

Chemical Production Scheduling

Understand common scheduling as well as other advanced operational problems with this valuable reference from a recognized leader in the field. Beginning with basic principles and an overview of linear and mixed-integer programming, this unified treatment introduces the fundamental ideas underpinning most modeling approaches, and will allow you to easily develop your own models. With more than 150 figures, the basic concepts and ideas behind the development of different approaches are clearly illustrated. The book addresses a wide range of problems arising in diverse industrial sectors, from oil and gas to fine chemicals, and from commodity chemicals to food manufacturing. A perfect resource for engineering and computer science students, researchers working in the area, and industrial practitioners.

Christos T. Maravelias is the Anderson Family Professor in Energy and the Environment and Professor of Chemical and Biological Engineering at Princeton University.

Cambridge Series in Chemical Engineering

SERIES EDITOR

Arvind Varma, Purdue University

EDITORIAL BOARD

Juan de Pablo, *University of Chicago*Michael Doherty, *University of California-Santa Barbara*Ignacio Grossmann, *Carnegie Mellon University*Jim Yang Lee, *National University of Singapore*Antonios Mikos, *Rice University*

BOOKS IN THE SERIES

Baldea and Daoutidis, Dynamics and Nonlinear Control of Integrated Process Systems

Chamberlin, Radioactive Aerosols

Chau, Process Control: A First Course with Matlab

Cussler, Diffusion: Mass Transfer in Fluid Systems, Third Edition

Cussler and Moggridge, Chemical Product Design, Second Edition

De Pablo and Schieber, Molecular Engineering Thermodynamics

Deen, Introduction to Chemical Engineering Fluid Mechanics

Denn, Chemical Engineering: An Introduction

Denn, Polymer Melt Processing: Foundations in Fluid Mechanics and Heat Transfer

Dorfman and Daoutidis, Numerical Methods with Chemical Engineering Applications

Duncan and Reimer, Chemical Engineering Design and Analysis: An Introduction 2E

Fan, Chemical Looping Partial Oxidation Gasification, Reforming, and Chemical Syntheses

Fan and Zhu, Principles of Gas-Solid Flows

Fox, Computational Models for Turbulent Reacting Flows

Franses, Thermodynamics with Chemical Engineering Applications

Grossmann, Advanced Optimization for Process Systems Engineering

Leal, Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes

Lim and Shin, Fed-Batch Cultures: Principles and Applications of Semi-Batch Bioreactors

Litster, Design and Processing of Particulate Products

Maravelias, Chemical Production Scheduling

Marchisio and Fox, Computational Models for Polydisperse Particulate and Multiphase Systems

Mewis and Wagner, Colloidal Suspension Rheology

Morbidelli, Gavriilidis, and Varma, Catalyst Design: Optimal Distribution of Catalyst in Pellets, Reactors, and Membranes

Nicoud, Chromatographic Processes

Noble and Terry, Principles of Chemical Separations with Environmental Applications

Orbey and Sandler, Modeling Vapor-Liquid Equilibria: Cubic Equations of State and Their Mixing Rules

Petyluk, Distillation Theory and Its Applications to Optimal Design of Separation Units

Pfister, Nicoud, and Morbidelli, Continuous Biopharmaceutical Processes: Chromatography, Bioconjugation, and Protein Stability

Ramkrishna and Song, Cybernetic Modeling for Bioreaction Engineering

Rao and Nott, An Introduction to Granular Flow

Russell, Robinson, and Wagner, Mass and Heat Transfer: Analysis of Mass Contactors and Heat Exchangers

Schobert, Chemistry of Fossil Fuels and Biofuels

Shell, Thermodynamics and Statistical Mechanics

Sirkar, Separation of Molecules, Macromolecules and Particles: Principles, Phenomena and Processes
Slattery, Advanced Transport Phenomena
Varma, Morbidelli, and Wu, Parametric Sensitivity in Chemical Systems
Vassiliadis et al., Optimization for Chemical and Biochemical Engineering
Weatherley, Intensification of Liquid–Liquid Processes
Wolf, Bielser, and Morbidelli, Perfusion Cell Culture Processes for Biopharmaceuticals
Zhu, Fan, and Yu, Dynamics of Multiphase Flows

Chemical Production Scheduling

Mixed-Integer Programming Models and Methods

CHRISTOS T. MARAVELIAS

Princeton University

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107154759

DOI: 10.1017/9781316650998

© Christos T. Maravelias 2021

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2021

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Maravelias, Christos T., 1973- author.

