

TWO-PHASE FLOW, BOILING, AND CONDENSATION IN CONVENTIONAL AND MINIATURE SYSTEMS

Providing a comprehensive introduction to the fundamentals and applications of flow and heat transfer in conventional and miniature systems, this fully enhanced and updated edition covers all the topics essential for graduate courses on two-phase flow, boiling, and condensation.

Beginning with a concise review of single-phase flow fundamentals and interfacial phenomena, detailed and clear discussion is provided on a range of topics including two-phase hydrodynamics and flow regimes, mathematical modeling of gas—liquid two-phase flows, pool and flow boiling, flow and boiling in mini- and microchannels, external- and internal-flow condensation with and without noncondensables, condensation in small flow passages, and two-phase choked flow.

Numerous solved examples and end-of-chapter problems that include many common design problems likely to be encountered by students make this an essential text for graduate students. With up-to-date detail on the most recent research trends and practical applications, it is also an ideal reference for professionals and researchers in mechanical, nuclear, and chemical engineering.

S. Mostafa Ghiaasiaan is a Professor in the George W. Woodruff School of Mechanical Engineering at Georgia Institute of Technology. Before joining the faculty in 1991, Professor Ghiaasiaan worked in the Aerospace and Nuclear Power industry for eight years, conducting research and development activity on modeling and simulation of transport processes, multiphase flow, and nuclear reactor thermal-hydraulics and safety. Professor Ghiaasiaan has more than 200 publications on transport phenomena and multiphase flow, is a Fellow of the American Society of Mechanical Engineers (ASME), and has been an Executive Editor for the journal *Annals of Nuclear Energy* since 2006. He is also the author of the widely used graduate text *Convective Heat and Mass Transfer* (Cambridge University Press, 2011).

Two-Phase Flow, Boiling, and Condensation

IN CONVENTIONAL AND MINIATURE SYSTEMS

S. Mostafa Ghiaasiaan

Georgia Institute of Technology

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia 4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi – 110002, India 79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107153301

© S. Mostafa Ghiaasiaan 2017

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2008 First paperback edition 2014 Second edition 2017

Printed in the United States of America by Sheridan Books, Inc.

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data

Ghiaasiaan, Seyed Mostafa, 1953-

Two-phase flow: boiling and condensation in conventional and miniature systems / S. Mostafa Ghiaasiaan.

Includes bibliographical references and index.

ISBN 978-1-107-15330-1 (hardback)

1. Fluid dynamics. 2. Two-phase flow. I. Title.

TA357.G4625 2007

620.1'064 - dc22 2007016309

ISBN 978-1-107-15330-1 Hardback

Additional resources for this publication at www.cambridge.org/ghiaasiaan

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To my wife Pari Fatemeh Shafiei, and my son Saam

Contents

Preface to the Second Edition

Pre	face t	o the First Edition	xvii
Fre	Frequently Used Notation		
PA	RT O	NE. TWO-PHASE FLOW	
1	The	rmodynamic and Single-Phase Flow Fundamentals	3
	1.1	States of Matter and Phase Diagrams for Pure Substances	3
		1.1.1 Equilibrium States	3
		1.1.2 Metastable States	5
	1.2	Transport Equations and Closure Relations	7
	1.3	Single-Phase Multicomponent Mixtures	10
	1.4	Phase Diagrams for Binary Systems	15
	1.5	Thermodynamic Properties of Vapor-Noncondensable Gas	
		Mixtures	17
	1.6	Transport Properties	21
		1.6.1 Mixture Rules	21
		1.6.2 Gaskinetic Theory	21
		1.6.3 Diffusion in Liquids	25
	1.7	Turbulent Boundary Layer Velocity and Temperature Profiles	27
	1.8	Convective Heat and Mass Transfer	31
		Problems	36
2	Gas	-Liquid Interfacial Phenomena	38
	2.1	Surface Tension and Contact Angle	38
		2.1.1 Surface Tension	38
		2.1.2 Contact Angle	41
		2.1.3 Dynamic Contact Angle and Contact Angle Hysteresis	42
		2.1.4 Surface Tension Nonuniformity	43
	2.2	Effect of Surface-Active Impurities on Surface Tension	44
	2.3	Thermocapillary Effect	46
	2.4	Disjoining Pressure in Thin Films	50
	2.5	Liquid–Vapor Interphase at Equilibrium	51
	2.6	Attributes of Interfacial Mass Transfer	53
		2.6.1 Evaporation and Condensation	53
		2.6.2 Sparingly Soluble Gases	59
	2.7	Semi-Empirical Treatment of Interfacial Transfer Processes	61
	2.8	Multicomponent Mixtures	66
	2.9	Interfacial Waves and the Linear Stability Analysis Method	71

