for the study of Sidon sets, Rider’s theorem
(Theorem V.18), which involves, instead of the uniform norm of polynomials,
another norm [[ . ]]R, obtained by taking the expectation of random polynomi-
als constructed by multiplying the coefficients by independent Rademacher
variables. This allows us to obtain Drury’s theorem (Theorem V.20), stating
that the union of two Sidon sets is again a Sidon set, and the fact, due to
Pisier, that 	 is a Sidon set as soon as C	 is of cotype 2; for this last result,
we need to replace, in the norm [[ . ]]R, the Rademacher variables by Gaussian
variables, and are led to show a property of integrability of Gaussian vectors,
due to Fernique (Theorem V.26), a Gaussian version of the Khintchine–Kahane
inequalities, which will also be useful in Chapter 6 of Volume 2.

In Chapter 7 (Volume 1), we present a few properties of the spaces Lp. In
Section II, we study the space L1. After having defined the notion of uniform
integrability, we give a condition for a sequence of functions to be uniformly
integrable (the Vitali–Hahn–Saks theorem), which allows us to deduce that
the spaces L1(m) are weakly sequentially complete. We then characterize the
weakly compact subsets of L1 as being the weakly closed and uniformly
integrable subsets (the Dunford–Pettis theorem). We conclude this section by
showing that L1 is not a subspace of a space with an unconditional basis. We
will continue the study of L1 in Chapter 4 of Volume 2; more specifically, we
will examine the structure of its reflexive subspaces.

In Section III, we will see that the trigonometric system forms a basis of
Lp(0, 1) for p > 1. This is in fact an immediate consequence of the Marcel
Riesz theorem, stating that the Riesz projection, or the Hilbert transform, is
continuous on Lp for p > 1; most of Section III is hence devoted to the
proof of this result. We have chosen not to prove it directly, but to reason by
interpolation, allowing us to show in passing the Marcinkiewicz theorem, at
the origin of real interpolation, as well as Kolmogorov’s theorem stating that
the Riesz projection is of weak type (1, 1) (Theorem III.6). We conclude this
section with a result of Orlicz (Corollary III.9) stating that the unconditional
convergence of a series in Lp, for 1 � p � 2, implies the convergence of the
sum of the squares of the norms, implying that the trigonometric system is
unconditional only for L2.
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In Section IV, we show, in contrast, that the Haar basis is unconditional
in Lp(0, 1), for 1 < p < +∞. This unconditionality is linked to the facts
that the Haar basis is a martingale difference and that martingale differences
are unconditional in Lp, 1 < p < +∞ (Theorem IV.7). We also present
some complements on martingales, notably on the behavior in Lp of the square
function of a martingale (Theorem IV.6). The proof used here starts with the
easy case, p = 2, and then passes successively, by doubling, to the cases
p = 4, 8, 16, . . .; we finish by interpolation, using the Riesz–Thorin theorem,
previously shown in Subsection IV.1. To conclude this section, we study a
particular property of the Haar basis, in a way rendering it extremal; for this,
we need Lyapounov’s theorem, stating that the image of vector measures with
values in R

n is convex, and we prove this (Theorem IV.10).
Finally, the aim of Section V is to present another proof of Grothen-

dieck’s theorem, as a simple consequence of a theorem of Paley stating that∑+∞
k=1 | f̂ (2k)|2 < +∞ for every function f ∈ H1(T). For this, we very

succinctly develop the theory of the spaces Hp, and prove the factorization
theorem H1 = H2 H2 (Theorem V.1) and the Frédéric and Marcel Riesz
theorem. Grothendieck’s theorem then follows from the fact that the operator
f ∈ A(T) �→

(
f̂ (2k)

)
k�1 ∈ ℓ2 is 1-summing and surjective (Theorem V.6).

In the Comments, we show that there is essentially only one space L1(m), if
we assume it separable and the measure m atomless. We also give an alternative
proof of the F. and M. Riesz theorem, due to Godefroy, using the notions of
nicely placed sets and Shapiro sets.

