Mathematical Methods and Physical Insights

An Integrated Approach

Mathematics instruction is often more effective when presented in a physical context. Schramm uses this insight to help develop students' physical intuition as he guides them through the mathematical methods required to study upper-level physics. Based on the undergraduate Math Methods course he has taught for many years at Occidental College, the text encourages a symbiosis through which the physics illuminates the math, which in turn informs the physics. Appropriate for both classroom and self-study use, the text begins with a review of useful techniques to ensure students are comfortable with prerequisite material. It then moves on to cover vector fields, analytic functions, linear algebra, function spaces, and differential equations. Written in an informal and engaging style, it also includes short supplementary digressions ("By the Ways") as optional boxes showcasing directions in which the math or physics may be explored further. Extensive problems are included throughout, many taking advantage of Mathematica, to test and deepen comprehension.

Alec J. Schramm is a professor of physics at Occidental College, Los Angeles. In addition to conducting research in nuclear physics, mathematical physics, and particle phenomenology, he teaches at all levels of the undergraduate curriculum, from courses for non-majors through general relativity and relativistic quantum mechanics. After completing his Ph.D., he lectured at Duke University and was a KITP Scholar at the Kavli Institute for Theoretical Physics at UC Santa Barbara. He is regularly nominated for awards for his physics teaching and clear exposition of complex concepts.

Mathematical Methods and Physical Insights

An Integrated Approach

ALEC J. SCHRAMM Occidental College, Los Angeles

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/highereducation/isbn/9781107156418 DOI: 10.1017/9781316661314

© Alec J. Schramm 2022

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2022

Printed in the United Kingdom by TJ Books Limited, Padstow Cornwall 2022

A catalogue record for this publication is available from the British Library.

ISBN 978-1-107-15641-8 Hardback

Additional resources for this publication at www.cambridge.org/schramm

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> To Eitan, whose wit and humor eases my load To Tirtza, who leads by example to show me the way To Aviya, who teaches that obstacles need not block my road To Keshet, whose refracted sunshine colors each day

> > And to Laurel, whose smile lights my life

Contents

	List of BTWs Preface	<i>page</i> xiv xvii
Part I	Things You Just Gotta' Know	
1	Prelude: Symbiosis	3
2	Coordinating Coordinates	6
2.1	Position-Dependent Basis Vectors	6
2.2	Scale Factors and Jacobians	9
	Problems	15
3	Complex Numbers	18
3.1	Representations	18
3.2	Euler's Formula and Trigonometry	20
	Problems	25
4	Index Algebra	28
4.1	Contraction, Dummy Indices, and All That	28
4.2	Two Special Tensors	30
4.3	Common Operations and Manipulations	33
4.4	The Moment of Inertia Tensor	37
	Problems	39
5	Brandishing Binomials	42
5.1	The Binomial Theorem	42
5.2	Beyond Binomials	46
	Problems	48
6	Infinite Series	51
6.1	Tests of Convergence	52
6.2	Power Series	58
6.3	Taylor Series	60
	Problems	66

More Information

viii	CONTENTS	
7	Interlude: Orbits in a Central Potential	73
7.1	The Runge–Lenz Vector	73
7.2	Orbits in the Complex Plane	75
7.3	The Anomalies: True, Mean, and Eccentric	76
	Problems	78
8	Ten Integration Techniques and Tricks	80
8.1	Integration by Parts	80
8.2	Change of Variables	81
8.3	Even/Odd	83
8.4	Products and Powers of Sine & Cosine	86
8.5	Axial and Spherical Symmetry	88
8.6	Differentiation with Respect to a Parameter	89
8.7	Gaussian Integrals	90
8.8	Completing the Square	92
8.9	Expansion of the Integrand	94
8.10	Partial Fractions Decklome	96
	riobenis	99
9	The Dirac Delta Function	105
9.1	The Infinite Spike	105
9.2	Properties of the Delta Function	107
	Problems	114
10	Coda: Statistical Mechanics	117
10.1	The Partition Function	117
10.2	The Chemical Potential	120
10.3	The Ideal Boson Gas	122
	Problems	125
Part II	The Calculus of Vector Fields	
11	Prelude: Visualizing Vector Fields	129
	Problems	132
12	Grad. Div. and Curl	133
12.1	The Del Operator	133
12.1	$\vec{\nabla}$ and Vector Identities	133
12.2	Different Coordinate Systems	130
12.4	Understanding ∇^2 , $\vec{\nabla}$, and $\vec{\nabla} \times$	145
	Problems	152
13	Interlude: Irrotational and Incompressible	155
	Problems	158
14	Integrating Scalar and Vector Fields	159
1/1	Line Integrals	150
14.1	Line integrats	159