vii

page xv

viii Contents

	2.10	Two-Dimensional Surface Waves on the Surface of an Inviscid	
		and Quiescent Liquid	72
		Rayleigh-Taylor and Kelvin-Helmholtz Instabilities	75
		Rayleigh–Taylor Instability for a Viscous Liquid	81
		Waves at the Surface of Small Bubbles and Droplets	83
	2.14	Growth of a Vapor Bubble in Superheated Liquid	87
		Problems	90
3	Two-	Phase Mixtures, Fluid Dispersions, and Liquid Films	96
	3.1	Introductory Remarks about Two-Phase Mixtures	96
	3.2	Time, Volume, and Composite Averaging	97
		3.2.1 Phase Volume Fractions	97
		3.2.2 Averaged Properties	99
	3.3	Flow-Area Averaging	100
	3.4	Some Important Definitions for Two-Phase Mixture Flows	101
		3.4.1 General Definitions	101
		3.4.2 Definitions for Flow-Area-Averaged One-Dimensional	
		Flow	102
		3.4.3 Homogeneous-Equilibrium Flow	104
	3.5	Convention for the Remainder of This Book	104
	3.6	Particles of One Phase Dispersed in a Turbulent Flow Field of	
		Another Phase	106
		3.6.1 Turbulent Eddies and Their Interaction with Suspended	
		Fluid Particles	106
		3.6.2 The Population Balance Equation	111
		3.6.3 Coalescence	112
		3.6.4 Breakup	113
	3.7	Conventional, Mini-, and Microchannels	114
		3.7.1 Basic Phenomena and Size Classification for Single-Phase	44.4
		Flow	114
	2.0	3.7.2 Size Classification for Two-Phase Flow	118
	3.8	Falling Liquid Films	122
		3.8.1 Laminar Falling Liquid Films	123
	2.0	3.8.2 Turbulent Falling Liquid Films Heat Transfer Correlations for Falling Liquid Films	126 127
	3.9	Mechanistic Modeling of Liquid Films	127
	5.10	Problems	131
4	Two-	Phase Flow Regimes – I	135
	4.1	Introductory Remarks	135
	4.2	Two-Phase Flow Regimes in Adiabatic Pipe Flow	136
		4.2.1 Vertical, Co-current, Upward Flow	136
		4.2.2 Co-current Horizontal Flow	139
	4.3	Flow Regime Maps for Pipe Flow	143
	4.4	Two-Phase Flow Regimes in Rod Bundles	145
	4.5	Two-Phase Flow in Curved Passages	149
	4.6	Comments on Empirical Flow Regime Maps	158
		Problems	159
5	Two-	Phase Flow Modeling	162
	5.1	General Remarks	162