Chapter 8 (Volume 1) is essentially devoted to Rosenthal’s ℓ1 theorem, dis-
covered in 1974. It provides a way to very easily detect when a Banach space
contains ℓ1; it is a very general dichotomy theorem: in any Banach space, from
every bounded sequence, we can extract either a weakly Cauchy subsequence
or a subsequence equivalent to the canonical basis of ℓ1. The majority of proofs
currently given use a Ramsey-type theorem of infinite combinatorics, the
Nash–Williams theorem; we proceed differently, by first showing, in Section
II, by a method due to Debs in 1987, the Rosenthal–Bourgain–Fremlin–
Talagrand theorem (Theorem II.3), which is also a dichotomy theorem for
the extraction of subsequences, this time for the pointwise convergence
of sequences of continuous functions on a Polish space. We then derive
Rosenthal’s theorem for real Banach spaces. The complex case does not follow
immediately; Dor was the first to show how to adapt the proof of the real case
to show the complex case; we use here a method due to Pajor [1983] which
uses combinatorial arguments to obtain the complex case from the real case.

In Section III, we prove the Odell–Rosenthal theorem (Theorem III.2),
stating that a separable Banach space X does not contain ℓ1 if and only if every
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element of the unit ball BX∗∗ of its bidual is the limit, for the weak∗ topology
σ(X∗∗, X∗), of a sequence of elements of the ball BX of X. We next show a
result of Pełczyński (Theorem III.5), by a method due to Dilworth, Girardi and
Hagler [2000], stating that a Banach space contains ℓ1 if and only if its dual
contains L1(0, 1), or if and only if this dual contains the space of measures
M([0, 1]) on [0, 1].

The Annex (Volume 1) serves especially to give a general framework to
the elements of Harmonic Analysis that we use in this book, even though
we essentially use those of the group T = R/Z and the Cantor group
� = {−1, +1}N∗

(sometimes its finite version), as well as those of finite
Abelian groups in Chapter 2 of Volume 2. In Section II, we present various
notions on Banach algebras: invertible elements, maximal ideals, spectrum of
an element, spectral radius; characters of a commutative algebra; involutive
Banach algebras and their positive linear functionals (Theorem II.12); C∗-
algebras. We show that every commutative C∗-algebra is isometric to the
algebra of continuous functions on a compact space (Theorem II.14).

Section III concerns compact Abelian groups G, which we assume metriz-
able for simplicity. We begin by proving the existence, and uniqueness, of
the Haar measure, thanks to the use of a strictly convex and lower semi-
continuous function on the set of probabilities on G equipped with the weak∗

topology (this approach requires the metrizability). We then give some results
on convolution. We next define the dual group Ŵ = Ĝ as the set of characters
of G and note that the metrizability of G implies that the dual is countable;
we then determine the dual of the Cantor group (Proposition III.9), and show
that Ĝ separates the points of G (Theorem III.10; in fact shown in Theorem
III.16), and hence that the set P(G) of trigonometric polynomials, i.e. finite
linear combinations of characters, is dense in C(G) and in Lp(G) for 1 �

p < +∞; moreover Ŵ is an orthonormal basis of L2(G). We next define the
Fourier transform and show that it is injective. We conclude with results on
approximate identities and on the Fejér and de la Vallée-Poussin kernels. We
deduce that the norm of the convolution operator by a measure μ on L1(G),
and also on C(G), is equal to the norm of μ.