	CONTENTS	ix
14.2	Surface Integrals	164
14.3	Circulation	170
14.4	Flux	182
	Problems	193
15	The Theorems of Gauss and Stokes	197
15.1	The Divergence Theorem	197
15.2	Stokes' Theorem	203
15.3	The Fundamental Theorem of Calculus — Revisited	210
15.4	The Helmholtz Theorem	212
	Fiotients	214
16	Mostly Maxwell	218
16.1	Integrating Maxwell	218
16.2	From Integrals to Derivatives	222
16.3	The Potentials	224
	FIODEIIIS	220
17	Coda: Simply Connected Regions	228
17.1	No Holes Barred?	229
17.2	A Real Physical Effect	230
17.3	Single-Valued	232
	Problems	235
Part III	Calculus in the Complex Plane	
18	Prelude: Path Independence in the Complex Plane	239
18.1	Analytic Functions	239
18.2	Cauchy's Integral Formula	243
	Problems	245
19	Series, Singularities, and Branches	248
19.1	Taylor Series and Analytic Continuation	248
19.2	Laurent Series	250
19.3	Multivalued Functions	254
19.4	Problems	261
20	Interlude: Conformal Manning	260
2U	Visualizing Mana	209
20.1	visualizing Maps	269
20.2	Problems	285
21	The Calculus of Residues	287
21.1	The Residue Theorem	287
21.1	Integrating Around a Circle	293

x	CONTENTS	
21.4	Integration with Branch Cuts	301
21.5	Integrals with Poles on the Contour	303
21.6	Series Sums with Residues	307
	Problems	311
22	Coda: Analyticity and Causality	315
22.1	Acting on Impulse	315
22.2	Waves on a String	318
22.3	The Klein–Gordon Propagator	320
	Problems	322
Part IV	Linear Algebra	
23	Prelude: Superposition	325
	Problems	327
24	Vector Space	328
24.1	Vector Essentials	328
24.2	Basis Basics	330
24.3	Kets and Reps	336
	Problems	339
25	The Inner Product	340
25.1	The Adjoint	340
25.2	The Schwarz Inequality	345
25.3	Orthonormality	348
25.4	Building a Better Basis: Gram–Schmidt	353
25.5	Completeness	356
25.6	Matrix Representation of Operators	362
	Problems	364
26	Interlude: Rotations	368
26.1	Active and Passive Transformations	368
26.2	What Makes a Rotation a Rotation?	373
26.3	Improper Orthogonal Matrices: Reflections	381
26.4	Rotations in \mathbb{R}^3	385
26.5	Rotating Operators: Similarity Transformations	391
26.6	Generating Rotations	395
	Problems	400
27	The Eigenvalue Problem	405
27.1	Solving the Eigenvalue Equation	406
27.2	Normal Matrices	412
27.3	Diagonalization	419
27.4	The Generalized Eigenvalue Problem	429
	Problems	430

Cambridge University Press & Assessment 978-1-107-15641-8 — Mathematical Methods and Physical Insights Alec J. Schramm Frontmatter <u>More Information</u>

