Mechanics of Wave-Seabed-Structure Interactions
Modelling, Processes and Applications

Opening with recent advances in both the theoretical and physical models for wave-seabed-structure interactions, this book provides an updated look at the mathematics behind the interactions between sea, soil and man-made structures. The main models are broken down to key equations, and their strengths and challenges are discussed. These models are then placed in context with industry-relevant examples, in both two and three dimensions. From seabed instability around offshore wind turbines, to soil conditions in response to the laying of submarine pipelines, this book takes a comprehensive look at a variety of wave-seabed-structure interactions.

With important implications for the future of offshore infrastructure, this is an ideal resource for industry workers, undergraduate and graduate students, and researchers alike.

Dong-Sheng Jeng is a Professor at Shanghai Jiao Tong University and Griffith University, Australia. His main research interests include coastal and ocean modelling, offshore geotechnics, and wave-seabed-structure interactions around marine infrastructure, which he has been studying for more than 20 years. Alongside his research, he has authored or co-authored more than 250 journal articles, and is an associate editor for a number of journals in the offshore engineering field.
Cambridge Ocean Technology Series
1. O. Faltinsen: Sea Loads on Ships and Offshore Structures
2. Roy Burcher and Louis J. Rydill: Concepts in Submarine Design
7. Dong-Sheng Jeng: Mechanics of Wave-Seabed-Structure Interactions: Modelling, Processes and Applications
Mechanics of
Wave-Seabed-Structure
Interactions
Modelling, Processes and Applications

DONG-SHENG JENG
Griffith University, Queensland
Contents

Preface xi

1 Overview 1
 1.1 Background 1
 1.2 Recent Advances in Theoretical Models for Wave-Seabed Interactions (WSIs) 2
 1.2.1 An Overview of Theoretical Models 2
 1.2.2 Simplified Models 4
 1.2.3 Biot’s Poro-Elastic Models for Oscillatory Mechanism 6
 1.2.4 Inelastic Models for Residual Mechanism 14
 1.2.5 Poro-Elastoplastic Models 16
 1.2.6 Waves Propagating over a Porous Seabed: Wave Damping and Seepage Flux 17
 1.3 Recent Advances in Wave-Induced Seabed Instability 19
 1.3.1 Shear Failure 19
 1.3.2 Liquefaction 20
 1.4 Recent Advances in Physical Modeling 23
 1.4.1 Wave Flume Experiments 23
 1.4.2 Compressive Tests 24
 1.4.3 Centrifugal Wave Experiment 25
 1.5 Recent Advances in Field Measurements 25
 1.6 Recent Advances in Wave-Seabed-Structure Interactions (WSSIs) 27
 1.6.1 Seawalls 27
 1.6.2 Breakwaters 28
 1.6.3 Pipelines 30
 1.6.4 Other Foundations 32
 1.7 Challenges in Future Studies 32

2 Basic Seabed Mechanisms 34
 2.1 Introduction 34
 2.2 Wave Models 36
 2.2.1 Linear Wave Model 37
 2.2.2 Fully Non-Linear Wave Models 38
Contents

2.3 Wave-Induced Oscillatory Soil Response
2.3.1 Yamamoto–Madsen Model 41
2.3.2 Okusa (1985b) Model 46
2.3.3 Mei–Foda (1981) Model 46
2.3.4 \(u-p \) Approach 48
2.3.5 \(u-U \) Approach 49
2.3.6 Discussions: Comparisons and Validation of the Models 50

2.4 Wave-Induced Residual Soil Response 58
2.4.1 1D Seed–Rahman Model 58
2.4.2 2D Seed–Rahman Model 68
2.4.3 Poro-Elastoplastic Seabed Model 71

2.5 Progressive Nature of Wave-Induced Liquefaction 81
2.5.1 Two-Layered Fluid Systems 83
2.5.2 Poro-Elastoplastic Soil Model for Progressive Liquefaction 85

2.6 Solitary Wave over a Sloping Seabed 90
2.6.1 Theoretical Model 91
2.6.2 Comparison with Previous Works 92
2.6.3 Results and Discussions 96

2.7 Coupled Model for Wave-Seabed Interactions 105

3 Soil Response in Marine Sediments under Combined Loading of Waves and Currents 109
3.1 Introduction 109
3.2 Flow Models for Wave-Current Interaction 109
3.2.1 Analytical Solution: Third-Order Approximation of Wave-Current Interactions 109
3.2.2 Numerical Models of Wave-Current Interactions 113
3.3 Seabed Model 117
3.3.1 Boundary Value Problem 117
3.3.2 Analytical Solutions and Numerical Models 118
3.3.3 Treatment of Lateral Boundary Conditions 118
3.4 Discussions 121
3.4.1 Effects of Currents 122
3.4.2 Seabed Liquefaction under Combined Wave and Current Loading 127

