Stochastic Geometry Analysis of Cellular Networks

Achieve faster and more efficient network design and optimization with this comprehensive guide. Some of the most prominent researchers in the field explain the very latest analytic techniques and results from stochastic geometry for modeling the signalto-interference-plus-noise ratio (SINR) distribution in heterogeneous cellular networks. This book will help you understand the effects of combining different system deployment parameters on such key performance indicators as coverage and capacity, enabling efficient allocation of simulation resources. In addition to covering results for network models based on the Poisson point process, this book presents recent results for when non-Poisson base station configurations appear Poisson due to random propagation effects such as fading and shadowing, as well as non-Poisson models for base station configurations, with a focus on determinantal point processes and tractable approximation methods. Theoretical results are illustrated with practical long-term evolution (LTE) applications and compared with real-world deployment results.

BARTLOMIEJ BLASZCZYSZYN is a Research Director at Inria in Paris, France, and a faculty member of the joint Inria–ENS research group, DYOGENE.

MARTIN HAENGGI is the Frank M. Freimann Professor of Electrical Engineering and a concurrent Professor of Applied and Computational Mathematics at the University of Notre Dame in Indiana, USA, and the author of *Stochastic Geometry for Wireless Networks* (Cambridge University Press, 2012).

PAUL KEELER is a researcher at the Weierstrass Institute for Applied Analysis and Stochastics in Berlin, Germany, and an Associate Fellow of the School of Mathematics and Statistics at the University of Melbourne in Victoria, Australia.

SAYANDEV MUKHERJEE is a senior research engineer at DOCOMO Innovations, Inc. in California, USA, and the author of *Analytical Modeling of Heterogeneous Cellular Networks* (Cambridge University Press, 2014).

> "These four renowned experts deliver a comprehensive yet curated treatment on the modeling and analysis of modern cellular networks using stochastic geometry, which has been one of the most important recent lines of wireless research. Highly recommended for interested researchers and engineers. Can serve as a useful companion to Haenggi's landmark stochastic geometry textbook, which had fairly minimal treatment of cellular networks."

> > Jeff Andrews, University of Texas at Austin

Stochastic Geometry Analysis of Cellular Networks

BARTŁOMIEJ BŁASZCZYSZYN Inria and ENS

MARTIN HAENGGI

University of Notre Dame

PAUL KEELER Weierstrass Institute for Applied Analysis and Stochastics

SAYANDEV MUKHERJEE

DOCOMO Innovations, Inc.

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107162587 DOI: 10.1017/9781316677339

© Cambridge University Press 2018

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2018

Printed in the United Kingdom by Clays, St Ives plc

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data Names: Błaszczyszyn, Bartłomiej, 1967– author. | Haenggi, Martin, 1969– author. | Keeler, Paul, 1981– author. | Mukherjee, Sayandev, 1970– author. Title: Stochastic geometry analysis of cellular networks / Bartłomiej Błaszczyszyn, Inria and ENS, Martin Haenggi, University of Notre Dame, Paul Keeler, Weierstrass Institute for Applied Analysis and Stochastics, Sayandev Mukherjee, DOCOMO Innovations, Inc. Description: Cambridge, United Kingdom ; New York, NY, USA : Cambridge University Press, 2018. | Includes bibliographical references and index. Identifiers: LCCN 2017033066 | ISBN 9781107162587 (hardback : alk. paper) Subjects: LCSH: Wireless communication systems–Mathematics. | Stochastic models. | Stochastic geometry. Classification: LCC TK5102.83 .B54 2018 | DDC 621.3845/60151922–dc23 LC record available at https://lccn.loc.gov/2017033066

ISBN 978-1-107-16258-7 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press 978-1-107-16258-7 — Stochastic Geometry Analysis of Cellular Networks Bartłomiej Błaszczyszyn , Martin Haenggi , Paul Keeler , Sayandev Mukherjee Frontmatter More Information

