Index

AC, 23, 108, 130, 155, 174, 208
AC analysis, 153
AC characteristic, 209
Accumulation, 28, 37, 38, 44, 45, 58, 169
Accumulation mode, 1, 2, 5, 9, 15, 18, 19, 22, 23, 26, 28, 36, 38, 41, 45, 46, 57, 58, 86, 108, 109, 111–113, 116, 141, 142, 144, 145, 156, 160, 161, 165, 169, 184, 208
Accumulation regime, 58
Acid marker, 183
ADG, 139
ADS, 210
AM, 1
Amplifiers, 1
Analytical model, 8, 46
Asymmetric, 139, 142, 144
Asymmetric device, 20, 144
Asymmetric mode, 139
Asymmetric model, 153
Asymmetric operation, 139, 146
Biological solution, 194
Bio-sensor, 14, 183, 194
Bipolar junction transistors, 1
BJT, 1
Body center potential, 94
Boltzmann statistics, 12, 17, 20, 22, 46, 76, 139
Bottom of the valence band, 30
Boundary condition, 20, 25
BOX, 17
Breakdown, 2
Buried oxide, 17
Cancer marker, 184
Capacitance, 81
Carrier mobility, 88, 164
Center potential, 27, 34, 36, 62, 79, 94, 95
Channel conductivity, 12
Channel doping, 23
Channel interface, 63
Channel length, 38
Channel potential, 64
Channel thermal noise, 155
Channel thickness, 23, 60, 76
Characteristic, 15, 25, 28, 47, 72, 185, 192
Charge-based model, 23, 29, 57, 76, 145, 194, 208
Charge-based relationship, 155, 160
Charge-threshold voltage, 165
Charge-voltage dependence, 47, 79, 185, 192
Circuit simulation, 23
CMOS circuits, 4
CMOS-compatible, 4
Common core, 50
Compact model, 14, 23, 24
Conduction band, 30, 186
Conductivity modulation, 2
Confined energy, 24
Controlled resistance, 1
Conventional bulk, 2
Coulomb scattering, 10, 91
Counter-ions, 184
Critical center potential, 69
Critical gate potential, 81
Critical surface potential, 67, 69
Cross-correlation noise, 161
Cross-sections of electrons and holes, 186
Current continuity, 43
CV-measurements, 164
Cylindrical coordinates, 26
Cylindrical geometry, 192
Cylindrical junctionless, 50
Cylindrical shape, 52
DC, 155, 174, 208
DC characteristic, 209
Deep depletion, 19, 20, 24, 26, 28, 54
Deep-depletion regime, 208
Degeneracy factor, 186
Delay, 23
Density of states, 29
Depletion mode, 37, 57, 78
Depletion region, 185
Depletion width, 16
Design-space, 60, 69, 197
DIBL, 3, 27
Dielectric thickness, 52
Differential equation, 62
Diffusion constant, 42
Diffusion current, 42
Distribution of interface states density, 193
DNA, 183
Donor density, 61
Donor trap, 186
Doping concentration, 4, 60, 69
Doping density, 10, 72, 84, 189
Double-gate FETs, 3, 6, 50, 60
Drain contact, 2
Drain current, 19, 20, 22, 23, 25, 27
Drain-induced barrier lowering, 3, 24, 65, 92, 104
Drift current, 41
Drift-diffusion model, 28, 150, 164
EDL, 184
Effective gate voltage, 192
Einstein relation, 42
Electric field, 33, 62
Electrical double layer, 184
Electrolyte, 183
Electron affinity, 35
Electron current density, 42
Electron density, 24, 199
Electron effective mass, 30
Electrostatics, 60
Emission coefficients, 186
Energy level of traps, 186
Energy levels for interface trapped charge, 192
Energy traps distribution, 193
Enhancement-mode, 201
EPFL junctionless model, 23
EPFL-JL model, 23, 208
Extremum potential, 146
Fermi energy, 31
Fermi potential, 16, 33, 43, 61, 77, 141
Fermi potential gradient, 43
Fermi-Dirac distribution, 29, 30
Fick’s law, 42
Field-effect transistors, 1, 14
FinFET, 8
Fixed charge density, 20, 34
Flat-band, 5, 10, 18, 19, 45, 62, 199
Flat-band condition, 36, 38, 86, 191
Flat-band potential, 45, 46, 68, 86, 149
Frequency, 25
Full depletion, 5, 200
Full depletion approximation, 24, 86, 185, 189
Fully depleted SOI, 4
GAA, 14
Gate capacitance, 2, 52, 192
Gate leakage current, 3
Gate length, 2
Gate oxide capacitance, 38
Gate-all-around, 3, 14, 55, 183
Gaussian distribution, 21
Germanium, 1
Gradual-channel approximation, 17
Harmonic oscillator, 23
Heavily doped, 4
High-k dielectrics, 3
Highly doped, 46
Hole effective mass, 30
Hole layer, 83
Homojunction, 9
Hot carriers, 3
Hspice simulation, 209
Hybrid, 19, 45, 142
IGFET, 2