The contents of Chapter 1 (Volume 2) are essentially of a local nature.
We show a fundamental structure theorem concerning the finite-dimensional
subspaces of Banach spaces, Dvoretzky’s theorem, which states that every
n-dimensional space E contains, for any ε > 0, “large” subspaces (of
dimension on the order of log n) which are (1 + ε)-isomorphic to Hilbert
spaces. The proof is based on an argument of compactness, the Dvoretzky–
Rogers lemma, and, in an essential manner, on a probabilistic argument linked
to the concentration of measure phenomenon.

www.cambridge.org/9781107162624
www.cambridge.org


Cambridge University Press
978-1-107-16262-4 — Introduction to Banach Spaces: Analysis and Probability
Daniel Li , Hervé Queffélec , Translated by Danièle Gibbons , Greg Gibbons 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Preface xxiii

We thus begin in Section II with some results from Probability; after
reviewing the asymptotic behavior of Gaussian variables, we examine that
of the associated maximal functions of independent Gaussian variables and
their absolute value. We then prove the Maurey–Pisier deviation inequality
(Theorem II.3), from which we can deduce their inequality of the concentration
of measure (Theorem II.4). For this, we need Rademacher’s theorem (more or
less classical, but rarely taught) on the almost everywhere differentiability of
Lipschitz functions in R

N . This inequality of concentration of measure allows
us to prove Dvoretzky’s theorem in both real and complex spaces; nonetheless
we also use another approach, due to Gordon, valid only for the real case,
as it can easily be adapted to prove the isomorphic version of Milman and
Schechtman (Subsection IV.5).

In Section III, we prove a theorem concerning the comparison of Gaussian
vectors, in a form due to Maurey (Theorem III.3). This allows us to easily
obtain some important probabilistic results: Slepian’s lemma (Theorem III.5)
and its variant, the Slepian–Sudakov lemma (Theorem III.4), to be used in
the proof of Dvoretzky’s theorem for the real case, and Sudakov’s mino-
ration (Theorem III.6); these three results will again serve, in an essential
manner, in Chapters 3 and 6 (Volume 2). To prove Dvoretzky’s theorem,
we need to be able to compare stochastically not only the max of Gaussian
variables, but also their minimax; this is the purpose of Gordon’s theorem
(Theorem III.7).

The actual proof of Dvoretzky’s theorem is in Section IV. We in fact present
two proofs; in both cases the principle is the same. First, we introduce the
Gaussian dimension (Pisier calls it the concentration dimension) d(X) of a
Gaussian vector X (Definition IV.9). Dvoretzky’s theorem is derived from what
is known as the Gaussian version of Dvoretzky’s theorem (Theorem IV.10),
stating that when a Banach space E contains a Gaussian vector X made up
of m independent Gaussian variables, then E contains, for any ε > 0, a
subspace (1 + ε)-Hilbertian of finite dimension controlled by the Gaussian
dimension d(X) of X. The derivation from the Gaussian version is based on the
Dvoretzky–Rogers lemma (Proposition IV.1), itself based on a compactness
property in the spaces of operators between finite-dimensional spaces, given
by Lewis’ lemma (Lemma IV.3). Next we prove Theorem IV.10. For this,
we construct, out of independent copies of the Gaussian vector X, random
operators on ℓk

2 with values in E, where k is an appropriate multiple, dependent
on ε, of d(X). In the real case, the Slepian–Sudakov lemma allows us to
limit from above the expectation of their norms, and Gordon’s theorem to
limit them from below. In the second proof (for the complex case, but for the
real case as well), the two estimations are obtained at the same time by the
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Maurey–Pisier concentration of measure inequality, by using the invariance of
complex standard Gaussian vectors under the unitary group.

In the rest of Section IV, we examine certain examples; we see for example
that the theorem is optimal for E = ℓn

∞. We also show that, with control of the
cotype-2 constant of E, we can find, for any ε > 0, subspaces (1+ε)-Hilbertian
of dimension proportional to that of E (Theorem IV.14). This will be useful
in Chapter 6 (Volume 2). To conclude this section, we prove the isomorphic
version (Theorem IV.15), due to Milman and Schechtman. This allows, in a
real Banach space E of dimension n, to find, for any integer k � n, a subspace
of dimension k, and whose distance to ℓk

2 is this time no longer arbitrarily close
to 1, but is instead controlled by an explicit function of n and k. For this, we
admit a delicate result, due to Bourgain and Szarek, that is an improvement of
the Dvoretzky–Rogers lemma, and then apply Gordon’s theorem.