	CONTENTS	xi
28	Coda: Normal Modes	437
28.1	Decoupling Oscillators	437
28.2	Higher Dimensions	443
	Problems	451
	Entr'acte: Tensors	
29	Cartesian Tensors	457
29.1	The Principle of Relativity	457
29.2	Stress and Strain	458
29.3	The Equivalence Class of Rotations	460
29.4	Tensors and Pseudotensors	465
29.5	Tensor Invariants and Invariant Tensors	466
	Problems	469
30	Beyond Cartesian	473
30.1	A Sheared System	473
30.2	The Metric	475
30.3	Upstairs, Downstairs	477
30.4	Lorentz Tensors	482
30.5	General Covariance	484
30.6	Tensor Calculus	487
30.7	Geodesics, Curvature, and Tangent Planes Problems	492 495
Part V	Orthogonal Functions	
31	Prelude: 1 2 3 Infinity	503
31.1	The Continuum Limit	503
31.1	An Inner Product of Functions	505
51.2	Problems	505
32	Eponymous Polynomials	508
32.1	Legendre Polynomials	508
32.2	Laguerre and Hermite Polynomials	511
32.3	Generating Functions	515
	Problems	519
33	Fourier Series	523
33.1	A Basis of Sines and Cosines	523
33.2	Examples and Applications	526
33.3	Even and Odd Extensions	530
	Problems	535
34	Convergence and Completeness	537
34.1	Pointwise and Uniform Convergence	537
34.2	Parseval's Theorem	543
	Problems	548

More Information

xii	CONTENTS	
35	Interlude: Beyond the Straight and Narrow	550
35.1	Fourier Series on a Rectangular Domain	550
35.2	Expanding on a Disk	552
35.3	On a Sphere: The $Y_{\ell m}$'s	555
35.4	From Shell to Ball	564
	Problems	566
36	Fourier Transforms	569
36.1	From Fourier Sum to Fourier Integral	569
36.2	Physical Insights	574
36.3	Complementary Spaces	580
36.4	A Basis of Plane Waves	587
36.5	Convolution	589
36.6	Laplace Transforms	594
	Problems	598
37	Coda: Of Time Intervals and Frequency Bands	604
37.1	Sampling and Interpolation	605
37.2	Aliasing	609
	Problems	611
Part VI	Differential Equations	
38	Prelude: First Order First	615
	Problems	621
39	Second-Order ODEs	623
39.1	Constant Coefficients	623
39.2	The Wronskian	625
39.3	Series Solutions	630
39.4	Legendre and Hermite, Re-revisited	636
	Problems	641
40	Interlude: The Sturm–Liouville Eigenvalue Problem	645
40.1	Whence Orthogonality?	645
40.2	The Sturm–Liouville Operator	646
40.3	Beyond Fourier	652
	Problems	657
41	Partial Differential Equations	663
41.1	Separating Space and Time	665
41.2	The Helmholtz Equation	670
41.3	Boundary Value Problems	675
41.4	The Drums	683
	Problems	688

Cambridge University Press & Assessment 978-1-107-15641-8 — Mathematical Methods and Physical Insights Alec J. Schramm Frontmatter <u>More Information</u>

	CONTENTS	xiii
42	Green's Functions	694
42.1	A Unit Source	694
42.2	The Eigenfunction Expansion	703
42.3	Going Green in Space and Time	709
42.4	Green's Functions and Fourier Transforms	712
	Problems	717
43	Coda: Quantum Scattering	721
43.1	The Born Approximation	721
43.2	The Method of Partial Waves	725
	Problems	727
	Appendix A Curvilinear Coordinates	729
	Appendix B Rotations in \mathbb{R}^3	733
	Appendix C The Bessel Family of Functions	746
	References	757
	Index	759

List of BTWs

2.1	Curvilinear Coordinates I	page 10
2.2	The <i>n</i> -Dimensional Sphere S^n	13
3.1	Special Relativity and Hyperbolic Geometry	25
4.1	Beyond Three Dimensions	34
4.2	Integration Measures	36
5.1	Fun with Pascal's Triangle	44
6.1	Why Should the Harmonic Series be Divergent?	55
6.2	Cauchy Sequences	56
6.3	Conditional Convergence	57
6.4	Why Is It Called the Radius of Convergence?	59
8.1	The Cauchy Principal Value	84
8.2	The Error Function	91
8.3	Asymptotic Expansions	95
8.4	The Fundamental Theorem of Algebra	98
8.5	The Mean Value Theorem	98
12.1	Shear Neglect	151
14.1	Tangent Vectors	168
14.2	Minimal Surfaces	169
14.3	Conservative Fields	177
14.4	Conservation of Energy	181
14.5	Gauss' Law in Different Dimensions	185
15.1	Gauss' Law for Gravity and Magnetism	202
15.2	The Boundary of the Boundary	211
16.1	Continuity and Conservation	219
16.2	Gauge Invariance	225
17.1	Winding Number and Homotopy	231
17.2	de Rham Cohomology	234
19.1	Picard's Theorem	254
19.2	Riemann Surfaces	264
20.1	The Mercator Projection	277
20.2	The Joukowski Airfoil	283
21.1	Dispersion Relations	309
24.1	Not All Arrows Are Vectors	336
24.2	Vector Space	338
26.1	Beyond Rotations	372
26.2	What Is a Group?	381
26.3	Through the Looking Glass	385
26.4	Rotations in \mathbb{R}^n	386

