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Part I

Things You Just Gotta’ Know

The noblest pleasure is the joy of understanding.

Leonardo da Vinci
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1 Prelude: Symbiosis

We begin with some basic tools. Many of these will undoubtedly be review; perhaps a few are new. Still

other techniques may be familiar but never mastered. Indeed, it is not uncommon to possess an ability

to push symbols around without a firm appreciation of their meaning. And sometimes symbol-pushing

camouflages that lack of understanding — even to oneself. This seldom ends well.

Moreover, it’s important to realize that mathematical concepts and techniques are more than mere

tools: they can be a source of physical insight and intuition. Conversely, physical systems often inspire

an appreciation for the power and depth of the math — which in turn can further elucidate the physics.

This sort of leveraging infuses much of the book. In fact, let’s start with three brief illustrations of the

symbiotic relationship between math and physics — examples we’ll return to often.

Example 1.1 Oscillations

One of the most important equations in physics is

d2x

dt2
= −ω2x, (1.1)

which describes simple harmonic motion with frequency ω = 2π f . The solution can be written

x(t) = A cos ωt + B sin ωt, (1.2)

where the amplitudes of oscillation A and B can be determined from initial values of position and

speed. The significance of this equation lies in the ubiquity of oscillatory motion; moreover, many of

the most common differential equations in physics and engineering are in some sense generalizations

of this simple expression. These “variations on a theme” consider the effects of additional terms in

(1.1), resulting in systems rich both mathematically and physically. But even the simple variation

d2x

dt2
= +ω2x (1.3)

brings new possibilities and insight. Although differing from (1.1) by a mere sign, this seemingly

trivial mathematical distinction yields a solution which is completely different physically:

x(t) = Ae−ωt + Be+ωt. (1.4)

The mathematics is clearly hinting at an underlying relationship between oscillation and exponential

growth and decay. Appreciating this deeper connection requires we take a step back to consider

complex numbers. Given that position x(t) is real, this may seem counterintuitive. But as we’ll see

in Part I and beyond, the broader perspective provided by allowing for complex numbers generates

physical insight.
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4 1 PRELUDE: SYMBIOSIS

Example 1.2 Angular Momentum and Moment of Inertia

Recall that angular momentum is given by

�L = �r × �p = I �ω, (1.5)

where the angular velocity | �ω| = v/r, and I is the moment of inertia. In introductory mechanics, one

is told that moment of inertia is a scalar quantity which measures the distribution of mass around the

axis of rotation. Thus (1.5) clearly shows that angular momentum �L is always parallel to the angular

velocity �ω. Right?

m

L

m

r

r

w

Figure 1.1 Angular momentum of a dumbbell.

Wrong. Perhaps the simplest counter-example is a massless rod with two identical weights at

either end, spinning as shown in Figure 1.1 with angular velocity �ω pointing vertically (Figure 1.1).

With the origin at the center of the rod, each mass contributes equally to the total angular momentum.

Since the momentum of each is perpendicular to its position vector �r, the angular momentum is easily

found to have magnitude

L = |�r × �p| = 2mvr = 2mr2ω. (1.6)

This much is certainly correct. The problem, however, is that �L is not parallel to �ω! Thus either �L = I �ω

holds only in special circumstances, or I cannot be a simple scalar. The resolution requires expanding

our mathematical horizons into the realm of tensors — in which scalars and vectors are special cases.

In this unit we’ll introduce notation to help manage this additional level of sophistication; a detailed

discussion of tensors is presented in the Entr’acte.