4 Integrated Model of Wave-Seabed Interactions around Caisson-Type Breakwaters 129
4.1 Introduction 129
4.2 Theoretical Model 130
4.2.1 Wave Model 131
4.2.2 Seabed Model 131
4.2.3 Integration of Wave and Seabed Models 132
4.3 Validation of the Model

4.3.1 Lu’s (2005) Experiment: Progressive Waves

4.3.2 Tsai and Lee’s (1995) Experiment: Standing Wave

4.3.3 Mizutani and Mostafa’s (1998) Experiment: Submerged Breakwater

4.3.4 Mostafa et al.’s (1999) Experiment: Composite Breakwater

4.4 Application I: Seabed Response around Composite Breakwater under Ocean Wave Loading

4.4.1 Consolidation of Seabed under Composite Breakwater and Static Water Pressure

4.4.2 Dynamic Response of a Seabed

4.4.3 Wave-Induced Momentary Liquefaction

4.5 Application II: Water Waves over Permeable Submerged Breakwaters with Bragg Reflection

4.5.1 Numerical Example Configuration

4.5.2 Comparison with Experiments (Cho et al. 2004)

4.5.3 Pore-Water Pressures

4.5.4 Vertical Effective Stresses

4.5.5 Liquefaction Potential

4.6 Application III: Wave-Induced Dynamic Response in the Vicinity of a Breakwater on a Sloping Seabed

4.6.1 Wave-Seabed-Breakwater Interactions

4.6.2 Wave-Induced Residual Liquefaction

5 Mechanics of Wave-Seabed-Pipeline Interactions

5.1 Introduction

5.2 Theoretical Formulations

5.2.1 Wave Model

5.2.2 Seabed Model

5.2.3 Integration of Wave and Seabed Models

5.3 Validations of Theoretical Models

5.4 Oscillatory Soil Response around a Fully Buried Pipeline

5.4.1 Oscillatory Soil Response in a Non-Homogeneous Seabed

5.4.2 Internal Stresses of Pipeline

5.4.3 Inertial Effects and Soil-Pipeline Contact Effects

5.4.4 Effects of a Cover Layer

5.5 Residual Soil Response around a Buried Pipeline

5.5.1 Wave-Induced Pore Pressure Build-Up around a Buried Pipeline

5.5.2 Poro-Elastic Seabed Model of Wave-Induced Residual Liquefaction

5.6 Wave-Seabed-Pipeline Interactions in a Trench Layer

5.6.1 Development of Liquefaction Potential

5.6.2 Implementation for Practical Engineers
5.7 Improved Analysis Method for Wave-Induced Pipeline Stability 226
 5.7.1 Physical Phenomena of Pipeline Losing On-Bottom Stability 228
 5.7.2 Criteria for Pipeline On-Bottom Instability 229
 5.7.3 Procedure for Analysis of Wave-Induced Pipeline On-Bottom Stability 230
 5.7.4 Comparison with DNV Recommended Practise 231

6 Three-Dimensional Model of Wave-Seabed Interactions around Breakwater Heads 235
 6.1 Introduction 235
 6.2 Wave Field around Breakwater Heads 235
 6.2.1 Linear Wave Model 235
 6.2.2 Non-Linear Wave Model 237
 6.3 Seabed Models 239
 6.3.1 Poro-Elastic Models of Oscillatory Soil Response 239
 6.3.2 Poro-Elastic Models of Residual Soil Response 240
 6.3.3 Poro-Elastoplastic Models 241
 6.4 Results and Discussions 242
 6.4.1 Wave Diffraction 242
 6.4.2 Wave Obliquity 243
 6.4.3 Comparison of 1D and 3D Models 245
 6.4.4 Comparison between Poro-Elastic and Poro-Elastoplastic Models 246
 6.5 Wave-Induced Oscillatory Soil Response around Two Breakwaters 248

7 Seabed Instability around Offshore Wind Turbine Foundations 253
 7.1 Introduction 253
 7.2 Monopile Foundation 254
 7.2.1 Seabed Model 255
 7.2.2 Wave Model 256
 7.2.3 Boundary Conditions 256
 7.2.4 Integrated Process 258
 7.2.5 Discussion: Seabed Response around a Monopile 258
 7.2.6 Discussion: Parametric Studies of Pore Pressure around the Monopile 261
 7.2.7 Discussion: Effect of Wavelength on Pore-Water Pressure around a Monopile 265
 7.2.8 Discussion: Soil Displacements 265
 7.2.9 Discussion: Displacement of the Monopile 266
 7.3 Case Study: Donghai Offshore Wind Farm, Shanghai, China 268
 7.3.1 General Introduction of Donghai Offshore Wind Farm 270
 7.3.2 Characteristics of DH-OWF and Its Engineering Solutions 270
 7.3.3 Foundation of Donghai Offshore Wind Farm 272
 7.3.4 Numerical Model 272
8 Physical Modelling: One-Dimensional Compressive Tests