Contents

	5.2 5.3 5.4	Local Instantaneous Equations and Interphase Balance Relations Two-Phase Flow Models Flow-Area Averaging	163 166 167
	5.55.6	One-Dimensional Homogeneous-Equilibrium Model: Single-Component Fluid One-Dimensional Homogeneous-Equilibrium Model:	169
	5.7	Two-Component Mixture One-Dimensional Separated-Flow Model: Single-Component Fluid	174
	5.8 5.9 5.10	One-Dimensional Separated-Flow Model: Two-Component Fluid Multi-dimensional Two-Fluid Model Numerical Solution of Steady, One-Dimensional Conservation	175 184 185
	0.10	Equations 5.10.1 Casting the One-Dimensional ODE Model Equations in a Standard Form	188 189
		5.10.2 Numerical Solution of the ODEs Problems	195 195
6	The	Drift Flux Model and Void-Quality Relations	199
	6.1 6.2 6.3 6.4 6.5 6.6	The Concept of Drift Flux Two-Phase Flow Model Equations Based on the DFM DFM Parameters for Pipe Flow DFM Parameters for Rod Bundles DFM in Minichannels Void-Quality Correlations Problems	199 202 203 210 212 213 218
7	Two-	Phase Flow Regimes – II	221
	7.1 7.2 7.3 7.4 7.5	Introductory Remarks Upward, Co-current Flow in Vertical Tubes 7.2.1 Flow Regime Transition Models of Taitel <i>et al</i> . 7.2.2 Flow Regime Transition Models of Mishima and Ishii Co-current Flow in a Near-Horizontal Tube Two-Phase Flow in an Inclined Tube Dynamic Flow Regime Models and Interfacial Surface Area Transport Equations 7.5.1 The Interfacial Area Transport Equation 7.5.2 Simplification of the Interfacial Area Transport Equation 7.5.3 Two-Group Interfacial Area Transport Equations Problems	221 221 221 225 228 232 234 235 236 238 242
8	Drage		246
0	8.1	sure Drop in Two-Phase Flow Introduction	246
	8.2 8.3 8.4 8.5	Two-Phase Frictional Pressure Drop in Homogeneous Flow and the Concept of a Two-Phase Multiplier Empirical Two-Phase Frictional Pressure Drop Methods General Remarks about Local Pressure Drops Single-Phase Flow Pressure Drops Caused by Flow	247 250 256
		Disturbances 8.5.1 Single-Phase Flow Pressure Drop across a Sudden Expansion	258 260
		I' '' '	

x Contents

		8.5.2	Single-Phase Flow Pressure Drop across a Sudden Contraction	261
		8.5.3	Pressure Change Caused by Other Flow Disturbances	262
	8.6		Phase Flow Local Pressure Drops	262
	8.7		re Drop in Helical Flow Passages	270
	0.7	8.7.1	Hydrodynamics of Single-Phase Flow	270
		8.7.2	Frictional Pressure Drop in Two-Phase Flow	274
		Proble	<u> </u>	277
9	Cou	ntercui	rrent Flow Limitation	285
	9.1	Gener	ral Description	285
	9.2	Flood	ing Correlations for Vertical Flow Passages	290
	9.3	Flood	ing in Horizontal, Perforated Plates and Porous Media	293
	9.4		ing in Vertical Annular or Rectangular Passages	296
	9.5		ing Correlations for Horizontal and Inclined Flow Passages	299
	9.6		t of Phase Change on CCFL	300
	9.7		ling of CCFL Based on the Separated-Flow Momentum	
		Equat		300
		Proble	ems	302
10	Two	-Phase	Flow in Small Flow Passages	306
			Phase Flow Regimes in Minichannels	307
			Fraction in Minichannels	314
			Phase Flow Regimes and Void Fraction in Microchannels	316
	10.4		Phase Flow and Void Fraction in Thin Rectangular Channels	216
		and A		319
			Flow Regimes in Vertical and Inclined Channels	320
	10.5		Flow Regimes in Rectangular Channels and Annuli Phase Pressure Drop	322 324
			heoretical Models for Pressure Drop in the Intermittent	324
	10.0		Regime	331
	10.7		Laminar Annular Flow	334
			Subble Train (Taylor Flow) Regime	335
	10.0		General Remarks	335
			Some Useful Correlations	341
	10.9		are Drop Caused by Flow-Area Changes	347
		Proble		348
PA	RT TV	VO. BO	DILING AND CONDENSATION	
11		Boilin		357
11				
	11.1		ool Boiling Curve	357
	11.2		ogeneous Bubble Nucleation and Ebullition	361
		11.2.1	Heterogeneous Bubble Nucleation and Active Nucleation Sites	361
		1122	Bubble Ebullition	366
			Heat Transfer Mechanisms in Nucleate Boiling	369
	11 3		ate Boiling Correlations	370
			Iydrodynamic Theory of Boiling and Critical Heat Flux	376
			Boiling	379