Example 1.3 Space, Time, and Spacetime

The Special Theory of Relativity is based upon two postulates put forward by Einstein in 1905:

I. The laws of physics have the same form in all inertial reference frames.

II. The speed of light in vacuum is the same in all inertial reference frames.
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1 PRELUDE: SYMBIOSIS 5

The first postulate is merely a statement of Galileo’s principle of relativity; the second is empirical

fact. From these postulates, it can be shown that time and coordinate measurements in two frames

with relative speed V along their common x-axis are related by the famous Lorentz transformations,

t′ = γ (t − Vx/c2) y′ = y

x′ = γ (x − Vt) z′ = z, (1.7)

where γ ≡ (1 − V2/c2)−1/2. At its simplest, special relativity concerns the relationship between

measurements in different inertial frames.

Intriguingly, we can render the Lorentz transformations more transparent by rescaling the time

as x0 ≡ ct, so that it has the same dimensions as x; the second postulate makes this possible, since

it promotes the speed of light to a universal constant of nature. To make the notation consistent,

we’ll also define (x1,x2,x3) ≡ (x,y,z). Then introducing the dimensionless parameter β ≡ V/c, (1.7)

become

x′
0 = γ (x0 − βx1) x′

2 = x2

x′
1 = γ (x1 − βx0) x′

3 = x3. (1.8)

In this form, the equal footing of space and time, a hallmark of

relativity, is manifest. It also clearly displays that transforming

from one frame to another “mixes” space and time. Curiously,

this is very similar to the way a rotation mixes up position

coordinates. Upon rotation of coordinate axes, a vector’s new

components (x ′,y ′) are a simple linear combination of the old

components (x,y). Could it be that relativity similarly “rotates”

space and time?

r

x

x'

y

y'

q

q

In fact, Lorentz transformations can be understood as rotations in a single, unified mathematical

structure called spacetime — also known as Minkowski space after the mathematician who first

worked out this geometric interpretation. Recognition of the fundamental nature of spacetime

represents one of the greatest paradigm shifts in the history of science: the nearly 300 year-old

notion of a three-dimensional universe plus an external time parameter is replaced by a single

four-dimensional structure. Deeper insight into the mathematics of rotations will heighten the

appreciation for this shift.
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2 Coordinating Coordinates

2.1 Position-Dependent Basis Vectors

Working with a vector-valued function �V(�r) often involves choosing two coordinate systems: one for

the functional dependence, and one for the basis used to decompose the vector. So a vector in the

plane, say, can be rendered on the cartesian basis {ı̂,ĵ } using either cartesian or polar coordinates,1

�V(�r) = ı̂ Vx(x,y) + ĵ Vy(x,y) (2.1a)

= ı̂ Vx(ρ,φ) + ĵ Vy(ρ,φ), (2.1b)

where Vx ≡ ı̂ · �V and Vy ≡ ĵ · �V . But we could just as easily choose the polar basis {ρ̂,φ̂},

�V(�r) = ρ̂ Vρ(ρ,φ) + φ̂ Vφ(ρ,φ) (2.1c)

= ρ̂ Vρ(x,y) + φ̂ Vφ(x,y) , (2.1d)

with Vρ ≡ ρ̂ · �V and Vφ ≡ φ̂ · �V . For instance, the position vector �r can be written

�r = ı̂ x + ĵ y (2.2a)

= ı̂ ρ cos φ + ĵ ρ sin φ (2.2b)

= ρ̂ ρ (2.2c)

= ρ̂

√

x2 + y2. (2.2d)

y

x

r

r

r

r

f̂ f̂

ˆ

f f̂

Figure 2.1 The polar

basis.

To date, you have probably had far more experience using cartesian

components. At the risk of stating the obvious, this is because the cartesian

unit vectors ı̂,ĵ never alter direction — each is parallel to itself everywhere

in space. This is not true in general; in other systems the directions of

the basis vectors depend on their spatial location. For example, at the

point (x,y) = (1,0), the unit vectors in polar coordinates are ρ̂ ≡ ı̂, φ̂ ≡ ĵ ,

whereas at (0,1) they are ρ̂ ≡ ĵ, φ̂ ≡ −ı̂ (Figure 2.1). A position-dependent

basis vector is not a trivial thing.

