

Introduction to Modern Magnetohydrodynamics

Ninety-nine percent of ordinary matter in the Universe is in the form of ionized fluids, or plasmas. The study of the magnetic properties of such electrically conducting fluids, magnetohydrodynamics (MHD), has become a central theory in astrophysics, as well as in areas such as engineering and geophysics. This textbook offers a comprehensive introduction to MHD and its recent applications, in nature and in laboratory plasmas; from the machinery of the Sun and galaxies, to the cooling of nuclear reactors and the geodynamo. It exposes advanced undergraduate and graduate students to both classical and modern concepts, making them aware of current research and the ever-widening scope of MHD. Rigorous derivations within the text, supplemented by over 100 illustrations and followed by exercises and worked solutions at the end of each chapter, provide an engaging and practical introduction to the subject and an accessible route into this wideranging field.

Sébastien Galtier is a Professor of astrophysics at the Université Paris–Saclay, France. His research focuses on magnetohydrodynamic turbulence, and he has published widely in the field. He was President of the French National Program in Solar Physics (CNRS) during the years 2010–2014, and is an honorary member of the prestigious Institut Universitaire de France.

Introduction to Modern Magnetohydrodynamics

Sébastien Galtier

Université Paris-Saclay

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107158658

© Editions Vuibert – Paris 2013 English translation © Sébastien Galtier 2016

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2013 as Magnétohydrodynamique – Des plasmas de laboratoire à l'astrophysique Updated English edition published 2016

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data

Names: Galtier, Sébastien, author.

Title: Introduction to modern magnetohydrodynamics / Sébastien Galtier, Université Paris–Saclay

Description: Cambridge, United Kingdom; New York, NY: Cambridge University Press, 2016. | Includes bibliographical references and index.

Identifiers: LCCN 2016014636l ISBN 9781107158658 (Hardback) | ISBN 1107158656 (Hardback) Subjects: LCSH: Magnetohydrodynamics.

Classification: LCC QC718.5.M36 G35 2016 | DDC 538/.6–dc23 LC record available at https://lccn.loc.gov/2016014636

ISBN 978-1-107-15865-8 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To my family

Preface

Cambridge University Press & Assessment 978-1-107-15865-8 — Introduction to Modern Magnetohydrodynamics Sébastien Galtier Frontmatter More Information

Contents

	- J			IO.
	Tabl	e of Phy	vsical Quantities	xv
	Part	t I Fou	undations	1
I	Intro	duction	1	3
	1.1	Space	and Laboratory Plasma Physics	3
	1.2	What l	Is a Plasma?	7
	1.3	Kineti	c Description	9
		1.3.1	Collisionless Plasma	10
		1.3.2	Plasma with Collisions	11
		1.3.3	Non-linearities	12
	1.4	Time S	Scales and Length Scales	13
		1.4.1	Plasma Oscillations	13
		1.4.2	Electric Screening	14
		1.4.3	Magnetic Screening	15
		1.4.4	Cyclotron frequency	16
	1.5	From 1	Kinetic to Fluids	17
		1.5.1	Multi-fluid Equations	17
		1.5.2	Mono-fluid Equations	18
2	Magr	netohyd	rodynamics	19
	2.1	Introdu	uction	19
		2.1.1	Electromagnetic Induction	19
		2.1.2	Extension to Conducting Fluids	21

page xiii

<u>'iii</u>		Contents	
	2.2	Towards a Formulation of MHD	21
		2.2.1 Maxwell's Equations	21
		2.2.2 Generalized Ohm's Law	23
	2.3	Quasi-neutrality	24
	2.4	Generalized (Hall) MHD Equations	25
		2.4.1 The Incompressible Limit	27
		2.4.2 Electron MHD	28
		2.4.3 Ideal MHD	28
	2.5	Examples of Electrically Conducting Fluids	29
3	Cons	servation Laws	32
	3.1	Mass	32
	3.2	Momentum	33
	3.3	Energy	34
	3.4	Cross-helicity	36
	3.5	Magnetic Helicity	38
	3.6	Alfvén's Theorem	39
		3.6.1 Magnetic Flux Conservation	39
		3.6.2 Kelvin's Theorem	40
		3.6.3 Alfvén's Theorem	41
	3.7	Magnetic Topology	42
	3.8	Topology at Sub-ion Scales	45
	Exe	rcises for Part I	47
	Par	t II Fundamental Processes	49
4	Magı	netohydrodynamic Waves	51
	4.1	Magnetic Tension	51
	4.2	Alfvén Waves	53
	4.3	Magnetosonic Waves	55
	4.4	Whistler, Ion-Cyclotron, and Kinetic Alfvén Waves	58
		4.4.1 Incompressible Helical Waves	58
		4.4.2 Compressible Hall MHD Waves	61
5	Dyna	amos	65
	5.1	Geophysics, Astrophysics, and Experiments	65
		5.1.1 Experimental Dynamos	65
		5.1.2 Natural Dynamos	70

