Index

(a,b,0) class, 64
(a,b,1) class, 73
\(R_k\) class, 79, 93

absorbing barrier, 160
additivity, 39
adjustment coefficient
classical risk process, 132, 156
discrete time model, 122
reinsurance, 215
aggregate claims distribution, 54

beta distribution, 24
binomial distribution, 2, 26, 67
bounds for survival probability, 147

classical risk process, 127
coefficient of risk aversion, 28, 32, 35, 37
collective risk model, 54
compound binomial distribution, 92
compound binomial model, 125
compound geometric distribution, 71, 145
compound negative binomial distribution, 78, 90–92
compound Poisson approximation, 103, 107
compound Poisson distribution, 57, 60, 63, 91–93
compound Poisson process, 130, 156
consistency, 40
Cramer’s asymptotic formula, 157
De Pril’s recursion formula, 96, 107
De Vylder’s method, 153, 157, 198
reinsurance, 226, 231
deficit at ruin
classical risk process, 161, 208
discrete time model, 117, 126
discrete time risk model, 115
dividends, 200, 209
dual events, 174
dual model, 158

Erlang distribution, 5, 25
Esscher principle, 44
Esscher transform, 44, 51
excess of loss reinsurance
definition, 12
effect on aggregate claims, 61, 92
net adjustment coefficient, 216, 219
expected utility criterion, 28
expected value principle, 40
exponential distribution, 6, 13, 15, 17, 19, 20, 25, 45, 46
exponential principle, 43, 52, 156
exponential utility function, 31, 37, 211, 230
extended truncated negative binomial distribution, 74

finite time ruin probability
classical risk process, 131
discrete time model, 120
force of interest, 179, 202

gamma distribution, 5, 51
gamma function, 5
generalised hypergeometric function, 192
generalised Pareto distribution, 25
geometric distribution, 4, 26, 145
Gerber-Shiu function, 178

292
indicator function, 179
indicator random variable, 62
integro-differential equation, 138, 179
Jensen’s inequality, 29
Kornya’s method, 99, 107
ladder height distribution, 146
Laplace transform
deficit at ruin, 162
definition, 140
ladder height distribution, 146
maximum aggregate loss, 147
properties, 141
survival probability, 142
logarithmic distribution, 24, 74
logarithmic utility function, 34, 38
lognormal distribution, 9, 13, 25, 159
Lundberg’s fundamental equation, 180
Lundberg’s inequality
classical risk process, 135
discrete time model, 122
maximum aggregate loss, 144
maximum severity of ruin, 166, 208
mean value principle, 51
memoryless property, 130, 163
mixed distribution, 9, 13, 15, 37, 38
mixture of exponential distributions, 167, 199
negative binomial distribution, 3, 63, 66
net of reinsurance adjustment coefficient, 215, 216, 219, 225
net of reinsurance loading factor, 223, 225, 231
net of reinsurance premium income, 215, 216, 220, 224
net of reinsurance surplus process, 215
Newton-Raphson method, 135
no ripoff, 40
non-negative loading, 39
non-zero claims, 62
normal approximation
collective risk model, 84, 93
individual risk model, 107
normal distribution, 8, 26
numerical stability, 23, 84
numerical underflow, 84
optimal dividend barrier, 206
optimal excess of loss reinsurance
adjustment coefficient, 224
utility theory, 213, 230
optimal proportional reinsurance
adjustment coefficient, 220
utility theory, 212, 230
optimal type of reinsurance, 216
Panjer recursion formula, 68
Pareto distribution, 7, 17, 25, 48, 159
Poisson distribution, 2, 18, 51, 62, 65, 129
Poisson process, 129
policy excess, 17, 37, 38
premium
definition, 39
properties, 39
utility theory, 30
proportional reinsurance
definition, 11
effect on aggregate claims, 60
net adjustment coefficient, 220
utility theory, 212, 230
pure premium principle, 40
quadratic utility function, 33, 36
record high, 145
record low, 166
recursive calculation of moments, 71
recursive calculation of survival probability, 149
reflecting barrier, 208
reinsurance, 11
risk adjusted premium principle, 47, 51, 52
scale invariance, 40
Schröter’s class, 75
skewness
aggregate claims distributions, 58, 85, 87, 90
coefficient of, 6
standard deviation principle, 42
standard normal distribution, 8
stationary increments, 130
sub-additive, 51
sums of random variables, 18
surplus prior to ruin, 168, 179, 209
surplus process, 115
survival probability, 137
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tijms’ approximation, 157</td>
</tr>
<tr>
<td>time of ruin</td>
</tr>
<tr>
<td>density of (T_u), 177</td>
</tr>
<tr>
<td>exponential claims, 190</td>
</tr>
<tr>
<td>joint density of (T_u) and (Y_u), 184</td>
</tr>
<tr>
<td>moments, 193, 194</td>
</tr>
<tr>
<td>Prabhu’s formula, 175</td>
</tr>
<tr>
<td>translated gamma approximation, 87</td>
</tr>
<tr>
<td>ultimate ruin probability, 116, 131</td>
</tr>
<tr>
<td>utility theory, 27, 211</td>
</tr>
<tr>
<td>variance principle, 41, 51</td>
</tr>
<tr>
<td>Weibull distribution, 24</td>
</tr>
<tr>
<td>zero-modification, 74, 210</td>
</tr>
<tr>
<td>zero-truncation, 73, 92</td>
</tr>
</tbody>
</table>