Cambridge University Press & Assessment 978-1-107-15641-8 — Mathematical Methods and Physical Insights Alec J. Schramm Frontmatter

More Information

LIST C	IF BTWS	xv
26.5	Continuous, Connected, and Compact	397
27.1	Euler's Rotation Theorem	412
27.2	Quantum Measurement and Expectation	415
27.3	The Uncertainty Principle	428
29.1	Irreducible Tensors	468
30.1	Metric Spaces	481
30.2	Geodesics Are Extreme	492
30.3	The Principle of Equivalence	494
31.1	To Infinity — and Beyond!	506
34.1	The Weierstrass M Test	539
34.2	Gibbs Overshoot	541
34.3	Hilbert Space	545
35.1	The Cosmic Microwave Background	562
36.1	Dense Space	573
40.1	Hermitian vs. Self-Adjoint	651
41.1	Elliptic, Hyperbolic, and Parabolic	664
41.2	Eigenfunctions of the Laplacian	674
41.3	"Can One Hear the Shape of a Drum?"	687
42.1	Green's Function and the Variation of Constants	697
42.2	Dirichlet, Neumann, and the Fundamental Solution	702
42.3	The Complex λ -Plane	708
B .1	Gimbal Lock	737
B.2	The Shape of Space	740
B.3	Just What Are Quaternions?	742

Preface

You're holding in your hands a book on mathematical methods in the physical sciences. Wait — don't put it down just yet! I know, I know: there are already many such books on the shelves of scientists and engineers. So why another one?

Motivations

As with many textbooks, this one has its origins in the classroom — specifically, a math methods course I teach annually for third-year physics and engineering students. The project began, simply enough, with the realization that many students have trouble integrating functions beyond polynomials and elementary trig. At first I thought this merely reflected gaps in their background. After all, it's not unusual for standard calculus courses to largely skip once-invaluable topics such as trig substitution. To be sure, there's a cogent argument to be made that many of the integration techniques taught back in my college days are passé in the age of such resources as Wolfram Alpha. One unfortunate consequence, however, is that students too often see an integral as a black-box calculator, rather than as a mathematical statement in its own right. And indeed, I soon realized that the difficulties I was encountering had less to do with students' integration abilities and more with their basic comprehension. So one year I wrote a handout for the first week of the semester, in the hope that learning a few standard techniques would help demystify integration. I was astounded by the overwhelmingly positive response. Moreover, despite the relatively quick pace, students became notably less intimidated by integrals common in upper-level physics and engineering. Though they did not always master the techniques, most students began to develop a solid intuition for both the physics and mathematics involved — which was the goal, after all. This early handout evolved into Chapter 8, "Ten Integration Techniques and Tricks."

Encouraged by this modest success — and having identified other areas of similar weakness — I began to develop a set of notes on an array of topics. Although upper-level students have already seen most of this material in other courses, I've found that even if they can push the symbols around, their understanding is often wanting. And once again, the results were gratifying. These notes form the backbone of Part I of this book, which is intended as a review with an eye toward strengthening intuition.

As I continued writing handouts for various topics covered in the course, a book began to emerge. Along the way I found myself influenced by and reacting to the many texts which often stress formality over pragmatism, or are too recipe-driven to instill insight. Neither approach, in my view, gets it quite right. All too often, students lost in the abstract find refuge in rote symbol manipulation; emphasizing manipulation alone, however, is woefully inadequate. The ability to play the notes doesn't make you a

xviii PREFACE

musician.¹ So it's a delicate balance. An effective program must be more than a collection of theorems, proofs, or How-To's, and should be illustrated with physical examples whose context is familiar to the intended audience.