Because the cartesian unit vectors are constant, they can be found by

taking derivatives of the position �r = xı̂ + yĵ — for instance, ĵ = ∂�r/∂y.

We can leverage this to find ρ̂ and φ̂ as functions of position, beginning

with the chain rule in polar coordinates,

d�r =
∂�r

∂ρ
dρ +

∂�r

∂φ
dφ. (2.3)

1 V(x,y) is generally a different function than V(ρ,φ); we use the same symbol for simplicity.
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2.1 Position-Dependent Basis Vectors 7

Now if we hold φ fixed but vary ρ by dρ, the resulting displacement d�r must be in the ρ̂-direction.

In other words, ∂�r/∂ρ is a vector tangent to curves of constant φ. Similarly, ∂�r/∂φ is a vector tangent

to curves of constant ρ, and points in the φ̂-direction. (See Problem 6.36.) To calculate unit tangent

vectors, we decompose the position vector �r along cartesian axes but with components expressed in

polar coordinates,

�r = xı̂ + yĵ = ρ cos φ ı̂ + ρ sin φ ĵ . (2.4)

Then we find

ρ̂ ≡
∂�r/∂ρ

|∂�r/∂ρ|
= cos φ ı̂ + sin φ ĵ (2.5a)

and

φ̂ ≡
∂�r/∂φ

|∂�r/∂φ|
= − sin φ ı̂ + cos φ ĵ . (2.5b)

Note that the fixed nature of the cartesian basis is crucial in this derivation. As a quick consistency

check, not only are these vectors normalized, ρ̂ · ρ̂ = φ̂ · φ̂ = 1, they are also orthogonal, ρ̂ · φ̂ = 0.

And as expected, they are position-dependent; direct differentiation of (2.5) gives

∂ρ̂

∂φ
= φ̂

∂φ̂

∂φ
= −ρ̂, (2.6a)

and also, as expected,

∂ρ̂

∂ρ
= 0

∂φ̂

∂ρ
= 0. (2.6b)

We can trivially extend these results to cylindrical coordinates (ρ,φ,z), since k̂ ≡ ẑ is a constant basis

vector.

Example 2.1 Velocity in the Plane

Consider the velocity �v = d�r/dt. Along cartesian axes, this is just

�v ≡
d�r

dt
=

d

dt
(xı̂) +

d

dt
(yĵ ) =

dx

dt
ı̂ +

dy

dt
ĵ , (2.7)

while on the polar basis we have instead

d�r

dt
=

d

dt
(ρρ̂) =

dρ

dt
ρ̂ + ρ

dρ̂

dt

=
dρ

dt
ρ̂ + ρ

(

∂ρ̂

∂ρ

dρ

dt
+

∂ρ̂

∂φ

dφ

dt

)

, (2.8)

where the chain rule was used in the last step. Of course, (2.7) and (2.8) are equivalent expressions

for the same velocity. As it stands, however, (2.8) is not in a particularly useful form: if we’re going

to use the polar basis, �v should be clearly expressed in terms of ρ̂ and φ̂, not their derivatives.

This is where (2.6) come in, allowing us to completely decompose the velocity on the polar basis:

�v =
dρ

dt
ρ̂ + ρ

dφ

dt

∂ρ̂

∂φ

≡ ρ̇ ρ̂ + ρφ̇ φ̂, (2.9)
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8 2 COORDINATING COORDINATES

where we have used the common “dot” notation to denote time derivative, u̇ ≡ du/dt. The forms of

the radial and tangential components,

vρ = ρ̇, vφ = ρφ̇ ≡ ρ ω, (2.10)

should be familiar; ω ≡ φ̇, of course, is the angular velocity.