		Contents	i
	5.2	The Critical Magnetic Reynolds Number	73
	5.3	The Kinematic Regime	74
	5.4	Anti-dynamo Theorems	76
	5.5	The Ponomarenko Dynamo	79
	5.6	The Turbulent Dynamo	83
		5.6.1 Kinematic Mean Field Theory	83
		5.6.2 The α -effect	84
	5.7	Conclusion	85
6	Disc	ontinuities and Shocks	86
	6.1	Rankine–Hugoniot Conditions	86
	6.2	Discontinuities	91
		6.2.1 Tangential and Contact Discontinuities	92
		6.2.2 Rotational Discontinuity	92
	6.3	Shocks	94
		6.3.1 Intermediate Shocks	94
		6.3.2 True Shock	94
	6.4	Collisionless Shocks	94
7	Mag	netic Reconnection	96
	7.1	A Current Sheet in Ideal MHD	96
	7.2	The Sweet–Parker Model	99
	7.3	Collisionless Hall MHD Reconnection	103
	7.4	Perspectives	104
	Exe	rcises for Part II	107
	Par	t III Instabilities and Magnetic Confinement	111
8	Stat	ic Equilibrium	113
	8.1	Equilibrium Equations	113
	8.2	Magnetic Confinement by θ -Pinch	114
	8.3	Magnetic Confinement by z-Pinch	116
	8.4	Toroidal Tokamak Configuration	117
		8.4.1 The Grad–Shafranov Equation	118
		8.4.2 The Soloviev Exact Solution	121
	8.5	Force-Free Fields	122

x Contents

9	Linea	r Pertu	ırbation Theory	125
•	9.1	Instab	-	125
	,,,		Classification	125
		9.1.2	Condition of Existence	126
	9.2	Kineti	c Versus Fluid	127
		9.2.1	The Kinetic Approach	127
		9.2.2	The Fluid Approach	128
	9.3	The E	nergy Stability Criterion	129
		9.3.1	A One-Dimensional Example	129
		9.3.2	Two-Dimensional Examples	131
		9.3.3	The MHD Case	132
	9.4	Pertur	bation Theory	133
		9.4.1	The Small-Displacement Operator	133
		9.4.2	Solution to Initial Values	135
		9.4.3	The Equation of the Normal Modes	136
		9.4.4	Properties of the Operator ${f F}$	136
		9.4.5	The Return on the Energy Integral	138
10	Stud	y of MH	D Instabilities	139
	10.1	Stabili	ty of MHD Waves	139
		10.1.1	Alfvén Waves	140
		10.1.2	Magnetosonic Waves	141
	10.2	Raylei	gh–Taylor Instability	143
		10.2.1	The First Method: Energy Integrals	143
		10.2.2	The Second Method: Normal Modes	144
	10.3	Krusk	al–Schwarzschild Instability	146
	10.4	z-Pinc	h Instability	152
		10.4.1	Static Equilibrium	152
		10.4.2	Instability Modes	154
		10.4.3	Resolution by Normal Modes (Case $m = 0$)	155
		10.4.4	Configuration $m = 1$	160
	10.5	<i>z</i> –θ Pi	nch Instability	160
	10.6	Magne	eto-rotational Instability in Accretion Disks	161
	Exer	cise for	Part III	168