8.1 Introduction

8.2 Experimental Facility

8.3 Experiments with a Sandy Deposit
 8.3.1 Materials
 8.3.2 Experimental Procedure
 8.3.3 Comparison with Previous Analytical Solution
 8.3.4 Discussion: Attenuation and Phase Lag of Pore Pressures
 8.3.5 Discussion: Effects of Wave Cycles
 8.3.6 Discussion: Effects of Wave Period and Wave Height
 8.3.7 Discussion: Effects of Relative Density and Saturation
 8.3.8 Discussion: Sandy Deposit Liquefaction
 8.3.9 Discussion: Variations of Sandy Deposit Height

8.4 Experiments with Sand-Clay Mixtures
 8.4.1 Experimental Details
 8.4.2 Discussion: Effects of Clay Content (CC)
 8.4.3 Discussion: Settlement of the Deposit

Appendix A Analytical Solution for a Seabed of Finite Thickness (Hsu & Jeng 1994)

Appendix B Derivation of $u-p$ Approximation (Jeng et al. 1999)

Appendix C Derivation of $u-U$ Approximation (Cha et al. 2002)

Appendix D Mathematical Derivations of Analytical Solutions for Residual Soil Response (Jeng et al. 2007)

Appendix E Mathematical Model of the Two-Layered Viscous Fluid System (Liu et al. 2009)

References

Author Index

Subject Index
Preface

The phenomenon of the wave-seabed-structure interaction has attracted extreme attention among coastal and geotechnical engineers in recent years. Intensive research activities in the area have been carried out by numerous research groups across the world. Understanding of the mechanisms and processes of the wave-seabed-structure interaction problem is particularly important for marine geotechnical engineers involved in the design of foundations around marine infrastructures. The aim of this book is to provide readers with a comprehensive theoretical background for the wave-induced soil response in marine sediments around marine infrastructures, covering various aspects.

This book consists of eight chapters. The first chapter sets out the background to the topic, describes recent advances in the area and explores possible future research agendas. This chapter is a useful starting point for postgraduate students, and provides junior researchers and readers new to this discipline with an overall picture of the research topic. Chapter 2 presents detailed mathematical formulations for the wave-induced soil response, including pore pressure, effective stresses and soil displacements. This chapter summarises the key processes from my first book (Porous Models for Wave-Seabed Interactions, published by Springer in 2013) and some additional new results. Chapter 3 presents analytical and numerical models for the seabed response subject to combined wave and current loading. In Chapters 4 and 5, two-dimensional marine infrastructures are considered. Among these, seabed response around caisson-type breakwaters is presented in Chapter 4. The cases of a submerged breakwater and a breakwater on a sloping seabed are included in the chapter. In Chapter 5, offshore pipelines are considered, including those fully and partially buried in a trench layer. In Chapters 6 and 7, three-dimensional model are presented for two different types of marine infrastructures: breakwaters and offshore wind turbine foundations. Chapter 6 provides an intensive study for the soil response around breakwater heads, while Chapter 7 presents the case of conventional offshore wind turbine foundations such as monopiles and a case study at Donghai offshore wind farms. Finally, Chapter 8 presents results of the recent laboratory experiments on the wave-induced oscillatory pore pressures, including sand-clay mixtures.

Numerous co-workers have made significant contributions to parts of the materials included in this book: Dr H.-Y. Zhao, Professor J.-S. Zhang, Drs C. Zhang and T.-T. Sui (Hohai University, China), Professor Fuping Gao (Institute of Mechanics, Chinese Academy of Science), Drs C. C. Liao, Y. Zhang and B. Liu (Shanghai Jiao Tong University, China), Professor J. H. Ye (Institute of Rock and Soil Mechanics, Chinese Academy
Preface

of Science, China) and others. Several postgraduate students, Sheng Wu, Zuodong Liang, Xiaoxiao Wang, Shuang Han and Lin Cui at Griffith University, Australia, helped me to finalise the manuscript.

The contents covered in this book include major research outcomes of numerous research projects sponsored by Australian Research Council Grants (Australia), EPSRC (UK), the National Natural Science Foundation of China, EU FP-7 Project-MERMAID and the National 1000 Talent Award starting funding (China).

Finally, I appreciate the continuous supports of my wife (Tina) and daughters (Cathryn and Joy).