Contents

	Preface					
	Ack	nowledgments	xi xiii			
	Note	ations				
	List	t of Acronyms and Abbreviations	xiv			
Part I S	Stochas	tic Geometry	1			
1	Intro	Introduction				
	1.1	The Demand for Ubiquitous Connectivity	3			
	1.2	Technical Challenges for a Network Operator	4			
	1.3	The Case for Small-Cell Architectures	6			
	1.4	Future Wireless Networks Will Be Heterogeneous	6			
	1.5	Approaches to the Design of Future Wireless Networks	4 6 7 8 9 9 9 9 9 11 12 13			
	1.6	The Case against Pure Simulation-Based Investigation				
	1.7	The Case for an Analytical Approach to HetNet Design	9			
	1.8	The Stochastic Geometric Approach to HetNet Analysis	9			
		1.8.1 A preview of the main results in the book	9			
		1.8.2 Extension to non-Poisson point processes	11			
		1.8.3 Applications to link-level analysis	12			
2	The	Role of Stochastic Geometry in HetNet Analysis	13			
	2.1	The Hexagonal Cellular Concept	13			
	2.2	Propagation, Fading, and SINR	14			
	2.3	Base Station Locations Modeled by Point Processes	17			
3	A Br	rief Course in Stochastic Geometry	18			
	3.1	Purpose	18			
	3.2	Fundamental Definitions and Notation	18			
		3.2.1 Definition	18			
		3.2.2 Equivalence of random sets and random measures	19			
		3.2.3 Distribution of a point process	20			
		3.2.4 Palm measures	21			
		3.2.5 Functions of point processes and the Campbell-Mecke theorem	23			

vi	Contents				
		3.2.6	Moment measures and factorial moment measures and their		
			densities	25	
	3.3	Marke	ed Point Processes	28	
	3.4	The P	oisson Point Process and Its Properties	29	
		3.4.1	Definition	30	
		3.4.2	Properties	31	
		3.4.3	The pgfl and the Campbell-Mecke theorem	35	
	3.5	Alterr	native Models	36	
		3.5.1	Determinantal point processes	36	
		3.5.2	Matérn hard-core processes	37	
		3.5.3	Strauss processes	38	
		3.5.4	Shot noise Cox processes	40	
		3.5.5	The Poisson hole process	41	
1	Stat	istics of	f Received Power at the Typical Location	42	
	4.1	Mode	ling Signal Propagation and Cells in Heterogeneus Networks	42	
		4.1.1	Stationary heterogeneous network with a propagation field	42	
		4.1.2	Typical network station and typical location in the network	44	
		4.1.3	Exchange formula	45	
		4.1.4	Shot noise model of all signal powers in the network	46	
		4.1.5	Service zones or cells	48	
		4.1.6	Typical cell vs. zero-cell	49	
		4.1.7	Rate coverage	49	
		4.1.8	Cell loads	50	
	4.2	Hetero	ogeneous Poisson Network Seen at the Typical Location	51	
		4.2.1	Projection process and a propagation invariance	52	
		4.2.2	Heterogeneous Poisson network	54	
		4.2.3	Poisson network equivalence	57	
		4.2.4	Incorporating propagation terms such as transmission powers and	(0)	
			antenna gains	60	
		4.2.5	Intensity measure of a general projection process	60	
	4.3	Netwo	orks Appear Poisson Due to Random Propagation Effects	62	
		4.3.1	Projection process based on a deterministic configuration of base		
			stations	63	
		4.3.2	Poisson model approximation	63	
		4.3.3	Order statistics of signals	65	
		4.3.4	Fitting the Poisson model	66	
		4.3.5	Poisson convergence	66	
		4.3.6	Possible extensions	68	
	4.4	Biblic	graphic Notes	69	