Contents	хi
Part IV Turbulence	171
II Hydrodynamic Turbulence	173
11.1 What is Turbulence?	173
11.1.1 Unpredictability and Turbulence	173
11.1.2 Transition to Turbulence	176
11.2 Statistical Tools and Symmetries	177
11.2.1 Ensemble Average	177
11.2.2 Autocorrelation	179
11.2.3 Probability Distribution and PDF	179
11.2.4 Moments and Cumulants	180
11.2.5 Structure Functions	181
11.2.6 Symmetries	181
11.3 The Exact laws of Kolmogorov	182
11.3.1 The Kármán–Howarth Equations	182
11.3.2 Anomalous Dissipation and Cascade	184
11.3.3 The Four-Thirds and Four-Fifths Exact Laws	186
11.4 Kolmogorov Phenomenology	188
11.5 Intermittency	190
11.6 The Spectral Approach	192
11.6.1 The Spectral Tensor	192
11.6.2 The Energy Spectrum	193
11.6.3 The Kolmogorov $k^{-5/3}$ Spectrum	194
12 MHD Turbulence	196
12.1 From Astrophysics to Tokamaks	196
12.1.1 Solar Wind	196
12.1.2 The Sun	198
12.1.3 The Interstellar Medium	199
12.1.4 Tokamaks	201
12.2 Exact Laws	201
12.2.1 Four-Thirds Law	201
12.2.2 Elsässer Variables and Exact Non-linear Solution	203
12.2.3 Return to the Four-Thirds Law	204
12.3 Iroshnikov–Kraichnan Phenomenology	204
12.3.1 Alfvén Wave-Packets	204
12.3.2 The Energy Spectrum in $k^{-3/2}$	205

(ii	Contents		
	12.4	Intermittency	207
		Magnetic Helicity and Inverse Cascade	209
		The Critical Balance Conjecture	212
		Phenomenology of Weak Alfvén Wave Turbulence	215
		(Grand) Unified Phenomenology	217
	12.9	Hall MHD Turbulence	218
		12.9.1 The Four-Thirds Law and the Magnetic Spectrum	219
		12.9.2 Helicity Wave Turbulence	220
	13 Adva	nced MHD Turbulence	222
		Intermittency	222
	13.1	13.1.1 Fractals and Multi-fractals	222
		13.1.2 The Log-Normal Law	227
		13.1.3 The Log-Poisson Law	229
		13.1.4 The Log-Poisson Law for MHD	231
	13.2	Weak MHD Turbulence and the Closure Problem	232
	13.2	13.2.1 Triadic Interactions and Resonance	233
		13.2.2 IK Phenomenology Revisited	235
		13.2.3 Asymptotic Closure	235
		13.2.4 Exact Solutions in k_{\perp}^{-2}	238
	Eva	rcises for Part IV	241
		·	
		endix 1 — Solutions to the Exercises	243
		endix 2 — Formulary vrences	256 259
	Inde		266

Preface

Physical laws should have mathematical beauty
P. A. M. Dirac – Nobel Prize in Physics (1933)

In our familiar environment, matter appears in solid, liquid, or gaseous form. This triptych vision of the world was shaken in the twentieth century when astronomers revealed that most of the extraterrestrial matter - namely more than 99% of the ordinary matter in the Universe - is actually in an ionized state called plasma whose physical properties differ fundamentally from those of a neutral gas. The study of this fourth state of matter was developed mainly in the second half of the twentieth century and is now considered a major branch of modern physics. A decisive step was taken in 1942 when the Swedish astrophysicist Hannes Alfvén (1908–1995) proposed the theory of magnetohydrodynamics (MHD) by connecting the Maxwell electrodynamics with the Navier-Stokes hydrodynamics. In this framework, plasmas are described macroscopically as a fluid and the corpuscular aspect of ions and electrons is ignored. Nowadays, MHD has emerged as the central theory to understand the machinery of the Sun, stars, stellar winds, accretion disks around super-massive objects such as black holes with the formation of extragalactic jets, interstellar clouds, and planetary magnetospheres. Also, when H. Alfvén was awarded the Nobel Prize in Physics in 1970, the Committee congratulated him "for fundamental work and discoveries in magnetohydrodynamics with fruitful applications in different parts of plasma physics."