Title: Chemical production scheduling / Christos T. Maravelias, Princeton University.

Description: First edition. | Cambridge; New York, NY: Cambridge University Press, [2020] |
Series: Cambridge series in chemical engineering | Includes bibliographical references and index.

Identifiers: LCCN 2020037674 (print) | LCCN 2020037675 (ebook) | ISBN 9781107154759 (hardback) | ISBN 9781316650998 (epub)

Subjects: LCSH: Chemical plants-Management. | Chemical engineering. | Production scheduling.

Classification: LCC TP155.6 .M37 2020 (print) | LCC TP155.6 (ebook) | DDC 660-dc23

LC record available at https://lccn.loc.gov/2020037674

LC ebook record available at https://lccn.loc.gov/2020037675

ISBN 978-1-107-15475-9 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To the memory of my father.

Contents

Preface

Part I: Background				
1	Intro	oduction	3	
	1.1	Preliminaries	3	
		1.1.1 Scheduling: Applications and Definition	3	
		1.1.2 Some Simple Problems	4	
		1.1.3 Scheduling in the Supply Chain	5	
		1.1.4 Interactions with Other Planning Functions	6	
		1.1.5 Scheduling in the Process Industries	8	
		1.1.6 General Problem Statement	9	
	1.2	Chemical Production Environments	10	
		1.2.1 Discrete Manufacturing Machine Environments	10	
		1.2.2 Critical Insights	13	
		1.2.3 Sequential Environments	17	
		1.2.4 Network Environments	20	
		1.2.5 General Environments	21	
	1.3		22	
		1.3.1 Production Environments (α)	22	
		1.3.2 Processing Restrictions and Features (β)	23	
		1.3.3 Objective Functions (γ)	24	
		1.3.4 Problem Classification	25	
	1.4	11	26	
		1.4.1 Problem-Specific Algorithms	26	
		1.4.2 Metaheuristics	26	
		1.4.3 Integrated Modeling/Solution Approaches	26	
		1.4.4 Mathematical Programming	26	
		1.4.5 Hybrid Methods	27	
	1.5	8	27	
	1.6		29	
	1.7	Notes and Further Reading	30	

page xvii

x Contents

2	Mix	ed-Integer Programming	32
	2.1	Preliminaries	32
		2.1.1 General Optimization Problem	32
		2.1.2 General Mixed-Integer Programming Problem	33
		2.1.3 Graphs and Networks	34
	2.2	Modeling with Binary Variables	36
		2.2.1 Logic Conditions	36
		2.2.2 Nonlinear Functions	38
		2.2.3 Disjunctions	39
	2.3	Basic Integer Programming Problems	40
		2.3.1 Knapsack	40
		2.3.2 Assignment	41
		2.3.3 Traveling Salesman	41
		2.3.4 Set Covering	43
		2.3.5 Production Planning	43
		2.3.6 Facility Location	45
		2.3.7 Network Problems	46
	2.4		47
		2.4.1 Branch-and-Bound Algorithm	48
		2.4.2 Cutting Planes	50
		2.4.3 Reformulations	53
		2.4.4 Decomposition Methods	55
	2.5		57
		2.5.1 Modeling Languages	58
		2.5.2 Solvers	59
		Notes and Further Reading	59
	2.7	Exercises	60
Part II	: Basic	Methods	
3	Sing	gle-Unit Environment	67
	3.1	Problem Statement	67
	3.2	•	68
		3.2.1 Global Sequence Models	68
		3.2.2 Immediate Sequence Models	70
	3.3	Models Based on a Continuous Time Grid	71
	3.4		75
	3.5		83
		3.5.1 Prize Collection Problem	83
		3.5.2 Product Families	85
	3.6	Remarks	86
		3.6.1 Assumptions	87
		3.6.2 Variable Fixing	87
		3.6.3 Alternative Models	88
		3.6.4 Model Size	89

