Cambridge University Press & Assessment 978-1-107-16250-1 — Atomic-Scale Analytical Tomography Thomas F. Kelly, Brian P. Gorman, Simon P. Ringer Index More Information

Index

aberration function, 86 aberration-corrected (S)TEM, 117 aberration-corrected transmission electron microscope, xvii ACSTEM, 117 A-FIM, 67 Albert Crewe, 31 Alfred Cerezo, 24 Ametek, xi amorphous materials, 7, 172 amplitude discrimination, 190 analytical FIM, 67 analytical instrumentation space, 193 analytical sensitivity, 193, 194, 232 analytical tomography roadmap plot, 47 angstrom, xv angular magnification, 175 Antonie van Leeuwenhoek, 11, 233 APFIM, xi APT, xvi APT Mass Spectral Analysis, 160 APT-centric atom location, 117 APT-centric atom positioning, 88, 160 APT-guided DFT, 210 ASAT, vii, 5, 41 ASAT achievement milestones, 224 ASAT and DFT, 209 ASAT applications milestones, 225 ASAT Phase I, 47 ASAT Phase II, 47 ASAT-DFT workflow, 211 AST, 40 AST specimen image, 86 Atom Probe, 20 atom probe background, 104 atom probe tomography, xvi, 42 ATOM Project, 45, 70, 108, 111 atomic complexity, 161 atomic theory, 12 atomic-resolution tomography, 40 Atomic-Scale Analytical Tomography, xvi, 41, 119 atomic-scale architectures, 204

atomic-scale tomography, xvi, 8, 11, 12, 40, 118, 234 Atomic-scale TOMography Project, 45 atomistic modeling, 202 atom-probe crystallography, 145 Atom-Probe Field Ion Microscope, xi, 20 atomscope, 108 Bas protocol, 77, 126 Big Data, 232 billion atoms, 175 billion-atom dataset, 231 billion-atom image, xvi biological materials, 228 black plague, 4 Brian Gorman, 119 building block, 12 bulk metallic glasses, 172 Burgers vector, 230 CAMECA, xi, 46 CAMECA Instruments, Inc., xvii, 117 CAMECA LEAP 4000XSi, 106 CAMECA LEAP 5000XR, 104 CAMECA LEAP 5000XS, 104 CAMECA SAS, 24 camera length, 174 CASTEP, 208 CEOS GmbH, 34 circular runout, 128 CMOS, 186 Colorado School of Mines, 99, 117, 119 combining (S)TEM + APT, 84 combining FIM + APT, 84 combining TEM + APT, 101 compressed sensing, 137 Compressed-Sensing Electron Tomography, 61 Computed Axial Tomography, 40 computed electronic structure, 141 Computed Tomography scan, 40 contamination, 139 Continuous Electron Tomography, 59 contoured phase difference image, 133

CAMBRIDGE

Cambridge University Press & Assessment 978-1-107-16250-1 — Atomic-Scale Analytical Tomography Thomas F. Kelly, Brian P. Gorman, Simon P. Ringer Index

More Information

Index

237

Convergent-Beam Electron Diffraction, 173 Copernicus, 3 correcting reconstruction aberrations, 43, 117 correlation histogram, 170 correlative (S)TEM + APT, 70 correlative TEM, 99 correlative TEM and APT, 101 correlative TEM + APT, 98 covalent materials, 161 cryo FIB preparation, 105 cryogenic cooling of specimen, 109 cryogenic holders, 109 cryogenic TEM, 103 cryogenically cooled specimen, 104 crystallography, 145 cyclic mechanical fatigue, 231 data collection rate, 181 data mining, 232 "dead" zone, 185, 187 delay-line anode, 182 Democritus, 11, 233 Density Functional Theory, 202, 205 detection error, 194 detection rate, 230 detector efficiency, 176 DFT, 202, 205 DFT simulations, 213 Didier Blavette, 24 Dierk Raabe, 45 Differential Phase Contrast, 45, 103, 132 digital materials science, 233 dilute ferromagnetic semiconductors, 212 discrete tomography, 40 dissociation of molecular ions, 169 DMol3, 208 DPC, 103 EBSD, 107 EDS, 55, 136 EDS mapping, 136 EELS, 42, 55, 136 electric field distribution, 103 electric field enhancement, 176 electrical properties, 224 electric-field biprism, 103 Electron Backscattered Diffraction, 107 electron crystallography, 145 electron diffraction, 132 Electron Energy Loss Spectroscopy, 46, 55

