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Probability and Computing

Randomization and probabilistic techniques play an important role in modern computer

science, with applications ranging from combinatorial optimization and machine learning

to communication networks and secure protocols.

This textbook provides an indispensable teaching tool to accompany a one- or two-

semester course for advanced undergraduate or beginning graduate students in computer

science and applied mathematics. It offers a comprehensive introduction to the role of ran-

domization and probabilistic techniques in modern computer science, in particular to tech-

niques and paradigms used in the development and probabilistic analysis of algorithms

and for data analyses. It assumes only an elementary background in discrete mathematics

and gives a rigorous yet accessible treatment of the material, with numerous examples and

applications.

The first half of the book covers core material, including random sampling, expecta-

tions, Markov’s inequality, Chebyshev’s inequality, Chernoff bounds, balls-and-bins mod-

els, the probabilistic method, and Markov chains. In the second half, the authors delve

into more advanced topics such as continuous probability, applications of limited indepen-

dence, entropy, Markov chain Monte Carlo methods, coupling, martingales, and balanced

allocations.

This greatly expanded new edition includes several newly added chapters and sec-

tions, covering topics including normal distributions, sample complexity, VC dimension,

Rademacher complexity, power laws and related distributions, cuckoo hashing, and appli-

cations of the Lovász Local Lemma. New material relevant to machine learning and big

data analysis enables students to learn up-to-date techniques and applications. Among the

many new exercises and examples are programming-related exercises that provide students

with practical experience and training related to the theoretical concepts covered in the text.

Michael Mitzenmacher is a Professor of Computer Science in the School of Engineering

and Applied Sciences at Harvard University, where he was also the Area Dean for Com-

puter Science from 2010 to 2013. Michael has authored or co-authored over 200 confer-

ence and journal publications on a variety of topics, including algorithms for the Internet,

efficient hash-based data structures, erasure and error-correcting codes, power laws, and

compression. His work on low-density parity-check codes shared the 2002 IEEE Informa-

tion Theory Society Best Paper Award and won the 2009 ACM SIGCOMM Test of Time

Award. He is an ACM Fellow, and was elected as the Chair of the ACM Special Interest

Group on Algorithms and Computation Theory in 2015.

Eli Upfal is a Professor of Computer Science at Brown University, where he was also the

department chair from 2002 to 2007. Prior to joiningBrown in 1998, hewas a researcher and

project manager at the IBM Almaden Research Center, and a Professor of Applied Math-

ematics and Computer Science at the Weizmann Institute of Science. His main research

interests are randomized algorithms, probabilistic analysis of algorithms, and computa-

tional statistics, with applications ranging from combinatorial and stochastic optimization,

computational biology, and computational finance. He is a Fellow of both the IEEE and the

ACM.
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Preface to the Second Edition

In the ten years since the publication of the first edition of this book, probabilistic

methods have become even more central to computer science, rising with the growing

importance of massive data analysis, machine learning, and data mining. Many of the

successful applications of these areas rely on algorithms and heuristics that build on

sophisticated probabilistic and statistical insights. Judicious use of these tools requires

a thorough understanding of the underlying mathematical concepts. Most of the new

material in this second edition focuses on these concepts.

The ability in recent years to create, collect, and store massive data sets, such as

the World Wide Web, social networks, and genome data, lead to new challenges in

modeling and analyzing such structures. A good foundation for models and analysis

comes from understanding some standard distributions. Our new chapter on the nor-

mal distribution (also known as the Gaussian distribution) covers the most common

statistical distribution, as usual with an emphasis on how it is used in settings in com-

puter science, such as for tail bounds. However, an interesting phenomenon is that in

many modern data sets, including social networks and the World Wide Web, we do not

see normal distributions, but instead we see distributions with very different proper-

ties, most notably unusually heavy tails. For example, some pages in the World Wide

Web have an unusually large number of pages that link to them, orders of magnitude

larger than the average. The new chapter on power laws and related distributions covers

specific distributions that are important for modeling and understanding these kinds of

modern data sets.

Machine learning is one of the great successes of computer science in recent years,

providing efficient tools for modeling, understanding, and making predictions based on

large data sets. A question that is often overlooked in practical applications of machine

learning is the accuracy of the predictions, and in particular the relation between accu-

racy and the sample size. A rigorous introduction to approaches to these important

questions is presented in a new chapter on sample complexity, VC dimension, and

Rademacher averages.

xv

www.cambridge.org/9781107154889
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-15488-9 — Probability and Computing
2nd Edition
Michael Mitzenmacher , Eli Upfal
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

preface to the second edition

We have also used the new edition to enhance some of our previous material. For

example, we present some of the recent advances on algorithmic variations of the pow-

erful Lovász local lemma, and we have a new section covering the wonderfully named

and increasingly useful hashing approach known as cuckoo hashing. Finally, in addi-

tion to all of this new material, the new edition includes updates and corrections, and

many new exercises.