Finally, we show in Section V the Lindenstrauss–Tzafriri theorem, for
whose proof Dvoretzky’s theorem, associated with Kwapień’s theorem
(Chapter 5 of Volume 1, Section V), is essential; it states that if in a Banach
space all the closed subspaces are complemented, then this space is isomorphic
to a Hilbert space.

Chapter 2 (Volume 2), quite short, is dedicated to the construction by Davie
of a separable Banach space without the approximation property. The problem
of the existence of such a space was posed by Grothendieck in the mid 1950s;
it generalized the old problem of the existence of a basis in every Banach
space, which dates back to Banach himself, and was resolved in 1972 by Enflo.
The construction given soon afterward by Davie is simpler than that of Enflo.
It combines a probabilistic argument (method of selectors) with an argument
from Harmonic Analysis concerning finite groups. It fits particularly well with
the objectives of this book.

In Section II, we give a certain number of equivalent formulations of
the approximation property, and Section III contains the actual construction.
We show that, for any p > 2, ℓp contains a closed subspace without the
approximation property. This is also the case for c0 and for ℓp with 1 � p < 2
(Szankowski), but the proof is more delicate; it can be found, for example, in
Lindenstrauss–Tzafriri, Volume II, Theorem 1.g.4.

In Chapter 3 (Volume 2), we study in more detail Gaussian vectors, as well
as the more general notion of Gaussian processes.

These are defined at the beginning of Section II. To each Gaussian process
X = (Xt)t∈T we associate a (semi)-metric on T by setting dX(s, t)= ‖Xs − Xt‖2;
we show, with the aid of Slepian’s lemma, that the condition dY � dX is
sufficient to ensure that if X possesses a bounded version (respectively a
continuous version), then so does Y (the Marcus–Shepp theorem).
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In Section III, we define Brownian motion as an example of a Gaussian
process.

Sections IV and V form the heart of this chapter.
In Section IV, we define the entropy integral associated with a Gaussian

process: this is the integral, for ε ∈ [0, +∞[, of
√

log N(ε), where N(ε) is
the entropy associated with the metric dX of the process X, i.e. the minimum
number of open dX-balls necessary to cover T . The Dudley majoration theorem
gives an upper bound for the expectation of the supremum of the modulus
(absolute value) of a process with the aid of this entropy integral; a process has
continuous paths as soon as the entropy integral is finite (Theorem IV.3). We
then give an example showing that this condition is not necessary.

Next, in Section V, we see that, when the process is indexed by a
compact metrizable Abelian group G and is stationary, i.e. its distribution
does not change under translation, then the finiteness of the entropy integral
J(d) becomes necessary to have continuous trajectories, and J(d) is, up
to a constant, equivalent to E

(
supt∈G |Xt|

)
: this is the Fernique minoration

theorem (Theorem V.4). We conclude the section by giving an equiva-
lent form of the entropy integral (Proposition V.5) that will be useful in
Chapter 6 (Volume 2).

Section VI returns to Banach spaces; we present the Elton–Pajor theorem
(Theorem VI.12), which gives Elton’s theorem: in a real Banach space, if
there are N vectors x1, . . . , xN with norm � 1 such that the average of
‖ ± x1 + · · · ± xN‖ over all choices of signs is � δ N, then there is a
subset of these vectors, of cardinality N′ � c(δ) N, which is equivalent to
the canonical basis of ℓN′