		Contents	xi
		3.6.5 Problem-Specific versus General Models	90
		3.6.6 Recommendations	91
	3.7		92
	3.8	Exercises	94
4	_	gle-Stage Environment	98
	4.1		98
	4.2	1	99
	4.3		101
	4.4		105
	4.5	8	107
		4.5.1 Sequence-Based Models4.5.2 Model Based on a Continuous Time Grid	108 110
		4.5.3 Model Based in a Discrete Time Grid	110
	4.6	General Shared Resources	110
	4.0	4.6.1 Preliminaries	111
		4.6.2 Sequence-Based Models	114
		4.6.3 Models Based on a Common Continuous Time Grid	115
		4.6.4 Models Based on a Discrete Time Grid	118
	4.7		120
		4.7.1 Time-Varying Resource Capacity and Cost	120
		4.7.2 Varying Resource Consumption during Batch Execution	121
	4.8		122
	4.9	Exercises	123
5	Mul	tistage Environment	128
	5.1	Problem Statement	128
	5.2	Sequence-Based Models	129
	5.3	Models Based on a Continuous Time Grid	131
	5.4	Models Based on a Discrete Time Grid	133
	5.5	Storage Constraints	135
		5.5.1 Preliminaries	135
		5.5.2 Problem Statement	137
		5.5.3 Basic Sequence-Based Model	138
	<i>5.6</i>	5.5.4 Modifications and Extensions	141
	5.6	E	142
	5.7	Exercises	143
6		tipurpose Environment	147
	6.1	Problem Statement	147
	6.2	1	150
	6.3		151
	6.4 6.5		153
	6.6		154 155
	0.0	LACICIOCO	133

XII	Contents

7	Netv	vork Environment: Basics	157
	7.1	Problem Representation	157
		7.1.1 State-Task Network	159
		7.1.2 Resource-Task Network	161
	7.2	Models Based on Discrete Time Grids	163
		7.2.1 Intermediate Shipments and Time-Varying Utility Capacity	
		and Pricing	164
		7.2.2 STN-Based Models	166
		7.2.3 RTN-Based Models	169
		7.2.4 Interpretation of Backlogs and Lost Sales	171
	7.3	Models Based on a Common Continuous Time Grid	172
		7.3.1 Basic Model	172
		7.3.2 Extensions	177
		7.3.3 Remarks	179
	7.4	Notes and Further Reading	183
	7.5	Exercises	184
Part III	: Advar	nced Methods	
8	Netv	vork Environment: Extensions	193
	8.1	Material Consumption and Production during Task Execution	193
	8.2	Material Storage and Transfer	195
		8.2.1 Storage in Shared Vessels	196
		8.2.2 Storage in Processing Units and Material Flows	196
		8.2.3 Material Storage Extensions	199
		8.2.4 Material Transfer Tasks	201
	8.3	Setups and Task Families	205
		8.3.1 Unit Setups	205
		8.3.2 Task Setups	206
		8.3.3 Task Families	207
	8.4	Unit Deterioration and Maintenance	210
		8.4.1 No Effect on Capacity and Conversion	211
		8.4.2 Unit Capacity Reduction	212
		8.4.3 Conversion Reduction	213
	8.5	Notes and Further Reading	214
9	Cont	tinuous Processes	216
	9.1	Preliminaries	216
		9.1.1 Background	216
		9.1.2 Batch versus Continuous Processing	217
	9.2	Basic Model	220
	9.3	Extensions	223
		9.3.1 Startups and Shutdowns	223
		9.3.2 Transitions between Steady States	225

			Contents	xiii
		2.3.3 Time Delays		226
		0.3.4 General Startups and Shutdo	wns with	
		Time Delays		228
		2.3.5 General Transitions		230
		Notes and Further Reading		231
	9.5	Exercises		231
10	Perio	c Scheduling		233
	10.1	Single-Unit Environment		233
		10.1.1 Problem Statement		234
		10.1.2 Preliminaries and Motivati	on	234
		10.1.3 Notation		239
		10.1.4 Basic Discrete Time Mode	:1	240
		10.1.5 Advanced Discrete Time N	Model	242
		10.1.6 Remarks		244
	10.2	Single-Stage Environment		245
		10.2.1 Problem Statement		245
		10.2.2 Basic Model		246
		10.2.3 Shipments at Specified Tir		247
		10.2.4 Simplifying Assumptions	and Solution Features	249
		10.2.5 Unit-Specific Solutions		251
		10.2.6 Continuous Time Models:		252
		10.2.7 Continuous Processing: Ba	asics	253
	10.3	Network Environment		254
		10.3.1 Problem Statement		255
		10.3.2 Model		256
	10.4	Notes and Further Reading		258
	10.5	Exercises		258
11	Multi	eriod Blending		261
	11.1	Preliminaries		262
		11.1.1 Pooling		262
		11.1.2 Pooling Formulations		263
		11.1.3 Product Blending		264
	11.2	Product Blending: Nonlinear Mode		265
		11.2.1 Concentration-Based Mode	el	265
		11.2.2 Source-Based Model		267
		11.2.3 Remarks and Extensions		269
	11.3	Product Blending: Linear Approximation		269
		11.3.1 Discretization-Based Mode	el	270
		11.3.2 Discretization-Relaxation-l	Based Model	272
	11.4	Process Blending		275
		11.4.1 Problem Statement		275
		11.4.2 Basic Model		276