We thank the many readers who sent us corrections over the years – unfortunately,

too many to list here!

xvi
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Preface to the First Edition

Why Randomness?

Why should computer scientists study and use randomness? Computers appear to

behave far too unpredictably as it is! Adding randomness would seemingly be a dis-

advantage, adding further complications to the already challenging task of efficiently

utilizing computers.

Science has learned in the last century to accept randomness as an essential com-

ponent in modeling and analyzing nature. In physics, for example, Newton’s laws led

people to believe that the universe was a deterministic place; given a big enough calcu-

lator and the appropriate initial conditions, one could determine the location of planets

years from now. The development of quantum theory suggests a rather different view;

the universe still behaves according to laws, but the backbone of these laws is proba-

bilistic. “God does not play dice with the universe” was Einstein’s anecdotal objection

to modern quantum mechanics. Nevertheless, the prevailing theory today for subparti-

cle physics is based on random behavior and statistical laws, and randomness plays a

significant role in almost every other field of science ranging from genetics and evolu-

tion in biology to modeling price fluctuations in a free-market economy.

Computer science is no exception. From the highly theoretical notion of probabilis-

tic theorem proving to the very practical design of PC Ethernet cards, randomness

and probabilistic methods play a key role in modern computer science. The last two

decades havewitnessed a tremendous growth in the use of probability theory in comput-

ing. Increasingly more advanced and sophisticated probabilistic techniques have been

developed for use within broader and more challenging computer science applications.

In this book, we study the fundamental ways in which randomness comes to bear on

computer science: randomized algorithms and the probabilistic analysis of algorithms.

Randomized algorithms: Randomized algorithms are algorithms that make random

choices during their execution. In practice, a randomized program would use values

generated by a random number generator to decide the next step at several branches

of its execution. For example, the protocol implemented in an Ethernet card uses ran-

dom numbers to decide when it next tries to access the shared Ethernet communication

xvii
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preface to the first edition

medium. The randomness is useful for breaking symmetry, preventing different cards

from repeatedly accessing the medium at the same time. Other commonly used applica-

tions of randomized algorithms include Monte Carlo simulations and primality testing

in cryptography. In these and many other important applications, randomized algo-

rithms are significantly more efficient than the best known deterministic solutions.

Furthermore, in most cases the randomized algorithms are also simpler and easier to

program.

These gains come at a price; the answer may have some probability of being incor-

rect, or the efficiency is guaranteed only with some probability. Although it may seem

unusual to design an algorithm that may be incorrect, if the probability of error is suf-

ficiently small then the improvement in speed or memory requirements may well be

worthwhile.

Probabilistic analysis of algorithms: Complexity theory tries to classify computa-

tion problems according to their computational complexity, in particular distinguishing

between easy and hard problems. For example, complexity theory shows that the Trav-

eling Salesman problem is NP-hard. It is therefore very unlikely that we will ever know

an algorithm that can solve any instance of the Traveling Salesman problem in time that

is subexponential in the number of cities. An embarrassing phenomenon for the clas-

sical worst-case complexity theory is that the problems it classifies as hard to compute

are often easy to solve in practice. Probabilistic analysis gives a theoretical explanation

for this phenomenon. Although these problems may be hard to solve on some set of

pathological inputs, on most inputs (in particular, those that occur in real-life applica-

tions) the problem is actually easy to solve. More precisely, if we think of the input as

being randomly selected according to some probability distribution on the collection of

all possible inputs, we are very likely to obtain a problem instance that is easy to solve,

and instances that are hard to solve appear with relatively small probability. Probabilis-

tic analysis of algorithms is the method of studying how algorithms perform when the

input is taken from a well-defined probabilistic space. As we will see, even NP-hard

problems might have algorithms that are extremely efficient on almost all inputs.

The Book

This textbook is designed to accompany one- or two-semester courses for advanced

undergraduate or beginning graduate students in computer science and applied math-

ematics. The study of randomized and probabilistic techniques in most leading uni-

versities has moved from being the subject of an advanced graduate seminar meant

for theoreticians to being a regular course geared generally to advanced undergraduate

and beginning graduate students. There are a number of excellent advanced, research-

oriented books on this subject, but there is a clear need for an introductory textbook.