1 , with constant β(δ) depending only on δ (Corollary
VI.18). The proof uses probabilistic arguments: introduction of a Gaussian
process and Dudley’s majoration theorem, combinatorial arguments, notably
Sauer’s lemma (Proposition VI.3) and Chernov’s inequality (Proposition VI.4),
and volume arguments: Urysohn’s inequality (Corollary VI.8), deduced from
the Brunn–Minkowski inequality (Theorem VI.6), itself deduced from the
Prékopa–Leindler inequality (Lemma VI.7). The complex version of Pajor
requires several additional combinatorial lemmas (whose infinite-dimensional
versions were used in Chapter 8 of Volume 1); it shows in particular that if a
complex Banach space contains δ-isomorphically, as a real Banach space, the
space ℓN

1 , then it contains, in the complex sense, the complex space ℓcN
1 , where

c depends only on δ (Corollary VI.21).
In Chapter 4 (Volume 2), we concentrate on the reflexive subspaces of L1.
In Section II, we first see that the reflexive subspaces of L1 are those

for which the topology of the norm coincides with that of the convergence
in measure (the Kadeč–Pełczyński theorem) and that, in consequence, any

www.cambridge.org/9781107162624
www.cambridge.org


Cambridge University Press
978-1-107-16262-4 — Introduction to Banach Spaces: Analysis and Probability
Daniel Li , Hervé Queffélec , Translated by Danièle Gibbons , Greg Gibbons 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

xxvi Preface

non-reflexive subspace contains a complemented subspace isomorphic to ℓ1

(Corollary II.6).
We then examine their local structure. Even though a priori, as L1 is weakly

sequentially complete (Chapter 7 of Volume 1, Theorem II.6), its reflexive
subspaces are those that do not contain ℓ1, by the Rosenthal ℓ1 theorem
(Chapter 8 of Volume 1), in fact we have much more: the reflexive subspaces of
L1 are those not containing ℓn

1’s uniformly (Theorem II.7). We then show that
the Banach spaces that do not contain ℓn

1’s uniformly are exactly those with a
type p > 1 (Theorem II.8, of Pisier), so that the reflexive subspaces of L1 have
a non-trivial type p > 1 (Corollary II.9).

In Section III, we present some examples of reflexive subspaces. We first
see that, for 1 < p � 2, the sequences of independent p-stable variables
generate isometrically ℓp in the real L1 space (Theorem III.1). We then
succinctly study the 	(q)-sets, which are the reflexive and translation-invariant
subspaces of L1(T). In particular we prove the Rudin transfer theorem, stating
that the properties of Rademacher functions in the dual of the Cantor group
are transferred to all the Sidon sets (Theorem III.10), so that, thanks to
the Khintchine inequalities, every Sidon set 	 is a 	(q)-set for any q <

+∞, and, more precisely, ‖f ‖q � C S(	)
√

q ‖f ‖2 for every trigonometric
polynomial f with spectrum in 	, where C is a numerical constant and
S(	) is the Sidon constant of 	 (Theorem III.11). The converse, due to
Pisier, is shown in two different ways, first, in Chapter 5 (Volume 2), with
a method of random extraction due to Bourgain, and then, in Chapter 6
(Volume 2), with the aid of Gaussian processes, which was the original proof of
Pisier.

Section IV is devoted to the deep theorem of Rosenthal showing that the
reflexive subspaces of L1 embed in Lp, for some p > 1 (Theorem IV.1). We
use in the proof the Maurey factorization theorem (Theorem IV.2), that Maurey
isolated from the original proof of Rosenthal. We thus deduce that every 	(1)-
set is in fact 	(q) for some q > 1 (Corollary IV.3).

In Section V, we study the finite-dimensional subspaces of L1, and, more
precisely, the dimension n of spaces ℓn

1 that they can contain (Theorem V.2,
of Talagrand). To make this statement more precise, we first need to study
the K-convexity constant of finite-dimensional spaces (Theorem V.3), and in
particular of those of L1 (Theorem V.5). We also see that, up to a constant,
nothing changes in the definition if the Rademacher variables are replaced by
Gaussian variables (Theorem V.8). We need to prove an auxiliary result, due to
Lewis (Theorem V.9). The proof of Talagrand’s theorem is then based on the
method of selectors, as well as Pajor’s theorem from the preceding chapter to
reduce to the real case.
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Chapter 5 (Volume 2) contains three results of Bourgain illustrating the
method of selectors.