electron holography, 45 electron ptychography, 66 Electronic Numerical Integrator and Computer, 223 element-specific radial distribution functions, 7 energy detectors, 170 Energy Dispersive X-ray Spectroscopy, 55 energy-filtered electron diffraction, 172 ENIAC, 223 equally sloped tomography, 59 Ernst August Friedrich Ruska, 14 Ernst Ruska Center, xvii, 46, 117 Erwin Wilhelm Müller, xi, xv, 8, 14 EST, 59 exchange-correlation functionals, 206 extraneous atoms, 166 extreme UV (EUV) photons, 116 feed-forward model, 92 FEI Company, 34 **FEEM. 15** FEM, 146 FIB. 98 Field Electron Emission Microscope, 15 field enhancement, 180 field enhancement factor, 231 field evaporation, 14 field evaporation images, 146 field evaporation microscopy, 146, 147 field factor, 178 field ion micrographs, 16 Field Ion Microscope, xi, 4 field ion microscopy, 14, 82 FIFO. 44 FIM, xi Flight Path Length, 188 Forschungszentrum Jülich, xvii 4-D STEM, 129, 171 4-D STEM ptychography, 65 4-D STEM-EELS, 62 Fourier-space approach, 87 Francois Vurpillot, 119 Frenkel pairs, 225 functional materials, 204 future of microscopy, 48

GaN LED, 69 generalized gradient approximation, 208 George Smith, 24 GGA, 208 Gomer model, 79 grain boundaries, 134 grain boundary solute segregation, 154 Guido Schmitz, 29

HAADF, 55 HAADF STEM, 57 Hartree–Fock, 202 heterogeneous nucleation, 227 heterostructural interfaces, 101 High-Angle Annular Dark Field, 55, 57 holographic methods in TEM, 103 homogeneous nucleation, 227 Hohenberg–Kohn theorems, 206 HRSTEM, 72 Cambridge University Press & Assessment 978-1-107-16250-1 — Atomic-Scale Analytical Tomography Thomas F. Kelly, Brian P. Gorman, Simon P. Ringer Index

More Information

200		
	hybrid DFT, 208	linear mode, 190
	hydrostatic stress, 231	linear projection, 77
		liquid He, 109
	IAP, xvi	liquid nitrogen, 109
	image function, 87	local density approximation, 206
	image simulation, 91	local electrode, 111
	image size limit, 179	local electrode atom probe, xi, 28, 177
	image transfer function, 85	····· ··· ···· ··· ··· ··· ··· ··· ···
	Imaging Atom Probe xvi 24	mapping the applied electric field 132
	imaging with electric field applied 110	mass spectrum 162
	Imago xi	mass-energy spectrum 191
	Imago Scientific Instruments Cornoration 28	Max Haider 33
	information loop in microscopy 93	MD 202
	instrumentation for ASAT 08	machanical properties 228
	integrated computational materials engineering. 7	meta GGA 208
		meta imaga 42
	47	metala 160
	anginooring 46	Michael Miller 24
	engineering, 46	Michael Miller, 24
	intergranular failure, 212	Microcapillary plate detector, 185
	interstitials, 6	Micrographia, 3
	ion crossing, 161	missing-wedge, 89
	ion crossings, 81	Modified Bas Protocol, 88
	ion neutralization losses, 168	Mo-Hf alloys, 213
	ion optics, 111	molecular dynamics, 202
	ion transfer function, 161	molecular dynamics simulations, 204
	ionic materials, 161	molecular ions, 161
	isotopic ratios, 227	Monte Carlo simulations, 204
		Moore's law, 214, 222, 226
	Jean Perrin, 11	multidimensional data format, 233
	Joachim Mayer, 45	multihit detection, 182
	Johannes Kepler, 3	multihit discrimination performance, 185
	John Panitz, xv, 19	multihit performance, 182
		multiple evaporation events, 164
	Kane architecture, 226	multiple hits, 166
	Kindbrisk, 24	
	kinetic energy discrimination, 170, 190	needle-shaped specimens, 127
	kinetics, 227	Newton, 3
	knock-on damage, 139	Nion Company, 34
	knock-on threshold, 139	NIST-Boulder, 115
	Kohn-Sham equation, 206	non-random migration, 164
	Kossel-Möllenstadt fringes, 173	
	Kröger–Vink notation, 225	off-axis electron holography, 103
	Kurdjumow-Sachs, 152	Ondrej Krivanek, 34
		100% detection, 89, 117
	LAPPD, 175	100% detection efficiency, xvii, 43, 81
	Large Area Picosecond Photodetector, 175	optical properties, 224
	laser pulse, 106	Orsay e-Clipse II, 106
	latching mode, 190	Osamu Nishikawa, 25
	LDA, 206	Otto Scherzer, 30
	LEAP. xi, xvii, 28, 177	Oxford NanoScience, 24
	lens aberrations, 87	oxide glasses, 172
	Leucippus, 11, 233	
	level set theory. 127	parts-per-billion, 232
	LIFO 44	parts-per-billion sensitivity 193
	limitations of APT 68	neak discrimination 197
	limitations of TEM 65	neak identification uncertainties 167
	limits of analyzed volume 175	place houndary providerant analysis 120
	minto or anaryzou volume, 173	phase ocumenty provigrant analysis, 150