		Contents	vii	
Part II SIN	IR An	alysis	71	
5	Dow	nlink SINR: Fundamental Results	73	
	5.1	General Considerations	73	
		5.1.1 SINR distribution	74	
		5.1.2 Signal-to-total-interference-plus-noise ratio	74	
		5.1.3 Choice of the base station	75	
		5.1.4 Simple and multiple coverage regime	76	
		5.1.5 Coverage probability exchange formula in the simple regime	77	
		5.1.6 Increasing model complexity	77	
	5.2	Basic Results for Poisson Network with Singular Path Loss Model	77	
		5.2.1 The singular path loss model	77	
		5.2.2 SINR with respect to the typical station	78	
		5.2.3 SINR with respect to the strongest station in the simple coverage		
		regime	79	
		5.2.4 Coverage probability by the closest base station	80	
		5.2.5 Alternative derivation of coverage probability by the closest base		
		station	81	
		5.2.6 Coverage probability with shadowing separated from fading	82	
	5.3	Multiple Coverage in Poisson Network with Singular Path Loss Model	83	
		5.3.1 Coverage number and <i>k</i> -coverage probability	83	
		5.3.2 Multiple coverage in heterogeneous network	89	
		5.3.3 Matrix formulation of the multiple coverage event	92	
	5.4	Bibliographic Notes	95	
6	Dow	nlink SINR: Advanced Results		
	6.1	More Advanced Results for Poisson Network with Singular Path		
		Loss Model	97	
		6.1.1 SINR and STINR point processes at the typical location and their		
		factorial moment measures	97	
		6.1.2 Order statistics of the STINR process	100	
		6.1.3 SINR with general interference cancellation and signal combination	102	
		6.1.4 Some numerical results	106	
		6.1.5 Two-tier heterogeneous network with tier bias	111	
	6.2	STINR and Poisson-Dirichlet Process	116	
		6.2.1 Poisson-Dirichlet processes	116	
		6.2.2 STIR is a PD($1/\delta$, 0) point process	117	
		6.2.3 Further useful results	118	
	6.3	The Meta Distribution of the SIR	121	
		6.3.1 Motivation and definition	121	
		6.3.2 Moments of the conditional coverage probability	123	
	<i>.</i> .	6.3.3 Exact expression, bounds, and beta approximation	124	
	6.4	Bibliographic Notes	127	

viii	Con	tents	
_	D		100
1	DOW 7 1	ININA SINK: FURTHER EXTENSIONS	128
	/.1	SINK Analysis with General Path Loss Models	128
		7.1.1 Interference and SIR for the singular path loss model	128
	7.2	7.1.2 Results for general path loss models	131
	1.2	SINK Analysis for the Poisson Network with Advanced Signaling	133
		7.2.2 Distribution of SIND	133
		7.2.2 Distribution of SINK	130
	7.2	7.2.5 COMP analysis	139
	1.5	7.2.1 Link sink Analysis: Area Spectral Efficiency and Energy Efficiency	140
		7.3.1 Link-centric vs. cen-centric perspective	141
		7.3.2 Performance metrics of interest to operators	141
		7.3.3 Spectral efficiency as ergodic capacity	143
8	Exte	nsions to Non-Poisson Models	144
	8.1	Non-Poisson Point Processes	144
		8.1.1 Motivation	144
		8.1.2 Appropriate point processes	144
		8.1.3 Choice of the base station and propagation effects	144
		8.1.4 Determinantal models	145
		8.1.5 Ginibre point process	145
		8.1.6 General determinantal point process	147
		8.1.7 Cox point processes	150
		8.1.8 Neyman-Scott cluster processes	150
	8.2	Approximate SIR Analysis for General Networks	151
		8.2.1 Motivation	151
		8.2.2 Accuracy of the SIR distributions compared with real networks	152
		8.2.3 ASAPPP	153
		8.2.4 Why is ASAPPP so effective?	162
		8.2.5 ASAPPP for HetNets	163
	8.3	Bibliographic Notes	166
	Con	cluding Remarks	168
Append	ix A Pr	oof of Lemma 5.3.6	170
Append	ix B Tir	neline of Cellular Technology Generations	175
Append	ix C So	me Useful Probability Distributions	177
	Refe	erences	182
	Inde	2	189

Preface

Since 2010, our knowledge of coverage and capacity in heterogeneous cellular networks (HetNets) has expanded rapidly, primarily through analytical results using stochastic geometry. Most of these results assume that the locations of the base stations in a given tier of the HetNet are the points of a homogeneous Poisson point process (PPP). This modeling assumption was made for mathematical tractability, and the coverage results for a single tier were determined to be about as pessimistic (relative to the real coverage in real-world deployments) as the regular hexagonal lattice location model was optimistic (Andrews, Baccelli, & Ganti 2011).