This method was already used, in Chapters 2 and Chapter 4 of Volume 2; it
involves selecting an independent sequence of Bernoulli variables ε1, . . . , εn,
taking on the values 0 and 1 with a certain probability, and then making
constructions by randomly choosing the set 	(ω) of integers k � n for which
εk(ω) takes the value 1.

Section II treats the extraction of quasi-independent sets; these are particular
Sidon sets, defined in an arithmetical manner, and whose Sidon constant is
bounded by a fixed constant (� 8). We prove a theorem of Pisier stating
that a set 	 is Sidon if, and only if, there exists a constant δ such that every
finite subset A of 	, not reduced to {0}, contains a quasi-independent subset
B of cardinality |B| � δ |A| (Theorem II.3). In fact, we show that from every
finite subset A, not reduced to {0}, we can extract a quasi-independent subset
B of cardinality |B| � K (|A|/ψA)2, where K is a numerical constant and
ψA depends only on A (Theorem II.6). As an immediate consequence we
have Drury’s theorem (Corollary II.4), and we easily obtain Pisier’s theorem
(Theorem II.13), the converse of Rudin’s theorem seen in Chapter 4 of Volume
2, as well as Rider’s theorem (Theorem II.14).

In Section III, we show that, for any N � 1, there exists a subset 	 ⊆ N
∗ of

cardinality N such that
∥∥ ∑

k∈	 sin kx
∥∥

∞ � C0 N2/3, where C0 is a numerical
constant (Theorem III.1). The interest in this result is linked to the vector-
valued Hilbert transform: if E is a Banach space of finite dimension N, John’s
theorem immediately implies that the Hilbert transform with values in E has
a norm �

√
N in L

(
L2(E)

)
; if E = ℓN

1 , this norm is dominated by log N; the
preceding result shows that for every N � 1, we can find a Banach space E of
dimension N so that this norm dominates N1/3.

In Section IV, we show that the majoration K(X) � C log n for the
K-convexity constant of spaces of dimension n seen in Chapter 4 (Volume 2)
can essentially not be improved (Theorem IV.1).

Chapter 6 (Volume 2) is for the most part devoted to Pisier’s space Cas.
In Section II, we prove two results that will be needed in the next section.

The first is the Itô–Nisio theorem, stating that, when
∑

n�1 Xn is a series
of independent symmetric random variables with values in C(K), where
K is a metrizable compact space, such that, for every t ∈ K, the series∑+∞

n=1 Xn(·, t) converges almost surely to Xt, and in addition we assume that
the process (Xt)t∈K has a continuous version, then the series is almost surely
uniformly convergent (Theorem II.2). We then show a Tauberian theorem
(the Marcinkiewicz–Zygmund–Kahane theorem): if

∑
n�1 Xn is a series of

independent symmetric random variables with values in a Banach space E, then
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the fact that it is almost surely bounded (respectively almost surely convergent)
according to a summation procedure implies that this holds in the usual sense
(Theorem II.4).

In Section III, the space Cas is defined: let G be a compact metrizable
Abelian group and Ŵ = {γn ; n � 1} its dual group; let (Zn)n�1 be a standard
sequence of independent complex Gaussian variables; then Cas(G) is the space
of all the functions f ∈ L2(G) for which, almost surely in ω, the sum of the
series

∑
n�1 Zn(ω)̂f (γn)γn is a continuous function f ω ∈ C(G). Theorem III.1

gives several equivalent formulations (one of these being Billard’s theorem).
Equipped with the norm defined by [[f ]] = supN�1 E