Example 2.2 Acceleration in the Plane

In cartesian coordinates, a particle in the plane has acceleration

�a ≡
d�v

dt
=

d2�r

dt2
= ẍı̂ + ÿĵ, (2.11)

where ü ≡ d2u/dt2. The same calculation in polar coordinates is more complicated, but can be

accomplished without difficulty: differentiating (2.9) and using (2.6a) and (2.6b) gives

�a =
(

ρ̈ − ρφ̇2
)

ρ̂ +
(

ρφ̈ + 2ρ̇φ̇
)

φ̂

≡
(

ρ̈ − ρω2
)

ρ̂ + (ρα + 2ρ̇ω) φ̂, (2.12)

where α ≡ φ̈ is the angular acceleration. The ρ̈ and ρα terms have straightforward interpretations:

changing speed in either the radial or tangential directions results in acceleration. The −ρω2ρ̂ term is

none other than centripetal acceleration (recall that ρω2 = v
2
φ/ρ); herein is the elementary result that

acceleration can occur even at constant speed. The fourth term, 2ρ̇ωφ̂, is the Coriolis acceleration

observed within a non-inertial frame rotating with angular velocity ω φ̂.

Though a little more effort, the procedure that led to (2.6a) and (2.6b) also works for spherical

coordinates r, θ , and φ. Starting with

d�r =
∂�r

∂r
dr +

∂�r

∂θ
dθ +

∂�r

∂φ
dφ (2.13)

and

�r = r sin θ cos φ ı̂ + r sin θ sin φ ĵ + r cos θ k̂, (2.14)

we use the tangent vectors to define

r̂ ≡
∂�r/∂r

|∂�r/∂r|
θ̂ ≡

∂�r/∂θ

|∂�r/∂θ |
φ̂ ≡

∂�r/∂φ

|∂�r/∂φ|
. (2.15)

As you’ll verify in Problem 2.1, this leads to

r̂ = ı̂ sin θ cos φ + ĵ sin θ sin φ + k̂ cos θ (2.16a)

θ̂ = ı̂ cos θ cos φ + ĵ cos θ sin φ − k̂ sin θ (2.16b)

φ̂ = −ı̂ sin φ + ĵ cos φ, (2.16c)

so that

∂ r̂/∂θ = θ̂ ∂ r̂/∂φ = sin θ φ̂ (2.17a)

∂θ̂/∂θ = −r̂ ∂θ̂/∂φ = cos θ φ̂ (2.17b)

∂φ̂/∂θ = 0 ∂φ̂/∂φ = − sin θ r̂ − cos θ θ̂ . (2.17c)

And of course, all the unit vectors have vanishing radial derivatives.
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2.2 Scale Factors and Jacobians 9

Once again, a quick consistency check verifies that r̂,θ̂ , and φ̂ form an orthonormal system — that

is, that they are unit vectors (“normalized”),

r̂ · r̂ = θ̂ · θ̂ = φ̂ · φ̂ = 1,

and they’re mutually orthogonal,

r̂ · θ̂ = θ̂ · φ̂ = φ̂ · r̂ = 0.

Moreover, the so-called “right-handedness” of cartesian coordinates, ı̂ × ĵ = k̂, bequeathes an

orientation to spherical coordinates,2

ı̂ × ĵ = k̂ ⇐⇒ r̂ × θ̂ = φ̂.

Similarly, in cylindrical coordinates ρ̂ × φ̂ = k̂. (Caution: ρ denotes the cylindrical radial coordinate,

r the spherical. But it’s very common to use r for both — as we will often do. So pay attention to

context!)