Contents

		11.5.1 Film Boiling on a Horizontal, Flat Surface	379
		11.5.2 Film Boiling on a Vertical, Flat Surface	382
		11.5.3 Film Boiling on Horizontal Tubes	385
		11.5.4 The Effect of Thermal Radiation in Film Boiling	385
	11.6	Minimum Film Boiling	386
	11.7	Transition Boiling	388
	11.8	Pool Boiling in Binary Liquid Mixtures	389
		11.8.1 Nucleate Boiling Process	390
		11.8.2 Nucleate Boiling Heat Transfer Correlations	392
		11.8.3 Critical Heat Flux	396
		Problems	400
12	Flow	Boiling	404
	12.1	Forced-Flow Boiling Regimes	404
		Flow Boiling Curves	410
		Flow Patterns and Temperature Variation in Subcooled Boiling	412
		Onset of Nucleate Boiling	413
		Empirical Correlations for the Onset of Significant Void	419
		Mechanistic Models for Hydrodynamically Controlled Onset of	
		Significant Void	419
	12.7	Transition from Partial Boiling to Fully Developed Subcooled	
		Boiling	423
	12.8	Hydrodynamics of Subcooled Flow Boiling	424
		Pressure Drop in Subcooled Flow Boiling	429
		Partial Flow Boiling	429
		Fully Developed Subcooled Flow Boiling Heat Transfer	
		Correlations	430
	12.12	Characteristics of Saturated Flow Boiling	431
	12.13	Saturated Flow Boiling Heat Transfer Correlations	432
	12.14	Flow-Regime-Dependent Correlations for Saturated Boiling in	
		Horizontal Channels	440
	12.15	Two-Phase Flow Instability	444
		12.15.1 Static Instabilities	445
		12.15.2 Dynamic Instabilities	447
	12.16	Flow Boiling in Binary Liquid Mixtures	449
	12.17	Flow Boiling in Helically Coiled Flow Passages	453
		Problems	463
13	Criti	cal Heat Flux and Post-CHF Heat Transfer in Flow Boiling	472
	13.1	Critical Heat Flux Mechanisms	472
		Experiments and Parametric Trends	475
		Correlations for Upward Flow in Vertical Channels	479
		Correlations for Subcooled Upward Flow of Water in Vertical	
		Channels	488
	13.5	Mechanistic Models for DNB	490
	13.6	Mechanistic Models for Dryout	493
		CHF in Inclined and Horizontal Systems	495
		Post-Critical Heat Flux Heat Transfer	500
		Critical Heat Flux in Binary Liquid Mixtures	504
		Problems	505

xii Contents

14	Flow	Boiling and CHF in Small Passages	509
	14.1	Mini- and Microchannel-Based Cooling Systems	509
	14.2	Boiling Two-Phase Flow Patterns and Flow Instability	512
		14.2.1 Flow Regimes in Minichannels with Stable Flow Rates	512
		14.2.2 Flow Phenomena in Arrays of Parallel Channels	522
	14.3	Onset of Nucleate Boiling and Onset of Significant Void	526
		14.3.1 ONB and OSV in Channels with Hard Inlet Conditions	526
		14.3.2 Boiling Initiation and Evolution in Arrays of Parallel	
		Mini- and Microchannels	528
	14.4	Boiling Heat Transfer	531
		14.4.1 Background and Experimental Data	531
		14.4.2 Boiling Heat Transfer Mechanisms	532
		14.4.3 Flow Boiling Correlations	536
	14.5	Critical Heat Flux in Small Channels	545
		14.5.1 General Remarks and Parametric Trends in the Available	
		Data	545
		14.5.2 Models and Correlations	549
		Problems	556
15	Fund	damentals of Condensation	560
	15.1	Basic Processes in Condensation	560
	15.2	Thermal Resistances in Condensation	563
	15.3	Laminar Condensation on Isothermal, Vertical, and Inclined Flat	
		Surfaces	565
	15.4	Empirical Correlations for Wavy-Laminar and Turbulent Film	
		Condensation on Vertical Flat Surfaces	571
	15.5	Interfacial Shear	573
	15.6	Laminar Film Condensation on Horizontal Tubes	574
	15.7	Condensation in the Presence of a Noncondensable	578
	15.8	Fog Formation	582
	15.9	Condensation of Binary Fluids	583
		Problems	587
16	Inte	rnal-Flow Condensation and Condensation on Liquid Jets	
		Droplets	590
		Introduction	590
		Two-Phase Flow Regimes	591
		Condensation Heat Transfer Correlations for a Pure Saturated	391
	10.5	Vapor	596
		16.3.1 Correlations for Vertical, Downward Flow	597
		16.3.2 Correlations for Horizontal Flow	599
		16.3.3 Semi-Analytical Models for Horizontal Flow	603
	16.4	Effect of Noncondensables on Condensation Heat Transfer	608
		Direct-Contact Condensation	609
		Mechanistic Models for Condensing Annular Flow	614
		Flow Condensation in Small Channels	619
		Condensation Flow Regimes and Pressure Drop in Small	017
		Channels	623
		16.8.1 Flow Regimes in Minichannels	623
		16.8.2 Flow Regimes in Microchannels	625
		16.8.3 Pressure Drop in Condensing Two-Phase Flows	625