		11.4.3 Illustrative Example	278
		11.4.4 Extensions	280
	11.5	Notes and Further Reading	281
	11.6	Exercises	282
Part IV:	Specia	Topics	
12	Soluti	on Methods: Sequential Environments	289
	12.1	Decomposition Methods	289
		12.1.1 Preliminaries	289
		12.1.2 Single-Stage Environment: Cost Minimization	291
		12.1.3 Multistage Environment: Cost Minimization	293
		12.1.4 Makespan Minimization	295
		12.1.5 Remarks and Extensions	297
	12.2	Tightening and Preprocessing	300
		12.2.1 Tightening Based on Batch-Unit Assignments: Single-Stage	300
		12.2.2 Tightening Based on Batch-Unit Assignments: Multistage	305
		12.2.3 Fixing Sequencing Binary Variables: Multistage	306
	12.3	A Reformulation and Tightening Based on Variable Time Windows	307
	12.4	Discrete-Continuous Algorithm	311
	12.5	Notes and Further Reading	313
	12.6	Exercises	314
13	Soluti	on Methods: Network Environments	318
	13.1	Background and Motivation	318
		13.1.1 Problem Statement	318
		13.1.2 Basic STN-Based Model	319
		13.1.3 Motivating Examples	320
	13.2	Preprocessing and Tightening	324
		13.2.1 General Networks	325
		13.2.2 Networks with Loops	328
		13.2.3 Preprocessing Algorithm	329
		13.2.4 Valid Inequalities	331
		13.2.5 Extensions	333
	13.3	Reformulations	334
		13.3.1 New Variables and Branching Strategies	335
		13.3.2 Remarks	336
	13.4	Models Based on Multiple Discrete Time Grids	337
		13.4.1 Time Windows	337
		13.4.2 Exact Task and Unit Time Discretization	339
		13.4.3 Approximate Task and Unit Time Discretization	342
		13.4.4 Material Grids	344
		13.4.5 Model	344
		13.4.6 Types of Time Grids	347

			Contents	XV
	13.5	Discrete-Continuous Algori	thm	348
		13.5.1 Preliminaries and C	Outline	349
		13.5.2 Mapping		351
		13.5.3 Third-Stage Linear	Programming Model	352
		13.5.4 Extensions		353
	13.6	Notes and Further Reading		355
	13.7	Exercises		358
14	Real-	ime Scheduling		361
	14.1	Motivation and Background	Í	362
		14.1.1 Uncertainty versus	New Information	362
		14.1.2 Event Triggered ve	rsus Periodic Rescheduling	363
		14.1.3 Notation		365
		14.1.4 Approach Classifica	ation	367
	14.2	State-Space Scheduling Mo	del	367
		14.2.1 Preliminaries		368
		14.2.2 Basic Model		369
		14.2.3 Modeling of Distur	bances	371
		14.2.4 Extensions		374
	14.3	Design of Real-Time Sched	uling Algorithm	376
		14.3.1 Algorithmic Parame	eters	376
		14.3.2 System Characteris	tics	377
		14.3.3 Design through Sin	nulation: Deterministic Case	379
		14.3.4 Model Modification	as	381
		14.3.5 Design through Sin	nulation: Stochastic Case	382
		14.3.6 Integrated Framewo	ork	384
	14.4	Feedback through Integration	on with Other Functions	386
		14.4.1 Integration with Au	tomation Logic	386
		14.4.2 Integration with Pro	ocess Control	389
	14.5	Notes and Further Reading		392
	14.6	Exercises		395
15	Integ	tion of Production Planning	and Scheduling	401
	15.1	Preliminaries	•	401
		15.1.1 Production Planning	g	401
		15.1.2 Motivation		404
		15.1.3 Lot Sizing		406
	15.2	Generalized Capacitated Lo	t Sizing	407
		15.2.1 Motivation	S	408
		15.2.2 Basic Concepts		409
		15.2.3 Solution Properties		412
		15.2.4 Basic Model		413
		15.2.5 Model for Short and	d Long Setups	415

