Index

Ampere-Maxwell law, 62
Analytical Theory of Heat, The, 50
arctic ice, growth of, 55–7
Aristotle (384–322 BCE), 39
asymptotic expansion, 24–5, 59
atomic scale, 79–80, 92
atomic time, 84
Black, Joseph (1728–1799), 49
blackbody radiation, 3, 74–7
Blast wave, 32
Bohr atom, 77–9
Bohr, Niels (1885–1962), 66, 77
Boltzmann’s constant, 3, 70, 85–6
Borda, Jean Charles (1733–1799), 63
Bose-Einstein statistics, 82
boson, 82
Boyle’s law, 11
Buckingham π theorem, 7–8
Buckingham, Edgar (1867–1940), 7
Buckingham’s rule of thumb, 9–12, 18–19, 30
bulk modulus, 23, 26
of ideal gas, 27
calorimetry, 49
capillary waves, 36–7, 47
Carnot, Sadi (1796–1832), 49
centripetal acceleration, 15
charge density, 61–2
Child, C. D. (1868–1933), 66
Child’s law, 66–8, 73
classical electron radius, 87–8
classical scale(s), 88–9, 91
classical time, 86
Compton wavelength, 93–4
Compton, A. H. (1892–1962), 74
convection, 51, 60
cooking a turkey, 51–3
current density, 61–2, 66
deep-water wave, 35
degeneracy pressure, 82
diffusion equation, 54
dimensional constants
fundamental, 85
table of, 85
dimensional cosmology, 85
dimensional formulae, 4–5, 8, 17, 19–20
dimensional homogeneity, 1–3, 5
dimensional model, 11
dimensionless product, 3–4, 6, 48
complete, 8
independent, 8
dimensionless products
number of, 9
dimensions
absolute vs. relative, 22
effective, 17–20
imposed, 21–2
number of, 8–9
Dirac, Paul (1902–1984), 86
displacement current, 62
Eddington, Arthur (1882–1944), 86
Eddington-Dirac number, 85–7, 90, 93, 95
effective dimension, 17–20, 26, 30, 60, 64,
72–3
number of, 19–20
Einstein, Albert (1879–1955), 74
elastic materials, 25
electret oscillations, 72
electric constant. See vacuum permittivity
Index

- **electric dipole moment**, 72
- **electric field**, 61, 65, 68, 72
- **electromagnetic wave**, 62, 65, 76, 82
- **electron tube**, 66
- escape velocity, 31

Experimental Researches in Electricity, 62

- Faraday, Michael (1791–1867), 62
- Faraday’s law, 62–3
- Fermi-Dirac statistics, 82
- fine structure constant, 83, 89–90, 93, 95
- fluid element, 43
- fluid variables, 33
- Fourier, Joseph (1768–1830), 2, 50
- free vibrations, 32
- free falling object, 3
- Froude number, 15

- Galileo (1584–1642), 1
- geomagnetic field, 63
- gravitational constant, 15, 31, 85
- gravitational instability, 31
- gravitational-electrostatic charge, 87
- gravitational-electrostatic mass, 87
- gravity wave, 37

- hanging stretched cable, 23–4
- heat, 49–50, 59
- heat capacity, 49–50, 56
- heat conduction, 50–1, 60
- heat flux, 51, 54
- heat transfer, 49, 54
- Heisenberg uncertainty principle, 94
- Helmholtz resonator, 27–8
- Helmholtz, Hermann von (1821–1894), 27
- hydraulic jump, 41–3

- ideal fluid, 32
- ideal gas, 9–11, 19, 27, 59, 80, 84
- quantized, 80–2
- ideal gas constant, 59
- imposed dimension, 20–1, 30
- ionosphere, 68
- Joule, James (1818–1889), 49
- Kepler’s third law, 30

- laminar flow, 42
- latent heat, 49
- light waves, 62
- Lorentz force law, 61

- magnetic constant. See vacuum permeability
- magnetic dipole moment, 63–4
- magnetic field, 61, 65, 68, 70, 72
- Maxwell, James Clerk (1831–1879), 61
- Maxwell’s equations, 61–3

- Nansen, Fridtjof (1861–1930), 55
- Newton, Isaac (1643–1727), 1
- Newton’s law of gravitation, 31
- Newton’s second law, 1, 20
- non-dimensionalization, 55

- orbits, two-body, 29–30
- oscillations of a compass needle, 63–5

- Pauli, Wolfgang (1900–1958), 90
- pinch effect, 70–3
- pipe flow
- equilibrium, 43–5
- fully developed turbulence, 46
- non-equilibrium, 45–6
- scale model, 46–7
- Planck scale, 92–3, 95
- charge, 93
- length, 93
- mass, 93
- time, 93
- Planck, Max (1858–1947), 74, 92
- Planck’s constant, 76, 85
- Planck’s constant, 3, 74, 77, 80
- plasma frequency, 69
- plasma oscillation, 69, 73
- plasma physics, 68
- power law approximation, 25
- pressure, 9–11, 17–19, 31
- gradient, 43, 47

- quantum electrodynamics, 89
- quantum physics, 74

- radiation from accelerating charge, 65–6
- quantized, 82–3
- Rayleigh algorithm, 4–7, 47
- modified, 7
- Rayleigh, Lord, 5, 47
- Reynolds number, 42–3, 46
- Reynolds, Osborne (1842–1912), 42

- scale model, 46–7
- Schwarzschild radius, 93–4
Index

shallow-water wave, 35
shear viscosity. See viscosity
side window buffeting, 27–8
similitude, principle of, 5
dynamic, 47
geometric, 47
small amplitude wave, 34
soap bubble, 32
Sommerfeld, Arnold (1868–1951), 89
space charge limited current density.
See Child’s law
spectral energy density, 15, 76–7
speed of light, 62
speed of sound, 26
spring-mass system, 12–13, 21–2
stack effect, 58–9
Stefan problem, 57
Stefan, Josef (1835–1893), 57
Stefan-Boltzmann law, 3, 75
Stokes, George (1819–1903), 40
Stokes’ law, 40
Strutt, John William (1842–1919).
See Rayleigh, Lord
surface tension, 35–7
symmetry, 2, 30
temperature, 49
gradient, 51, 54
terminal speed, 39–40, 48
thermal conductivity, 50–1, 54, 56
thermal diffusivity, 54
thermodynamics, 49
Thomson, William (1824–1907), 49
tsunami, 35
turbulent flow, 42
USDA data, 53
vacuum permeability, 61
vacuum permittivity, 61
vacuum tube, 66
variable of interest, 7, 10, 24, 26
virtual cathode, 68
viscosity, 39, 48
water drop oscillation, 47
water drop, size of, 37–8
water waves, 33–5
wave speed
deep-water, 35
of capillary waves, 37
of light, 62
of sound, 26
of tsunami, 35
shallow-water, 35
waveform, transverse, 31
z-pinch, 70