Example 2.3 A First Look at Rotations

There’s a simple and handy way to convert back and forth between these coordinate bases. A mere

glance at (2.5) and (2.16) reveals that they can be expressed in matrix form,

(

ρ̂

φ̂

)

=

(

cos φ sin φ

− sin φ cos φ

) (

ı̂

ĵ

)

, (2.18)

and
⎛

⎝

r̂

θ̂

φ̂

⎞

⎠ =

⎛

⎝

sin θ cos φ sin θ sin φ cos θ

cos θ cos φ cos θ sin φ − sin θ

− sin φ cos φ 0

⎞

⎠

⎛

⎝

ı̂

ĵ

k̂

⎞

⎠ . (2.19)

The inverse transformations {ρ̂,φ̂} → {ı̂,ĵ} and {r̂,θ̂,φ̂} → {ı̂,ĵ,k̂} can be found either by inverting

(2.5) and (2.16) algebraically, or equivalently by finding the inverse of the matrices in (2.18) and

(2.19). But this turns out to be very easy, since (as you can quickly verify) the inverses are just their

transposes. Thus

(

ı̂

ĵ

)

=

(

cos φ − sin φ

sin φ cos φ

) (

ρ̂

φ̂

)

, (2.20)

and
⎛

⎝

ı̂

ĵ

k̂

⎞

⎠ =

⎛

⎝

sin θ cos φ cos θ cos φ − sin φ

sin θ sin φ cos θ sin φ cos φ

cos θ − sin θ 0

⎞

⎠

⎛

⎝

r̂

θ̂

φ̂

⎞

⎠ . (2.21)

In Part III, we’ll see that R−1 = RT is a defining feature of rotations in R
n.

2.2 Scale Factors and Jacobians

As a vector, d�r can be decomposed on any basis. As you’ll show in Problem 2.3, the chain rule —

together with (2.4) and (2.5) — leads to the familiar line element in cylindrical coordinates,

d�r = ρ̂ dρ + φ̂ ρ dφ + k̂ dz. (2.22)

2 A left-handed system has ĵ × ı̂ = k̂ and θ̂ × r̂ = φ̂.
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10 2 COORDINATING COORDINATES

The extra factor of ρ in the second term is an example of a scale factor, and has a simple geometric

meaning: at a distance ρ from the origin, a change of angle dφ leads to a change of distance ρ dφ.

Such scale factors, usually denoted by h, neatly summarize the geometry of the coordinate system. In

cylindrical coordinates,

hρ ≡ 1, hφ ≡ ρ, hz ≡ 1. (2.23)

In spherical, the scale factors are

hr ≡ 1, hθ ≡ r, hφ ≡ r sin θ, (2.24)

corresponding to the line element

d�r = r̂ dr + θ̂ r dθ + φ̂ r sin θ dφ. (2.25)

So in spherical coordinates, a change of dθ does not by itself give the displacement; for that we need

an additional factor of r. Indeed, neither dθ nor dφ has the same units as d�r ; scale factors, which are

generally functions of position, remedy this.

BTW 2.1 Curvilinear Coordinates I

Cylindrical and spherical coordinates are the two most common R
3 examples of curvilinear

coordinates. Cartesian coordinates, of course, are notable by their straight axes and constant unit

vectors; by contrast, curvilinear systems have curved “axes” and position-dependent unit vectors.

The procedure we used to derive the cylindrical and spherical unit vectors and scale factors can be

generalized to any set of curvilinear coordinates.

Let’s simplify the notation by denoting cartesian coordinates as xi, where i = 1, 2, or 3; for

curvilinear coordinates, we’ll use ui with unit vectors êi. (So in cylindrical coordinates, we have

the assignments ê1 → ρ̂, ê2 → φ̂, ê3 → k̂, and in spherical ê1 → r̂, ê2 → θ̂ , ê3 → φ̂.)