The approach taken here is not meant to be rigorous; indeed, many of us were attracted to the physical sciences more by the playfulness and fun of mathematics than its formality. For the most part, derivations and proofs are reserved for situations in which they aid comprehension. My goal has been to leverage that delight we've all experienced when the depth and inherent beauty of a mathematical concept or technique reveal themselves — not just the endorphin rush of understanding, but the empowering command that comes with intuition.

Content and Organization

Of course, one has to start somewhere. It's impractical to go all the way back to an introduction of slopes and derivatives, or the development of the integral from a Riemann sum. For such topics, many excellent texts are readily available. As this book is aimed at upper-level physics and engineering students, the presumed background includes standard introductory physics through the sophomore level. A background in multivariable calculus and linear algebra is also assumed — though some of this material is reviewed in Parts II and IV.

Much of the coverage is similar to that of other math methods texts (as indeed it must be), so there's more material than is generally covered in two semesters.² But the design is intended to give instructors flexibility without sacrificing coherence. The book is separated into Parts. Each begins with a prelude introduction, has an interlude to try to flesh out intuition, and ends with a coda to tie together many of the ideas in a physical context. Some of the interludes and codas can be assigned as reading rather than presented during class time without loss of continuity. Aside from Part I (see below), the Parts were constructed to build upon one another pedagogically, with properties and representations of vectors as a common theme. Even so, the Parts are relatively self-contained.

- Part I: With rare exception, instructors of math methods courses cite the same central challenge: the uneven preparation of students. This creates an enormous pedagogical hurdle on both sides of the white board. Addressing this obstacle is the motivation underlying Part I, which, as its title suggests, students Just Gotta' Know.³ I've found that starting the semester with a potpourri of topics helps smooth out students' variation in background. In fact, despite the unit's staccato character, students across the preparation spectrum have clearly derived benefit as well as, I daresay, a sense of empowerment. I usually cover this material over the first 2–3 weeks of the semester, though one could envision covering some sections only as needed as the term progresses.
- Part II: This unit is largely an introduction to grad, div, and curl. For completeness, a review of general line and surface integrals is given but even here, the goal is to prepare for the theorems of Gauss and Stokes. The primary paradigm is the behavior of electric and magnetic fields. Though the assumption is that students will have had a typical first-year E&M course, I've tried to make these examples largely self-contained. The Coda discusses simply connected regions, and includes an example of a circuit with non-trivial topology.

¹ As I often ask my students, would you want to fly on a plane designed by someone who knows how to push around symbols, but with a weak grasp of their meaning? I'm reminded of my 7th grade math teacher, Mr. Ford, who used to berate students with the line "It's not for you to understand — it's for you to do!" I cannot in good conscience recommend his airplane designs.

² Good general references include Arfken and Weber (1995); Boas (2005); Kusse and Westwig (1998); Mathews and Walker (1970), and Wong (1991).

³ Because of its potpourri nature, I wanted to call it "Unit 0," but my editors wisely advised that this would be seen as too quirky.

PREFACE

xix

- Part III: As a natural extension of the discussion in the previous unit, this one begins by reformulating R² vector fields as functions in the complex plane. Note that Part I only discusses the rudiments of complex numbers more algebra than calculus. The topics addressed in this unit include Laurent series, Cauchy's integral formula, and the calculus of residues. The Interlude considers conformal mapping, and the Coda the connection between analyticity and causality. Instructors who prefer to cover these subjects at another time can choose to skip this unit on a first pass, since little of the material is needed later.
- Part IV: This unit turns to linear algebra, and as such the focus shifts from vectors as functions in \mathbb{R}^2 and \mathbb{R}^3 , to basic mathematical entities which do little more than add and subtract. Over the course of the unit more structure is introduced — most notably, the inner product. Complete orthonormal bases are emphasized, and Dirac's bra-ket notation is introduced. Orthogonal, unitary, and Hermitian matrices are discussed. An Interlude on rotations is complemented by an appendix presenting different approaches to rotations in \mathbb{R}^3 . We then turn to the eigenvalue problem and diagonalization. The Coda focuses on normal modes, serving as a natural bridge to Part V.
- Entr'acte: Following the developments in the previous unit, the Entr'acte classifies vectors in terms of their behavior under rotation. This naturally leads to discussions of tensors, metrics, and general covariance.
- Part V: Here the results of Part IV are extended from finite- to infinite-dimensional vector space. Orthogonal polynomials and Fourier series are derived and developed as examples of complete orthogonal bases. Taking the continuum limit leads to Fourier transforms and convolution, and then to Laplace transforms. The Interlude introduces spherical harmonics and Bessel functions as examples of orthogonal functions beyond sine and cosine the goal being to develop familiarity and intuition for these bases in advance of tackling their defining differential equations in Part VI. The Coda is an introduction to signal processing, with an emphasis on Fourier analysis and the convolution theorem.
- Part VI: After a relatively brief discussion of first-order differential equations, this unit turns to second-order ODEs and PDEs. The orthogonal polynomials of Part V are rederived by series solutions. Initial and boundary value problems, as well as Green's function solutions are introduced. The unitarity and hermiticity of differential operators are examined in an Interlude on the Sturm-Liouville problem, and the Coda provides an introduction to quantum mechanical scattering as an application of Green's functions.