However, since 2013 we have obtained results showing the fundamental importance of the PPP model to the analysis of real-world deployments in two ways: (a) the set of propagation losses to the typical location in an arbitrary network deployment converge asymptotically to that from a PPP deployment of base stations; (b) long before this convergence is reached, the coverage results for a PPP deployment can be employed to obtain very accurate approximations to the coverage results for various regular deployments.

This book provides the first detailed expository treatment of these results, and includes additional exact analytical results on coverage for certain special non-PPP deployment models. We expect the book to be of interest to researchers in academia and industry, and anyone interested in the application of stochastic geometry to problems in communication. HetNets are an important component of future cellular network standards (LTE Release 12 and later),¹ and the theoretical results in the book are illustrated with examples of their application to transmission scenarios specified in the LTE standard.

Although we have made every effort to make the book self-contained, the reader will benefit from having had some prior exposure both to the theory and techniques of stochastic geometry, and to their application to the derivation of coverage results for PPP base station deployments. For an introduction to stochastic geometry with emphasis on wireless communications, we recommend Haenggi's *Stochastic Geometry for Wireless Networks* (Haenggi 2012) at the introductory level (a condensed version of which is available in Chapter 3) and the two volumes of Baccelli and Błaszczyszyn's *Stochastic Geometry and Wireless Networks* (Baccelli & Błaszczyszyn 2009a, 2009b) for a comprehensive treatment at the advanced level. Note that both references rely on

¹ See Appendix B.

x Preface

mathematical results from a measure-theoretic treatment of stochastic geometry, such as that found in Chiu et al. 2013. For a simplified treatment of some of the results on coverage and capacity in PPP network deployments in Chapter 5, the interested reader is referred to Mukherjee (2014), which does not require knowledge of measure theory.

Knowledge of 3GPP-LTE is not required, but familiarity with the LTE standard will help the reader in understanding the applications of the results presented in the book. An outline of the different releases in the LTE standard and the features relevant to HetNets in each one is provided in Appendix B.

Acknowledgments

It is a remarkable testament to modern communications that four authors on three continents were able to collaborate so amiably and productively on this book, having met collectively but once, and we are grateful to Professors Jeffrey G. Andrews, François Baccelli, and Gustavo de Veciana of the University of Texas at Austin, and the Simons Foundation for making that singular occasion possible, at the Simons Conference on Networks and Stochastic Geometry in Austin in May 2015 that they organized.

We are grateful to Naoto Miyoshi for his careful reading of the manuscript and his precious remarks, in particular in Chapter 8. We are also grateful to Julie Lancashire and Heather Brolly, our editor and content manager, respectively, at Cambridge University Press for their patience as deadlines for the finished manuscript came and went as the authors juggled their work and teaching schedules with writing.

B. B. would like to express his gratitude to François Baccelli for introducing him to the art and science of modeling of communication networks, as well as to the Inria–ENS team where, since 1999, B. B. had the pleasure and honor of collaborating with François Baccelli on the foundations of stochastic geometric modeling of wireless networks. Without these early, visionary scientific choices and the leadership of François Baccelli, as well as the working environment provided by Inria and ENS, the author's more recent contribution to this book would not have been possible. The author is also grateful to Mohamed Kadhem Karray for a long, close collaboration and very many stimulating discussions. Finally, but equally importantly, B. B. would like to thank his lovely family – Mira, Klara, Karol, and Antoni – for their understanding and support while he worked on his share of the manuscript.

M. H. thanks Béla Bollobás for sparking his interest in random geometric graphs and stochastic geometry in the early 2000s, when the application of stochastic geometry to wireless networks modeling and analysis was still in its infancy. Since then, the annual number of papers published on the topic has grown by almost 30 dB! He is grateful to his PhD students, postdoc, and other collaborators; most of the credit for the results and insights obtained are due to their tireless efforts and stimulating discussions. And he would like to express his deep gratitude to his family – Roxana and little Kevin – for their love, support, and understanding that this book project would take time away from them.

