

Introduction to Cosmology

The second edition of *Introduction to Cosmology* is an exciting update of this award-winning textbook. It is aimed primarily at advanced undergraduate students in physics and astronomy, but is also useful as a supplementary text at higher levels. It explains modern cosmological concepts, such as dark energy, in the context of the Big Bang theory. Its clear, lucid writing style, with a wealth of useful everyday analogies, makes it exceptionally engaging. Emphasis is placed on the links between theoretical concepts of cosmology and the observable properties of the universe, building deeper physical insights in the reader. The second edition includes recent observational results, fuller descriptions of special and general relativity, expanded discussions of dark energy, and a new chapter on baryonic matter that makes up stars and galaxies. It is an ideal textbook for the era of precision cosmology in the accelerating universe.

BARBARA RYDEN received her PhD in astrophysical sciences from Princeton University, New Jersey in 1987. After postdocs at the Harvard-Smithsonian Center for Astrophysics and the Canadian Institute for Theoretical Astrophysics, she joined the astronomy faculty at The Ohio State University, where she is now a full professor. She has over twenty years of experience in teaching, at levels ranging from introductory undergraduate courses to advanced graduate seminars. She won the Chambliss Astronomical Writing Award for the first edition of *Introduction to Cosmology* (2002), and is the co-author, with Bradley Peterson, of *Foundations of Astrophysics* (2010).

Introduction to Cosmology

Second Edition

Barbara Ryden

The Ohio State University

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

> www.cambridge.org Information on this title: www.cambridge.org/9781107154834

© Pearson Education, Inc., 2003, Barbara Ryden 2017

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press

First edition published in 2002 by Pearson Education, Inc. Second edition published 2017

Printed in the United Kingdom by TJ International Ltd, Padstow, Cornwall

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data Names: Ryden, Barbara Sue, author. Title: Introduction to cosmology / Barbara Ryden, The Ohio State University.

Description: Second edition. | New York, NY: Cambridge University Press, 2017. | Includes bibliographical references and index.

Identifiers: LCCN 2016040124 | ISBN 9781107154834 (Hardback; alk. paper) | ISBN 1107154839 (Hardback; alk. paper) Subjects: LCSH: Cosmology.

Classification: LCC QB981 .R93 2016 | DDC 523.1-dc23 LC record available at https://lccn.loc.gov/2016040124

ISBN 978-1-107-15483-4 Hardback

Additional resources for this publication at www.cambridge.org/cosmology

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

For my husband

Contents

	Pref	page xi	
I	Intro	oduction	1
2	Func	lamental Observations	6
	2.1	The Night Sky is Dark	6
	2.2	The Universe is Isotropic and Homogeneous	9
	2.3	Redshift is Proportional to Distance	12
	2.4	Different Types of Particles	18
	2.5	Cosmic Microwave Background	23
	Exer	rcises	25
3	New	ton versus Einstein	27
	3.1	The Way of Newton	28
	3.2	The Special Way of Einstein	29
	3.3	The General Way of Einstein	34
	3.4	Describing Curvature	37
	3.5	The Robertson-Walker Metric	41
	3.6	Proper Distance	43
	Exer	rcises	47
4	Cosn	nic Dynamics	49
	4.1	Einstein's Field Equation	50
	4.2	The Friedmann Equation	52
	4.3	The Fluid and Acceleration Equations	58

vii

viii		Contents	
	4.4	Equations of State	60
	4.5	Learning to Love Lambda	63
		rcises	67
5	Mod	el Universes	69
	5.1	Evolution of Energy Density	69
	5.2	Empty Universes	74
	5.3	Single-component Universes	77
		5.3.1 Matter only	80
		5.3.2 Radiation only	81
		5.3.3 Lambda only	83
	5.4	Multiple-component Universes	84
		5.4.1 Matter + Curvature	86
		5.4.2 Matter + Lambda	90
		5.4.3 Matter + Curvature + Lambda	92
		5.4.4 Radiation + Matter	95
	5.5	Benchmark Model	96
	Exe	rcises	100
6	Mea	suring Cosmological Parameters	102
	6.1	"A Search for Two Numbers"	102
	6.2	Luminosity Distance	106
	6.3	Angular-diameter Distance	110
	6.4	Standard Candles and H_0	114
	6.5	Standard Candles and Acceleration	116
	Exe	rcises	121
7	Dark	(Matter	123
	7.1	Visible Matter	123
	7.2	Dark Matter in Galaxies	128
	7.3	Dark Matter in Clusters	130
	7.4	Gravitational Lensing	135
	7.5	What's the Matter?	139
	Exe	rcises	140