It's a challenge to bring students up to speed while simultaneously lifting and enticing them to the next level. Towards this end, sprinkled throughout the text are asides called "By The Ways" (BTWs). Averaging about a page in length, these digressions are what I hope are delightful ("geeky-cool") forays into the tangential — sometimes math, sometimes physics. Though the array of BTW topics is necessarily rather idiosyncratic, they were chosen for beauty, charm, or insight — and in the best instances, all three. Since the BTWs are not required for understanding of the mainstream material, students can choose to skip over them (though they'll miss much of the fun).

One of my professors liked to say "The best professor is the worst professor." By this he meant that ultimately one must be self-taught — and that an ineffective lecturer is often required to compel students to learn on their own. Though personally I think he was just making excuses for poor lecture prep, it is true that students cannot master the material without working problems themselves. So each chapter includes extensive homework exercises, many written to take advantage of the capabilities of Mathematica.⁴ (Online solutions are available for instructors.) The objective, of course, is to recruit and retain every student's best teacher.

⁴ Trott (2004) is a good reference source.

Cambridge University Press & Assessment 978-1-107-15641-8 — Mathematical Methods and Physical Insights Alec J. Schramm Frontmatter More Information

xx PREFACE

Inspiration and Aspiration

Ultimately, my own experiences as a student of physics and math motivate the guiding principle: the physics illuminates and encourages the math, which in turn further elucidates the physics. But it doesn't come easy; effort is required. As I often tell students, walking through an art museum or listening to music will not elicit the same depth of wonder and delight without having first studied art or music. So too, appreciation of the inherent harmonies between math and physics favors the prepared mind. Moreover, such leveraging of the physics/math symbiosis is truly a life-long exercise. But it is my hope that this approach will enhance students' appreciation for the inherent beauty of this harmony, inspiring them to continue their pursuit into the wonders and mysteries of physical science.

Acknowledgements

I want to begin by thanking my parents, who sadly are no longer here to show this book to their friends. To my brothers, from whom I've learned so much on a remarkably wide array of subjects. And most especially to Laurel and our children, whose love and support I could not do without.

To the incredible professionals Vince Higgs, Heather Brolly, and especially Melissa Shivers at Cambridge University Press, my deep appreciation for their guidance, advice, and seemingly inexhaustible patience. And to David Hemsley, for his sharp eye and good humor. It truly has been a pleasure working and bantering with all of them.

Mr. Ford and the above-referenced professor notwithstanding, I've had the good fortune of learning from some incredible teachers and colleagues, in both formal and informal settings. But I've also learned from students. In particular, I want to thank the many who have taken my courses over the years using early versions of the manuscript. Special shout-outs of gratitude to Olivia Addington, Claire Bernert, Ian Convy, Emily Duong, Alejandro Fernandez, Leah Feuerman, Michael Kwan, Sebastian Salazar, Hunter Weinreb, and Hedda Zhao. Their (mostly constructive) criticisms, suggestions, and perspective have greatly improved the text. Without Jason Detweiler this book may never have seen the light of day. And deepest gratitude and appreciation to my friend and colleague Jochen Rau, who read much of the text, prevented many embarrassing errors — and taught me the word "betriebsblind."

Any remaining errors, of course, are mine alone; they tried their best.