∥∥∑N
n=1 Zn f̂ (γn)γn

∥∥
∞,

which is � ‖f ‖2, Cas(G) is a Banach space for which the characters γn ∈ Ŵ

form a 1-unconditional basis (Theorem III.4). The Marcus–Pisier theorem
(Theorem III.5) allows the Gaussian variables Zn in the definition to be
replaced by Rademacher variables; the proof uses the Dudley majoration theo-
rem and the Fernique minoration theorem. The fundamental result concerning
Cas is Theorem III.9. It establishes a duality between Cas and the space of
multipliers M2,�2 from L2(G) to L�2(G), where �2 is the Orlicz function

�2(x) = ex2 − 1, and shows that with this duality M2,�2 can be identified,
isomorphically, with the dual of Cas. The first part of the theorem again uses the
Fernique minoration theorem; the second part is more delicate, and in addition
to the Marcus–Pisier theorem, requires several auxiliary results. Thanks to this
duality, we easily establish a result of Salem and Zygmund that gives upper and
lower bounds of the norm [[ . ]] of a sum of exponentials (Proposition III.13).

In Section IV we present two more applications of Cas. First we prove a
theorem due to Pisier, a converse to Rudin’s theorem (Chapter 4 of Volume 2),
that characterizes Sidon sets 	 as those for which ‖f ‖q � C

√
q ‖f ‖2 for every

trigonometric polynomial f with spectrum in 	 (Theorem IV.1); note that this
uses only the existence of a duality between Cas and M2,�2 , and not the fact that
M2,�2 is the dual of Cas, and the Gaussian Rider theorem seen in Chapter 6 of
Volume 1. Next, this space provides a response to the Katznelson dichotomy
problem. Katznelson showed that only the real-analytic functions operate
on the Wiener algebra A(T), while it is clear that all continuous functions
operate on C(T); the problem was to know if, for every Banach algebra B

possessing certain “nice” properties, and such that A(T) ⊆ B ⊆ C(T), either
all continuous functions operate on B or only the analytic functions operate
on B. Zafran found a counterexample to this conjecture; Theorem IV.2 (Pisier)
reinforces the result of Zafran: P = Cas(T) ∩ C(T), equipped with the norm
‖f ‖P = 8 ‖f ‖∞ + [[f ]], is a Banach algebra possessing the required qualities,
but in which all the Lipschitz functions operate.
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To conclude Chapter 5, we prove the Bourgain–Milman theorem (Theorem
V.1): 	 is a Sidon set as soon as C	 has a finite cotype (we have already seen
in Chapter 6, Volume 1, that this is the case if the cotype is 2). The proof uses
the notions of Banach diameter n(E) of a finite-dimensional Banach space E

(Definition V.2) and arithmetic diameter for the finite subsets of the dual of a
compact metrizable Abelian group G, where the latter is the entropy number
NA(1/2) for a pseudo-metric dA on G, associated with the finite subset A of
the dual of G (Definition V.3). Using Dvoretzky’s theorem for cotype-2 spaces
(in fact for ℓ1), the proof combines Theorem V.4 (of Maurey), which gives a
lower bound for n(E) as a fonction of the cotype constant of E, and Theorem
V.5 (of Pisier): if 	 is a finite subset in the dual of G and if NA(δ) � eδ |A| for
every A ⊆ 	, then the Sidon constant of 	 is bounded above by a δ−b, where
a, b > 0 are numerical constants.

In the Comments, Section VI, as an application of random Fourier series,
we prove two more results: one concerning functions of the Nevanlinna class
(Theorem VI.1), and the other about random Dirichlet series (Theorem VI.2).

For the reader who would like to dig a bit deeper, we refer to the works
cited in the bibliography, and in particular to the recent Handbook of the

Geometry of Banach Spaces, Vols. I and II.
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Danièle and Greg Gibbons did a beautiful job with the translation of a very
long, and at times highly specialized, mathematical text. Let them be warmly
thanked for this achievement.

Conventions

(1) In this book, the set N of natural numbers is N = {0, 1, 2, . . .}, and N
∗ =

{1, 2, . . .}.
(2) Compact spaces are always assumed to be Hausdorff.
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