xvi Contents

15.3	Multip	ole Units Production Planning-Scheduling	416
	15.3.1	Preliminaries	417
	15.3.2	Basic Model	418
	15.3.3	Extensions	421
15.4	Projection-Based Surrogate Methods		
	15.4.1	Feasible Region Projection	422
	15.4.2	Method Outline	424
	15.4.3	Remarks and Extensions	427
15.5	Notes	and Further Reading	431
15.6	Exerci	ses	432
Index			435

Preface

Background and Motivation

Scheduling is a decision-making process that concerns the allocation of limited resources to competing tasks over time with the goal of optimizing one or more objectives. Scheduling appears in a wide range of sectors, from services to sports, and from education to manufacturing. In the process industries, it arises, for example, in the oil, pharmaceuticals, specialty chemicals, and food and nutraceuticals sectors. Importantly, there is already significant industrial evidence suggesting that the use of advanced optimization methods for scheduling can lead to multimillion-dollar annual savings.

Chemical production scheduling is a relatively new field. The first papers discussing systematic methods appeared in the late 1970s, while the field became one of the major areas of process systems engineering (PSE) only in the late 1990s. Today it is one of the most active research areas in PSE with multiple sessions in national and international chemical engineering conferences dedicated to it and its closely related process operations areas. Its role is only expected to increase as chemical companies move toward product customization and diversification. Despite the volume of papers in the field, however, there is no book discussing the subject as a whole or a book that can be used for a senior-/graduate-level course.

Accordingly, the book is written with two goals in mind. First, it presents a general framework for chemical production scheduling by (1) unifying the notation that has been used by different communities; (2) presenting a classification of the various types of problems and models that have been proposed to address them; and (3) introducing some general principles. Second, it presents the major, modeling and computational, advances in the field over the last 30 years. The book focuses on representative methods and results, but each chapter ends with a discussion of the relevant literature.

Audience

The book is aimed at (1) researchers working in the area of chemical production scheduling or, more broadly, process systems engineering; (2) graduate students interested in the topic; and (3) industrial practitioners. Chemical engineering, industrial

χvii

xviii Preface

engineering, and computer science students are most likely to use this book. The reader is expected to have basic linear algebra knowledge (the equivalent of an undergraduate class in any engineering discipline). Readers with a bachelor of science (BS) degree in engineering or natural sciences will be able to follow the book. The book can also be potentially used in two courses: (1) as one of the main resources for a senior/graduate course on process systems engineering or process optimization/operations, and (2) as the main text for a graduate elective course on chemical production scheduling.

Organization

In broad terms, the book is divided into four parts:

- (I) "Background" (Chapters 1 and 2): Chapter 1 presents an introduction to chemical production scheduling, while Chapter 2 presents some background on mixed-integer linear programming.
- (II) "Basic Methods" (Chapters 3 through 7): Basic concepts and models for the most encountered classes of problems.
- (III) "Advanced Methods" (Chapters 8 through 11): Concepts and models for more complex classes of problems.
- (IV) "Special Topics" (Chapters 12 through 15): Advanced solution methods (Chapters 12 and 13), real-time scheduling (Chapter 14), and integration of production planning and scheduling (Chapter 15).

Parts I and II can be used for a senior-/graduate-level semester-long (fifteen-week) course on process operations/optimization. Parts I through III and, potentially, a selection of topics from Part IV can be used for a graduate-level semester-long course on chemical production scheduling.

Approach

One interesting characteristic of scheduling in general, and chemical production scheduling in particular, is that problems arise in many different types of facilities (what we will later define as *production environments*) and can be subject to a wide range of different processing features and constraints, resulting in many different classes of problems. In addition, since the optimization of these systems is challenging, researchers have proposed very different models to address these problems, where a model is typically applicable to a narrow set of problems. Consequently, to present a unified treatment of chemical production scheduling, we had to overcome two major challenges: (1) identify the key concepts, underpinning all problem classes and models, and unifying themes, across all methods; and (2) introduce the reader to different problems and models while keeping the presentation succinct. To address these challenges, the book adopts five basic principles.