	Contents	ix
8 The	Cosmic Microwave Background	142
8.1	Observing the CMB	143
8.2	Recombination and Decoupling	147
8.3	The Physics of Recombination	150
8.4	Temperature Fluctuations	157
8.5	What Causes the Fluctuations?	159
Exe	rcises	164
9 Nucl	eosynthesis and the Early Universe	166
9.1	Nuclear Physics and Cosmology	167
9.2	Neutrons and Protons	169
9.3	Deuterium Synthesis	174
9.4	Beyond Deuterium	177
9.5	Baryon-Antibaryon Asymmetry	181
Exe	rcises	183
IO Infla	tion and the Very Early Universe	185
10.1	The Flatness Problem	186
10.2	The Horizon Problem	187
10.3	The Monopole Problem	189
10.4	The Inflation Solution	192
10.5	The Physics of Inflation	197
Exe	rcises	202
II Stru	cture Formation: Gravitational Instability	204
11.1	The Matthew Effect	206
11.2	The Jeans Length	209
11.3	Instability in an Expanding Universe	213
11.4	The Power Spectrum	217
11.5	Hot versus Cold	221
11.6	Baryon Acoustic Oscillations	226
Exe	rcises	230

<u>x</u>	Contents	
	12 Structure Formation: Baryons and Photons	232
	12.1 Baryonic Matter Today	233
	12.2 Reionization of Hydrogen	235
	12.3 The First Stars and Quasars	238
	12.4 Making Galaxies	242
	12.5 Making Stars	248
	Exercises	254
	Epilogue	256
	Table of Useful Constants	258
	Index	259

Preface

The first edition of this book was based on my lecture notes for an upper-level undergraduate cosmology course at The Ohio State University. The students taking the course were primarily juniors and seniors majoring in physics and astronomy. In my lectures, I assumed that my students, having triumphantly survived freshman and sophomore physics, had a basic understanding of electrodynamics, statistical mechanics, classical dynamics, and quantum physics. As far as mathematics was concerned, I assumed that, like modern major-generals, they were very good at integral and differential calculus. Readers of this book are assumed to have a similar background in physics and mathematics. In particular, no prior knowledge of general relativity is assumed; the (relatively) small amounts of general relativity needed to understand basic cosmology are introduced as needed.

The second edition that you are reading now is updated with observational and theoretical developments during the 14 years that have elapsed since the first edition. It has been improved by many comments by readers. (My thanks go to the eagle-eyed readers who caught the typographical errors that snuck into the first edition.) The second edition also contains an extended discussion of structure formation in the final two chapters. For a brief course on cosmology, the first ten chapters can stand on their own.

Unfortunately, the National Bureau of Standards has not gotten around to establishing a standard notation for cosmological equations. It seems that every cosmology book has its own notation; this book is no exception. My main motivation was to make the notation as clear as possible for the cosmological novice.

Many of the illustrations in this book were adapted from figures in published scientific papers; my thanks go to the authors of those papers for granting permission to use their figures or to replot their hard-won data. Particular thanks go to Avishai Dekel (Figure 2.2), Wendy Freedman (Figure 2.5), David Leisawitz (Figure 8.1), Alain Coc (Figure 9.4), Richard Cyburt (Figure 9.5), Rien van de Weygaert (Figure 11.1), Ashley Ross (Figure 11.6), Xiaohui Fan (Figure 12.3),

xii Preface

and John Beacom (Figure 12.4). Extra thanks are due to Anže Slosar and José Alberto Vázquez for their assistance with Figures 6.6, 8.7, and 11.7.

Many people (too many to name individually) helped in the making of this book. I owe particular thanks to the students who took my undergraduate cosmology course at Ohio State University. Their feedback, including nonverbal feedback such as frowns and snores during lectures, greatly improved the lecture notes on which the first edition was based. The students of the graduate cosmology course at Ohio State have assisted in the development of the second edition, by field-testing the end-of-chapter problems, proposing new problems, and acting as all-around critics of the manuscript. Adam Black and Nancy Gee, at Pearson Addison Wesley, made possible the great leap from rough lecture notes to polished book. Vince Higgs and Rachel Cox, at Cambridge University Press, helped with the second great leap to a new, improved second edition. The reviewers of the text, in both its first and second editions, pointed out many omissions and suggested many improvements.

The first edition of this book was dedicated to Rick Pogge, who acted as my computer maven, graphics guru, personal chef, and general sanity check. Obviously, there was only one thing to do with such a paragon. Reader, I married him.