IM, 18
Impurity concentration dependence, 11
Induced gate noise, 155, 159
Initial guess, 25
Insulated-gate semiconductor field-effect transistor, 2
Interface-charge density, 193
Intrinsic carrier density, 77
Intrinsic delay, 86, 88, 89
Inversion layer, 4, 15, 41, 60, 64, 76, 81, 200
Inversion mode, 3, 5, 8–10, 13–15, 20, 23, 25, 78, 92, 164, 171
Inversion-mode, 184, 185
Ion-sensitive field-effect transistor, 183
Ionized dopants, 10
ISFET, 183
JL VeSFET, 197
Junction, 1
Junction capacitance, 3
Junction field-effect transistor, 15, 174
Junction unipolar gate FET, 174
Junction-based, 5
Junctionless, 3
Junctionless field-effect transistor, 4
Leakage current, 2
Lifetime, 202
Linear regime, 208
Linearization, 17
Liquid-solid interface, 184
Low-channel, 12, 25
Low-field mobility, 164
Low-power, 92
MacLaurin series, 62
Majority carrier, 5, 15, 29, 41
Maxwell-Boltzmann statistics, 30
Metal-semiconductor work function difference, 35
Miniaturization limits, 1
Minimum feature size, 2
Minority carrier, 29, 61, 76
Minority carrier generation, 200, 202
Mobile charge density, 20–22, 26, 34, 41, 69, 153
Mobility, 10, 14
Moore’s Law, 2
MOSFET, 2
Multigate, 3
Multiscale quantum mechanics, 28
Nanowire, 3, 8, 12, 14, 24, 28, 29, 50, 54, 82, 183, 184
Negative and positive ions, 184
Noise, 155, 208
Nondegenerate semiconductor, 43, 50
Nonequilibrium Green function, 12, 24, 28
Numerical simulation, 46
Occupation probability, 192
Off-current, 60, 71, 200
Off-gate voltage, 73
Ohm’s law, 16
On-current, 10, 60
Pao-Sah integral, 26
Parabolic approximation, 16, 20, 21, 25, 27, 94
Parabolic potential, 92, 146
Partly depleted SOI, 201
Partly accumulated, 46
Partly depleted, 46
Performance, 86
Perturbation potential, 24
Pinch-off voltage, 176
pn junction, 4
Poisson equation, 12, 20, 26, 50, 55
Poly-crystalline silicon, 2
Potential distribution, 27, 93, 94, 199
Potential fluctuation, 11
Power consumption, 3, 23, 86
Power spectral density, 155
Protein marker, 183
QCE, 23
Quantum confinement effects, 23
Quantum correction, 24
Quantum dot, 3
Quantum energy balance, 28
Quantum mechanical correction, 12
Quantum mechanical effects, 23
Quantum transport simulation, 14
Quantum well, 24
Quasi-Fermi potential, 61, 63, 151, 158
Rail-to-rail supply voltage, 73, 197
Random dopant fluctuation, 3, 11, 12, 92
Receptor molecule, 183
Reliability, 1, 3
Saturation, 54, 208
Scattering, 42
Schrödinger equation, 23, 30
Self-depletion, 186.
Semiconductor band-gap, 35
Semiconductor thickness, 62
Semiconductor-insulator interface, 29, 93
Short-channel devices, 4, 92
Short-channel effects, 8, 9, 92, 101
Silicon thickness, 41, 72, 84
SOI, 3, 201
Solid-state, 1
Source contact, 2
Speed, 86
Split-CV, 164
Subthreshold behavior, 11, 92
Subthreshold operation, 200
Subthreshold regime, 16
Subthreshold swing, 3, 17, 24, 25, 27, 92
subthreshold swing degradation, 193
Surface electric field, 21, 51
Surface potential, 12, 17, 18, 20, 34, 62, 65, 79, 95, 188
Surface traps, 185
Surface-roughness scattering, 174
Surface-to-volume ratio, 183
Symmetric, 108
Symmetric double-gate, 29
Symmetric gate capacitance, 35
Symmetric operation, 25, 139
TCAD simulation, 38, 47, 53, 149, 194
Technology node, 2
Thermal budget, 4
Thermal velocity, 186
Threshold voltage, 5, 11, 16, 18, 19, 22–25
Threshold voltage roll-off, 3
Threshold voltage variation, 11
Top of the conduction band, 29
Transcapacitance, 25, 27, 108
Transconductance, 47
Transient current, 200
Transistor, 1
Transition layer, 183
Traps’ occupation probability, 186
Tri-gate, 3
Tunnel FETs, 3
Twin gate VeSFET, 197
Undoped silicon, 31
Ungated devices, 192
Vacuum tube, 1
Valence band, 30, 186
Vertical slit FET, 3
Vertical transistors, 3
VeSFET, 3, 6, 8
VeSTIC, 8
Virtual device, 144
Voltage-controlled resistor, 4
Ward-Dutton charge partitioning, 28
Weak accumulation, 58
Weak depletion, 26
Weak inversion, 63
Y-function, 164