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Preface

The representation theory of inite groups has a long history, going back to the
nineteenth century and earlier. A milestone in the subject was the deinition of
characters of inite groups by Frobenius in 1896. Prior to this there was some
use of the ideas that we can now identify as representation theory (characters of
cyclic groups as used by number theorists, the work of Schönlies, Fedorov, and
others on crystallographic groups, invariant theory, for instance), and during the
twentieth century, there was continuously active development of the subject.
Nevertheless, the theory of complex characters of inite groups, with its theorem
of semisimplicity and the orthogonality relations, is a stunning achievement
that remains a cornerstone of the subject. It is probably what many people think
of irst when they think of inite group representation theory.
This book is about character theory, and it is also about other things: the char-

acter theory of Frobenius occupies less than one-third of the text. The rest of
the book comes about because we allow representations over rings other than
ields of characteristic zero. The theory becomes more complicated, and also
extremely interesting, when we consider representations over ields of charac-
teristic dividing the group order. It becomes still more complicated over rings of
higher Krull-dimension, such as rings of integers. An important case is the the-
ory over a discrete valuation ring, because this provides the connection between
representations in characteristic zero and in positive characteristic. We describe
these things in this text.
Why should we want to know about representations over rings that are not

ields of characteristic zero? It is because they arise in many parts of mathe-
matics. Group representations appear any time we have a group of symmetries
where there is some linear structure present, over some commutative ring. That
ring need not be a ield of characteristic zero. Here are some examples:

ix
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x Preface

� In number theory, groups arise as Galois groups of ield extensions, giving
rise not only to representations over the ground ield but also to integral rep-
resentations over rings of integers (in case the ields are number ields). It is
natural to reduce these representations modulo a prime ideal, at which point
we have modular representations.

� In the theory of error-correcting codes, many important codes have a nontriv-
ial symmetry group and are vector spaces over a inite ield, thereby providing
a representation of the group over that ield.

� In combinatorics, an active topic is to obtain “q-analogs” of enumerative
results, exempliied by replacing binomial coeficients (which count subsets
of a set) by q-binomial coeficients (which count subspaces of vector spaces
over Fq). Structures permuted by a symmetric group are replaced by linear
structures acted on by a general linear group, thereby giving representations
in positive characteristic.

� In topology, a group may act as a group of self-equivalences of a topological
space. Thereby, giving representations of the group on the homology groups
of the space. If there is torsion in the homology, these representations require
something other than ordinary character theory to be understood.

This book is written for students who are studying inite group representation
theory beyond the level of a irst course in abstract algebra. It has arisen out of
notes for courses given at the second-year graduate level at the University of
Minnesota. My aim has been to write the book for the course. It means that the
level of exposition is appropriate for such students, with explanations that are
intended to be full but not overly lengthy.
Most students who attend an advanced course in group representation the-

ory do not go on to be specialists in the subject, for otherwise the class would
be much smaller. Their main interests may be in other areas of mathemat-
ics, such as combinatorics, topology, number theory, or commutative algebra.
These students need a solid, comprehensive grounding in representation theory
that enables them to apply the theory to their own situations as the occasion
demands. They need to be able to work with complex characters, and they also
need to be able to say something about representations over other ields and
rings. While they need the theory to be able to do this, they do not need to be
presented with overly deepmaterial whosemain function is to serve the internal
workings of the subject.
With these goals in mind, I have made a choice of material covered. Mymain

criterion has been to ask whether a topic is useful outside the strict conines of
representation theory and, if it is, to include it. At the same time, if there is a
theorem that fails the test, I have left it out or put it in the exercises. I have
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Preface xi

sometimes omitted standard results where they appear not to have suficiently
compelling applications. For example, the theorem of Frobenius on Frobenius
groups does not appear, because I do not consider that we need this theorem to
understand these groups at the level of this text. I have also omitted Brauer’s
characterization of characters, leading to the determination of a minimal split-
ting ield for a group and its subgroups. That result is stated without proof,
and we do prove what is needed, namely that there exists a inite degree ield
extension that is a splitting ield. For the students who go on to be specialists in
representation theory there is no shortage of more advanced monographs. They
can ind these results there—but they may also ind it helpful to start with this
book! One of my aims has been to make it possible to read this book from the
beginning without having to wade through chapters full of preliminary techni-
calities, and omitting some results aids in this.
I have included many exercises at the ends of the chapters, and they form an

important part of this book. The beneit of learning actively by having to apply
the theory to calculate with examples and solve problems cannot be overesti-
mated. Some of these exercises are easy, some more challenging. In a number
of instances, I use the exercises as a place to present extensions of results that
appear in the text or as an indication of what can be done further.
I have assumed that the reader is familiar with the irst properties of groups,

rings, and ield extensions and with linear algebra. More speciically the reader
should know about Sylow subgroups, solvable, and nilpotent groups, as well
as the examples that are introduced in a irst group theory course, such as the
dihedral, symmetric, alternating, and quaternion groups. The reader should also
be familiar with tensor products, Noetherian properties of commutative rings,
the structure ofmodules over a principal ideal domain, and the irst properties of
ideals as well as with Jordan and rational canonical forms for matrices. These
topics are covered in a standard graduate-level algebra course. I develop the
properties of algebraic integers, valuation theory, and completions within the
text since they usually fall outside such a course.
Many people have read sections of this book, worked through the exer-

cises, and been very generous with the comments they have made. I wish to
thank them all. They include Cihan Bahran, Dave Benson, Daniel Hess, John
Palmieri, Sverre Smalø, and many others.
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