We hope that our book satisfies this need.

The textbook has developed from courses on probabilistic methods in computer sci-

ence taught at Brown (CS 155) and Harvard (CS 223) in recent years. The emphasis in

these courses and in this textbook is on the probabilistic techniques and paradigms, not

on particular applications. Each chapter of the book is devoted to one such method or

xviii
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preface to the first edition

technique. Techniques are clarified though examples based on analyzing randomized

algorithms or developing probabilistic analysis of algorithms on random inputs. Many

of these examples are derived from problems in networking, reflecting a prominent

trend in the networking field (and the taste of the authors).

The book contains fourteen chapters. We may view the book as being divided into

two parts, where the first part (Chapters 1–7) comprises what we believe is core mate-

rial. The book assumes only a basic familiarity with probability theory, equivalent to

what is covered in a standard course on discrete mathematics for computer scientists.

Chapters 1–3 review this elementary probability theory while introducing some inter-

esting applications. Topics covered include random sampling, expectation, Markov’s

inequality, variance, and Chebyshev’s inequality. If the class has sufficient background

in probability, then these chapters can be taught quickly. We do not suggest skipping

them, however, because they introduce the concepts of randomized algorithms and

probabilistic analysis of algorithms and also contain several examples that are used

throughout the text.

Chapters 4–7 cover more advanced topics, including Chernoff bounds, balls-and-

bins models, the probabilistic method, and Markov chains. The material in these chap-

ters is more challenging than in the initial chapters. Sections that are particularly chal-

lenging (and hence that the instructor may want to consider skipping) are marked with

an asterisk. The core material in the first seven chapters may constitute the bulk of a

quarter- or semester-long course, depending on the pace.

The second part of the book (Chapters 8–17) covers additional advanced material

that can be used either to fill out the basic course as necessary or for a more advanced

second course. These chapters are largely self-contained, so the instructor can choose

the topics best suited to the class. The chapters on continuous probability and entropy

are perhaps the most appropriate for incorporating into the basic course. Our intro-

duction to continuous probability (Chapter 8) focuses on uniform and exponential

distributions, including examples from queueing theory. Our examination of entropy

(Chapter 10) shows how randomness can be measured and how entropy arises naturally

in the context of randomness extraction, compression, and coding.

Chapters 11 and 12 cover the Monte Carlo method and coupling, respectively; these

chapters are closely related and are best taught together. Chapter 13, on martingales,

covers important issues on dealing with dependent random variables, a theme that con-

tinues in a different vein in Chapter 15 is the development of pairwise independence

and derandomization. Finally, the chapter on balanced allocations (Chapter 17) covers

a topic close to the authors’ hearts and ties in nicely with Chapter 5 concerning analysis

of balls-and-bins problems.

The order of the subjects, especially in the first part of the book, corresponds to

their relative importance in the algorithmic literature. Thus, for example, the study

of Chernoff bounds precedes more fundamental probability concepts such as Markov

chains. However, instructors may choose to teach the chapters in a different order. A

course with more emphasis on general stochastic processes, for example, may teach

Markov chains (Chapter 7) immediately after Chapters 1–3, following with the chapter

on balls, bins, and random graphs (Chapter 5, omitting the Hamiltonian cycle exam-

ple). Chapter 6 on the probabilistic method could then be skipped, following instead
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with continuous probability and the Poisson process (Chapter 8). The material from

Chapter 4 on Chernoff bounds, however, is needed for most of the remaining material.

Most of the exercises in the book are theoretical, but we have included some pro-

gramming exercises – including two more extensive exploratory assignments that

require some programming. We have found that occasional programming exercises are

often helpful in reinforcing the book’s ideas and in adding some variety to the course.

We have decided to restrict thematerial in this book tomethods and techniques based

on rigorous mathematical analysis; with few exceptions, all claims in this book are fol-

lowed by full proofs. Obviously, many extremely useful probabilistic methods do not

fall within this strict category. For example, in the important area of Monte Carlo meth-

ods, most practical solutions are heuristics that have been demonstrated to be effective

and efficient by experimental evaluation rather than by rigorous mathematical analy-

sis. We have taken the view that, in order to best apply and understand the strengths

and weaknesses of heuristic methods, a firm grasp of underlying probability theory and

rigorous techniques – as we present in this book – is necessary. We hope that students

will appreciate this point of view by the end of the course.
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