P. K. thanks his PhD supervisor, Peter G. Taylor, at the University of Melbourne, who set him on the path of using stochastic geometry models, which ultimately led to doing interesting projects with B. B. in the Inria–ENS team, then headed by François Baccelli.

xii Acknowledgments

This journey continued by working at the Weierstrass Institute in a team headed by Wolfgang König and focused on applying stochastic methods to wireless networks. P. K. is grateful to the aforementioned researchers and research institutes. None of this would have started without his family who long ago inspired in him interests in mathematics, science, and engineering.

S. M. would like to express his gratitude once more to Professor Jeffrey G. Andrews of the University of Texas at Austin, for inviting him to speak at the 2015 Simons Conference, an occasion on which he met for the first time not only two of his coauthors, but also nearly all the top researchers in stochastic geometry, most of whom he knew until then only from their publications. S. M. also thanks the management at DOCOMO Innovations, Inc., for their support, and the corporate general counsel, Jeremy Tucker, Esq., for negotiating the book contract with Cambridge University Press. Last but certainly not least, he would like to thank his family – Chandreyee, Rik, Inika, and the four-legged tail-wagging distraction Johnny – for their patience while he worked on his share of the manuscript.

Notations

\sim	distributed as
$_{2}F_{1}(a,b;c;z)$	Gaussian hypergeometric function
α	slope of path loss model (path loss exponent)
δ	$=2/\alpha$
$\mathcal{B}_{[0,1]}$	the Borel σ -algebra on [0, 1]
τ	SINR threshold
$\Gamma(z)$	gamma function
$\gamma(z,a)$	lower incomplete gamma function
Φ, Ψ	PPP of base station locations
$ ilde{\Phi}, ilde{\Psi}$	PPP of received powers from the base stations of the PPP Φ or Ψ
x	scalar
x	vector
х	a point of a point process
Α	matrix
X	random variable
$f_X(x)$	probability density function of X evaluated at x
X	random vector
$f_X(\mathbf{x})$	joint probability density function of X evaluated at x
$\Lambda(\cdot)$	intensity measure
Ι	interference power
Κ	intercept of path loss model
$\ell(\cdot)$	path loss function
L _x	propagation loss between the user at the origin and the base station \mathbf{x}
$\mathcal{L}_X(s)$	Laplace transform of X evaluated at s: $\mathbb{E}[\exp(-sX)]$
\mathcal{N}	the space of all sequences
N_{arphi}	counting measure of φ
ν	Lebesgue measure
φ	a point pattern
В	set or event
$1_B(\cdot)$	indicator function of the set B
$\mathbb{E}[X]$	expectation of the random variable X
$\mathbb{P}(B)$	probability of the event <i>B</i> , also equal to $\mathbb{E}[1_B]$
\mathbb{R}	the set of real numbers, also written $(-\infty, \infty)$
\mathbb{R}_+	the set of nonnegative reals, also written $[0,\infty)$
\mathbb{R}_{++}	the set of positive reals, also written $(0, \infty)$

Xİİİ

Acronyms and Abbreviations

3GPP	Third Generation Partnership Project
ASAPPP	approximate SIR analysis based on the Poisson point process
AWGN	additive white Gaussian noise
BLER	block error rate
CapEx	capital expenses
CCDF	complementary cumulative distribution function
CDF	cumulative distribution function
CoMP	coordinated multipoint
EFIR	expected fading-to-interference ratio
GPP	Ginibre point process
HetNet	heterogeneous cellular network
IA	interference alignment
ICIC	intercell interference coordination
ICSC	interference cancellation and signal combination
IIC	independent interference cancellation
iid	independent and identically distributed
ISR	interference-to-signal ratio
LTE	long-term evolution
LTE-A	long-term evolution-advanced
MIMO	multiple-input multiple-output
MISR	mean interference-to-signal ratio
MRC	maximal ratio combining
pgfl	probability generating functional
PPP	Poisson point process
RDP	relative distance process
REB	range expansion bias
SC	signal combination
SER	symbol error rate
SIC	successive interference cancelation
SINR	signal-to-interference-plus-noise ratio
SIR	signal-to-interference ratio
SISO	single-input single-output
SNR	signal-to-noise ratio
STINR	signal-to-total-interference-plus-noise ratio
STIR	signal-to-total-interference ratio
UMTS	universal mobile telecommunications system
ZFBF	zero-forcing beamforming

xiv