Given the functions xi = xi(u1,u2,u3) relating the two coordinate systems, we want a

general expression for the unit vectors êi and their derivatives. Once again we begin with the

chain rule,

d�r =
∂�r

∂u1
du1 +

∂�r

∂u2
du2 +

∂�r

∂u3
du3, (2.26)

where, as before, the position vector �r ≡ (x1,x2,x3). Now the vector ∂�r/∂ui is tangent to the ui

coordinate axis (or perhaps more accurately, the ui coordinate curve), and so defines a coordinate

direction êi. These unit vectors can be decomposed on the cartesian basis as

êi ≡
1

hi

∂�r

∂ui

=
1

hi

(

ı̂
∂x1

∂ui

+ ĵ
∂x2

∂ui

+ k̂
∂x3

∂ui

)

, (2.27a)

where the scale factors hi are determined by the condition êi · êi = 1,

hi ≡

∣

∣

∣

∣

∂�r

∂ui

∣

∣

∣

∣

=

√

(

∂x1

∂ui

)2

+

(

∂x2

∂ui

)2

+

(

∂x3

∂ui

)2

. (2.27b)

In general, the êi and the hi are both functions of position �r — that’s how we got into this mess

in the first place. Instead of staying fixed, the triplet of unit vectors rotates as we move around in

space.
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2.2 Scale Factors and Jacobians 11

Note that a scale factor is given by the ratio of position to curvilinear coordinate. So even though

the coordinates ui may not have units of distance, the scale factors guarantee that the displacement

does,

d�r = ê1 h1du1 + ê2 h2du2 + ê3 h3du3. (2.28)

We saw this for cylindrical and spherical coordinates in (2.22) and (2.25).

The scale factors are relevant not just for calculations of distance. Suppose we want to find the

area of some region S in R
2. In cartesian coordinates this is conceptually straightforward: divide the

region into little rectangles with sides �x, �y and add up the area of these rectangles. The more

rectangles we cram into the region, the better our sum approximates the region’s true area; in the limit

in which the number of these rectangles goes to infinity we get the exact area of S. Of course, in

this limit the sides of the rectangles become infinitesimally small and the sum becomes an integral,
∑

S �x�y −→
∫

S
dx dy.

x

∆r

r∆f

y

Figure 2.2 Polar scale factors.

This much is simple. But what if we choose to calculate the area

in, say, polar coordinates? One might naively try the same approach

and assert
∫

S
dx dy =

∫

S
dρ dφ — in other words, that the infinitesimal

measure dx dy is equivalent to dρ dφ. This, however, cannot be correct,

if only because the units of these two expressions don’t match. But

a glance at (2.22) shows what’s going on. If we cut up S into little

rectangles along curves of constant ρ and φ (Figure 2.2), the area

of each little rectangle is not �ρ�φ but rather �ρ · ρ�φ; the extra

factor is the product hρhφ . Thus the area element dx dy is actually

transformed into the familiar ρ dρ dφ. Though area on the surface of

a sphere deforms differently than inside a circle, the same basic thing

occurs in spherical coordinates; in this case, we’d find hθ hφ = r2 sin θ . Similarly, the volume element

requires the product of all three h’s — so in spherical coordinates, dτ = r2 sin θ dr dθ dφ. As before,

the extra factors ensure the correct units for area and volume.

Example 2.4 Solid Angle

Consider a circle. A given angle θ subtends an arc length s which grows linearly with the radius

r of the circle. Thus the angle can be fully specified by the ratio θ = s/r. This in fact is the

definition of a radian; as a ratio of distances it is dimensionless. Since the entire circle has arc

length (circumference) 2πr, there are 2π radians in a complete circle.

Now consider a sphere. A given solid angle � subtends an area A (“two-dimensional arc”) which

grows quadratically with the radius of the sphere. Thus the solid angle can be fully specified by the

ratio � = A/r2 (Figure 2.3). This in fact is the definition of a square radian, or steradian; as a ratio

of areas it is dimensionless. Since the entire sphere has surface area 4πr2, there are 4π steradians in

a complete sphere.3 Note that in both cases, the radial line is perpendicular to the circular arc or the

spherical surface.

An infinitesimal solid angle d� = dA/r2 can be expressed in terms of the scale factors hθ and hφ ,

d� = dA/r2 = hθ hφ dθ dφ/r2 = sin θ dθ dφ. (2.29)

3 4π steradians ≈ 41,253 degrees2.
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