The MHD description is not limited to astrophysical plasmas, but is also widely used in the framework of laboratory experiments or industrial developments for which plasmas and conducting liquid metals are used. In the first case, the emblematic example is certainly controlled nuclear fusion with the International Thermonuclear Experimental Reactor (ITER) in Cadarache. Indeed, the control of a magnetically confined plasma requires an understanding of the large-scale equilibrium and the solution of stability problems whose theoretical

xiv Preface

framework is basically MHD. Liquid metals are also used, for example, in experiments to investigate the mechanism of magnetic field generation – the dynamo effect – that occurs naturally in the liquid outer core of our planet via turbulent motions of a mixture of liquid metals. Most of the natural MHD flows cited above are far from thermodynamic equilibrium, with highly turbulent dynamics. Furthermore, a finer description including the most important effect, i.e. the decoupling effect between the ions and the electrons – the Hall effect, is nowadays often used to understand observations and experiments. Thus, an introduction to modern MHD must include both turbulence and the Hall effect, which is the case of this book where a systematic comparison with recent research is made with a large number of citations.

This textbook is an introduction to modern MHD. It provides a clear connection between the theory and recent experimental results. It aims at presenting the main physical properties and applications of plasmas or liquid MHD flows starting from the knowledge of an undergraduate student. It is therefore addressed primarily to advanced undergraduate students, postgraduate (Masters) students – regardless of their area of specialization (astrophysics, plasma, fusion, or fluid mechanics), and engineering students wishing to complete their training. Mathematical derivations are rigorous and the results are illustrated with more than 100 figures, some of which originate from the most recent experimental measurements. Exercises with their solutions complete the presentation. Approximately 80% of the content of this textbook corresponds to a one-semester postgraduate MHD course that I give regularly at the Université Paris–Saclay and which was published in French in 2013. The present version is its English translation with some new material.

I am grateful to all my Masters students, PhD students, and colleagues with whom I have discussed MHD, and in particular to Supratik Banerjee, Romain Meyrand, and Caroline Nore.

Paris, 29 August 2015

Sébastien Galtier

Table of Physical Quantities

Numerical values of some (plasma) parameters appearing in the main text. The international system (IS) is used (densities n_e and n_i are in m^{-3} ; magnetic field B in tesla (T); temperature T in kelvins; magnitude of the electron charge e in coulombs; electron and ions masses m_e and m_i in kg) and we assume that ions are only protons. In the evaluations of ν and η , we consider a completely ionized plasma (Spitzer 1962).

Electron plasma frequency	$\frac{\omega_{pe}}{2\pi} = \frac{(n_{\rm e}e^2/m_{\rm e}\varepsilon_0)^{1/2}}{2\pi} \simeq 8.98 n_{\rm e}^{1/2} {\rm Hz}$
Ion plasma frequency	$\frac{\omega_{pi}}{2\pi} = \frac{(n_i e^2 / m_i \varepsilon_0)^{1/2}}{2\pi} \simeq 0.21 n_i^{1/2} \text{Hz}$
Electron inertial length	$d_{\rm e} = c/\omega_{\rm pe} \simeq 5.3 \times 10^6 n_{\rm e}^{-1/2} {\rm m}$
Ion inertial length	$d_{\rm i} = c/\omega_{\rm pi} \simeq 2.3 \times 10^8 n_{\rm i}^{-1/2} \; {\rm m}$
Electron gyrofrequency	$\frac{\omega_{\rm ce}}{2\pi} = \frac{eB/m_{\rm e}}{2\pi} \simeq 2.8 \times 10^{10} B \mathrm{Hz}$
Ion gyrofrequency	$\frac{\omega_{\rm Ci}}{2\pi} = \frac{eB/m_{\rm i}}{2\pi} \simeq 1.5 \times 10^7 B \rm Hz$
Kinematic viscosity	$v \simeq 10^{10} T^{5/2} n_{\rm i}^{-1} {\rm m}^2/{\rm s}$
Magnetic diffusivity	$\eta \simeq 10^9 T^{-3/2} \mathrm{m}^2/\mathrm{s}$
Reynolds number	$R_{\rm e} = Lu/v$
Magnetic Reynolds number	$R_{\rm m} = Lu/\eta$
Lundquist number	$S = LB/(\eta\sqrt{\mu_0 m_i n_i})$
Magnetic field strength	$1 \text{ Tesla} = 10^4 \text{ Gauss}$
Magnetic pressure	$P_{\rm m} = B^2/(2\mu_0) \simeq 4 \times 10^5 B^2 {\rm Pa}$
Length scales	1 pc $\simeq 3.2$ light-years $\simeq 3 \times 10^{16}$ m