

Cambridge University Press 978-1-107-15475-9 — Chemical Production Scheduling Christos T. Maravelias Index More Information

Index

automation logic, 386	computational performance, 297
delay prediction module (DPM), 387	integer cut, 293
automation system, 386	profit maximization, 298
	sequencing subproblem, 290
backlog, 168	discrete-continuous algorithm (DCA), network
Benders decomposition, 56	environment
big-M constraint, 39	first-stage infeasibility, 354
blending, process	intermediate shipments, 353
CDU operating models, 276	shared utilities, 354
complex CDU models, 280	solution pool, 355
multi-blender, multi-CDU, 280	disjunction, 39
blending, product	disjunctive constraint, 68
continuous-time models, 269	due time, 4
operation logic constraints, 265	
property specifications, 266, 268	earliness, 69
branch-and-bound algorithm, 48	
branching strategies	family of tasks, 208
priorities, 335	formulation size, 89
special order set, 336	
strong branching, 336	Gantt chart, 10
	generalized capacitated lot sizing
changeover time constraints, 77	(GCLS), 407
clique inequality, 76	modes and setups, 410
continuous processes, 216	modified time period, 410
continuous task, 220	operating campaigns, 411
conversion delay, 226	setup carry over, 409
degrees of freedom, 218	setup cross over, 409
material consumption/production, 217	graph, 34
production environments, 219	clique, 54
shutdown, 224	cycle, 36
startup, 223	digraph, 35
task run, 218	incidence matrix, 35
transition, 225	
cutting plane, 50	integrated planning-scheduling, multi-unit
cover cut, 52	idle unit, 421
no-good cut, 37	maintenance activities, 421
	intermediate shipments, 164
deadline, 4	
decomposition methods, 55	job routing, 11
algorithm, 293, 297	
assignment subproblem, 290	Lagrangian relaxation, 57
bound convergence, 298	lateness, 70
branch-and-bound implementation, 299	logic condition, 37

Cambridge University Press 978-1-107-15475-9 — Chemical Production Scheduling Christos T. Maravelias Index More Information

436 Index

lost sales, 169	mixed-integer linear programming, 33
lot-sizing, multi-item capacitated, 406	nonlinear programming, 33
machine environment, 11	periodic scheduling
flexible flow-shop, 11	batch campaign, 236
flexible job-shop, 11	batch cross over, 254
flexible open-shop, 11	batch sequence, 236, 239
flow-shop, 11	batch timing, 236, 239
job-shop, 11	boundary continuity, 242
machines in parallel, 11	continuous processing, 245
open-shop, 11	degrees of freedom, 239
Single machine, 11	Dinkelbach's algorithm, 245
maintenance, 210	inventory profile, 238
capacity recovery, 212	solution, 239
maintenance task, 211	solution execution, 239
unit health, 211	piecewise linear approximation, 39
makespan, 69	polyhedron, 54
make-to-order, 233	polytope, 54
make-to-stock, 233	polytope difference, 428
material handing restrictions, 14	pooling
material handling restrictions, 135	<i>p</i> -formulation, 263
no splitting/mixing, 136	property levels, 263
material storage, 195	property specifications, 264
in multiple units, 200	q-formulation, 263
in processing units, 196	precedence constraint, 130
in shared vessels, 196	preprocessing, 52
storage task, 197	backward propagation, 325
material transfer, 201	forward propagation, 334
resource constrains, 203	probing, 51
transfer task, 201	variable fixing, 87
MIP basic problems	process attainable region (PAR), 405
assignment, 41	product families, 85
knapsack, 40	production planning, 401
traveling salesman, 41	general formulation, 402
model classification, 27	network representation, 403
model predictive control (MPC), 366	projection-based surrogate methods
modeling of time, 28	algorithm, 427
modeling systems, 58	feasible region approximation, 424
multi-purpose environment, 147	nonconvex regions, 430
batch balance constraints, 154	nonuniform periods, 429
batch reentry, 149	production cost, 428
batch routing, 148	termination, 428
multi-stage environment	0 1 11 11 1 11 10
batch-stage balance, 133	Quickhull algorithm, 427
nervousness, 366	real-time algorithm, 376
network, 34	feedback, 386
dynamic network, 47	load, 377
generalized flows, 46	order variability, 378
node-to-arc incidence matrix, 46	reoptimization frequency, 376
time-expanded network, 47	scheduling horizon, 376
network problems, 46	suboptimal moves, 377
no-overlap condition, 68	time constants, 378
	real-time scheduling, 361
optimization, 32	closed-loop schedule, 366
feasible region, 32	open-loop problem, 366
linear programming, 33	uncertainty, 367

Cambridge University Press 978-1-107-15475-9 — Chemical Production Scheduling Christos T. Maravelias Index <u>More Information</u>

Index

437

reformulation, 53	fractional delay, 375
new variables, 335	general form, 368
resources, 111	lifting, 370, 372
classification, 112	state-task network (STN), 159
non-renewable, 111	continuous time models, 179
renewable, 111	graphical representation, 159
terminology, 114	problem statement, 159
time-varying capacity and cost, 120	shared utilities, 159
unary, 111	unit-specific grids, 180
resource-task network (RTN)	storage, 135
graphical representation, 163	basic multi-stage model, 138
problem statement, 161	capacity and timing
task-resource interactions, 162	constraints, 136
resource-task network RTN, 161	classification, 136
	policy, 136
scheduling	time, 136
algorithms, 26	supply chain, 5
general problem statement, 9	business functions, 6
process industries, 8	operational planning, 6
scheduling-control integration	planning functions, 5
dynamic layer, 390	planning matrix, 5
operating mode, 391	strategic planning, 6
representation, 389	tactical planning, 6
scheduling layer, 392	target inventory position
time grids, 390	(TIP), 7
sequential environment	
multi-purpose problem representation, 19	tardiness, 70
multi-stage problem representation, 19	task setup, 206
shifting bottleneck procedure, 295	tightening
shortest tail, 308	knapsack constraints, 302
single-stage environment	time-varying utility capacity and
batching decisions, 107	cost, 164
solvers, 59	triangle inequality, 69
SOS1 variables, 36	
SOS2 variables, 39	unit setup, 205
state-space model	unit-specific time grids, 101
breakdown, 375	
conversion disturbances, 374	work center, 13, 148