CAMBRIDGE

Cambridge University Press & Assessment 978-1-107-16250-1 — Atomic-Scale Analytical Tomography Thomas F. Kelly, Brian P. Gorman, Simon P. Ringer Index

phase contrast TEM, 92

phase fields, 127

pixel resolution, 232

pixelated detector, 132

polarizability, 164

PoSAP, xvi, 24

polyatomic ions, 161

More Information

Index

239

phase retrieval microscopy, 65 pixelated array detectors, 186 pixelated-sensor detectors, 186 pnictide superconductors, 211

Poschenrieder, 22 position-energy sensitive detector, 192 Position-Sensitive Atom Probe, xvi, 24 position-sensitive ion detector, 106 Project Tomo, xvii, 117 Project ULTRA, 45 propagation time, 182 Ptolemaic system, 3 ptychography, 65, 171 pulse height discrimination, 189 pulse height distribution, 190 pulsed electric field, 106 pulsed field evaporation, 106 pulsing field evaporation, 113 py4DSTEM, 65

OMC, 202 quantum Monte Carlo, 202 qubit device, 226

radial distribution functions, 155 radiation-induced specimen alteration, 139 Rafal Dunin-Borkowski, 45 RDF, 155 real-space crystallography, 145 **REAP**, 176 remote-electrode atom probe, 176 residual gas, 167 reverse projection, 44 Robert Hooke, 3

Saint Martin's Church, 13 SAP 25 Scanned Probe Microscopy, 82 Scanning Atom Probe, 25 Scanning Confocal Electron Microscopy, 64 Scanning Transmission Electron Microscope, 31 (Scanning) Transmission Electron Microscopy, 82 Scanning Tunneling Microscope, 4 SCDL, xvii, 118, 187 SCEM, 64 Schottky defect, 225 Secondary Ion Mass Spectroscopy, 194 semiconductor-based spintronics, 212 side-entry holders, 109 signal-to-noise ratio, 232

SIMS, 194 simulation-based reconstruction, 90 SNR, 232 solute migration, 164 spatial resolution, 193 specimen apex, 44 specimen apex shape, 88, 127, 172 specimen coating, 139 specimen cooling, 103 specimen degradation, 137 specimen evolution models, 127 specimen failure, 125 specimen function, 85, 87 specimen geometry, 127 specimen geometry for tomography, 128 specimen surface shape, 86 speed detectors, 170 SPM + APT, 82 sputtering, 139 Steam Instruments, Inc., xvii, 117 (S)TEM, 82 STEM calibration, 173 (S)TEM-Centric Atom Positioning, 90 STEM differential phase contrast methods, 86 STEM EDS tomography, 61 STEM EELS tomography, 62 STEM + APT, 72 STEM-centric atom location, 117 STEM-centric atom positioning, 171 STEM-EDS, 56 STEM-EELS, 56, 136, 174 STEM-EELS + APT, 137 STEM-HAADF, 130 structure-properties microscopy, 7, 47, 141, 223 superconducting delay-line, 118, 187 Superconducting Delay-Line Detectors, xvii superconducting detector, 117 surface diffusion, 164 surface migration, 165 surface tangent algorithm, 89

TAP, 24 TEAM, 30 Technical University of Berlin, 14 TEM holographic methods, 86 temporal evolution, 227 10 cm Atom Probe, xvi, 21 Terry Godfrey, 24 theoretical transfer function, 85, 88 thermal pulsing, 113 Thermo Fisher Scientific, xvii, 34, 46, 117 Thomas Kelly, 117 3-D FIM, 67 3-D FIM and APT, 67 3-D STEM-EDS, 62 3-D specimen apex shape, 89

Cambridge University Press & Assessment 978-1-107-16250-1 — Atomic-Scale Analytical Tomography Thomas F. Kelly, Brian P. Gorman, Simon P. Ringer Index <u>More Information</u>

240 Index

3DAP, xvi three-dimensional atom probes, xvi, 24 three-dimensional electric field distribution, 117, 132 Time-of-Flight Mass Spectrometry, 167 TKD, 134 TMS roadmap, 202 Tomographic Atom Probe, 24 tomography, 40 transfer function, 85 transgranular failure, 212 Transmission Electron Aberration-corrected Microscope, 30, 34 Transmission Electron Microscope, 4 Transmission Kikuchi Diffraction, 134, 150 trillion-atom ASAT images, 232 trillion-atom dataset, xvii, 231 trillion-atom images, 229, 230 trillion atoms, 231 2-D STEM-EELS, 62 Tycho Brahe, 3

UHV TEM, 108 Ultra-High Vacuum, 104 University of Rouen, 117, 119

vacancies, 6 vacancy – interstitial pair, 226 Vacuum Generators HB5 STEM, 34 van der Waals, 209 VASP, 208 vdW functionals, 209 verifiability, 229 visibility of atomic planes, 160

Waviks, LLC, 119 Waviks, LLC Vesta laser, 115 Williams Lefebvre-Ulrikson, 119

Xe-Plasma FIB/STEM, 104 X-ray crystallography, 145

Zach and Haider, 33 Zernike polynomial, 87 ZnO:Co system, 212