Preface

xix

First, the presentation is based on, essentially, a road map introduced in Chapter 1. The road map has two components: a classification of scheduling problems (discussed in Section 1.3) and a classification of models (discussed in Section 1.5).

Second, the complexity of covered problems, and corresponding concepts and methods, increases gradually: from single-unit problems, introduced in Chapter 3; to problems in network environments, discussed in Chapter 7; to some *advanced* problems, in Chapters 8 through 11; and then to special topics, in Chapters 12 through 15.

Third, new problem features, and the corresponding concepts, are gradually introduced; for example, batching decisions are introduced in Chapter 3, general resource constraints are introduced in Chapter 4, storage considerations are introduced in Chapter 5, and so on.

Fourth, the book starts with a broad coverage of alternative modeling approaches, so the reader is exposed to most of them, but gradually focuses on fewer approaches, so that more classes of problems can be covered. For example, five ways to model sequencing/timing are discussed in Chapter 3, but only one such approach is discussed in Chapter 8.

Finally, figures are used strategically to explain complex concepts, so that the reader is not distracted by the details pertaining to these concepts. The reader can continue reading and, if interested, return to study the corresponding figures, often containing multiple panels, separately from the text. In that respect, some figures are designed to serve as standalone illustrative examples.

Each chapter includes a "Notes and Further Reading" section where the reader can find additional background information, high-level discussion of extensions of the methods presented in each chapter, and references to related sources. Also, each chapter, except for Chapters 1 and 8, ends with an "Exercises" section, where effort has been made to keep the necessary data to a minimum while covering a wide range of methods discussed in the corresponding chapter. Additional exercises will become available online (see "Online Resources"). Finally, footnotes are used extensively for terminology and notation clarifications; cross-references to related material covered in different chapters; and disambiguation. They are also used to pose questions that are designed to facilitate the understanding of the material.

In terms of notation, each letter is used consistently throughout the book to denote the same parameter or variable, with few exceptions, noted. Also, starting in Chapter 3, we use lowercase Latin characters for indices, uppercase Latin bold letters for sets, uppercase Latin characters for variables, Greek letters for parameters, and regular uppercase Latin letters for set elements.

Online Resources

Additional exercises and some updated auxiliary material (e.g., list of software tools for the development of scheduling methods, all images of the book) are available at cambridge.org/9781107154759. Additional resources can be made available, upon request, to course instructors.

xx Preface

Acknowledgments

I am sincerely grateful to many people who helped me, in many different ways, to write this book.

First, I would like to thank all the PhD students and other group members I was fortunate and privileged to work with on the topic of chemical production scheduling and chemical process operations in general. Specifically, I would like to thank Charles Sung, Arul Sundaramoorthy, Kaushik Subramanian, Andres Merchan, Sara Velez, Yachao Dong, Dhruv Gupta, Michael Risbeck, Ho Jae Lee, Yifu Chen, Venkatachalam Avadiappan, Yaqing Wu, and Giorgos Koponos. The methods and examples they developed as well as, importantly, the lessons they taught me are present in the pages of this book. In addition, I would like to thank two other group members, Dr. Shamik Mishra and Dr. Boeun Kim, for carefully going through the manuscript and helping me to proofread it and generate the index.

Second, I would like to express my deepest gratitude to my colleagues in the Department of Chemical and Biological Engineering at the University of Wisconsin–Madison for creating a highly collegial and intellectually stimulating academic environment; and for continuing to nurture a tradition in which scholarly activities, and bookwriting in particular, are highly valued. More specifically, I would like to thank Jim Rawlings for his continuous encouragement, his valuable insights into scheduling and control, and our discussions about book writing; and Manos Mavrikakis for his advice. I would also like to acknowledge financial support from the Olaf Hougen Program and the Paul Elfers Professorship.

Third, I would like to thank a number of colleagues: Ignacio Grossmann, not only for our discussions on production scheduling but also for serving as a role model and giving me advice throughout my academic career; Gabriela Henning, for being willing to challenge the status quo and for sharing with me her outside-the-box thoughts on scheduling; John Wassick and Jeff Kelly for "educating" me with their insights into the industrial application of optimization-based methods for scheduling; and Pedro Castro and Lazaros Papageorgiou for our fruitful discussions on scheduling.

Last but not least, I would like to thank ta *koritsakia*, Emi and Bella, for bringing so much joy every day; and my wife, Vanesa, for her support during this journey – without her love and patience, this book would have been impossible to write.