Contents	xi
16.9 Flow Condensation Heat Transfer in Small Channels16.10 Condensation in Helical Flow Passages16.11 Internal Flow Condensation of Binary Vapor MixturesProblems	627 631 634 638
17 Choking in Two-Phase Flow	643
 17.1 Physics of Choking 17.2 Velocity of Sound in Single-Phase Fluids 17.3 Critical Discharge Rate in Single-Phase Flow 17.4 Choking in Homogeneous Two-Phase Flow 17.5 Choking in Two-Phase Flow with Interphase Slip 17.6 Critical Two-Phase Flow Models 17.6.1 The Homogeneous-Equilibrium Isentropic Model 17.6.2 Critical Flow Model of Moody 17.6.3 Critical Flow Model of Henry and Fauske 17.7 RETRAN Curve Fits for Critical Discharge of Water and Steam 17.8 The Omega Parameter Methods 17.9 Choked Two-Phase Flow in Small Passages 17.10 Nonequilibrium Mechanistic Modeling of Choked Two-Phase 	643 644 645 647 648 649 649 651 653 656 658
Flow Problems	672 674
APPENDIX A: Thermodynamic Properties of Saturated Water and Steam	678
APPENDIX B: Transport Properties of Saturated Water and Steam	679
APPENDIX C: Thermodynamic Properties of Saturated Liquid and Vapor for Selected Refrigerants	681
APPENDIX D: Properties of Selected Ideal Gases at 1 Atmosphere	690
APPENDIX E: Binary Diffusion Coefficients of Selected Gases in Air at 1 Atmosphere	695
APPENDIX F: Henry's Constant of Dilute Aqueous Solutions of Selected Substances at 298.16 K Temperature and Moderate Pressures	696
APPENDIX G: Diffusion Coefficients of Selected Substances in Water at Infinite Dilution at 25 °C	697
APPENDIX H: Lennard-Jones (6–12) Potential Model Constants for Selected Molecules	698
APPENDIX I: Collision Integrals for the Lennard-Jones (6–12) Potential Model	699
APPENDIX J: Physical Constants	700
APPENDIX K: Unit Conversions	701
References	704
Index 759	

Preface to the Second Edition

Since the publication of the first edition of this book significant advances have been made in the art and science of gas-liquid two-phase flow and phase-change phenomena, in particular with respect to flow and heat transfer in miniature and microsystems. Furthermore, more emphasis is now placed on flow of pure and mixed refrigerants and cryogens owing to their expanding applications in industry. This edition is meant to reflect these changes, as well as address numerous helpful comments and suggestions that I have received from the users of the first edition.

The objectives, methods of presentation, and overall structure of this edition are the same as those for the first edition. The chapters and their general topics of discussion have thus remained unchanged. However, all chapters have been revised, although to different extents. Two-phase flow, boiling, and condensation in binary fluid mixtures; and flow and heat transfer in helically coiled flow passages, are among the new topics that have been added and discussed in some detail in several chapters due to their growing significance. Chapters 8, 10, and 14 have been revised most extensively in response to the rapidly evolving arena of flow and heat transfer in miniand microchannels. A large number of new solved examples and end-of-chapter problems have also been added, most of which deal with refrigerants and cryogens.

I am indebted to numerous colleagues and former students for the completion of this book. Most recently, in fall of 2014, I had the pleasure of teaching Transport Phenomena in Multiphase Flow, a graduate-level course out of which this book actually originated. This was the most enjoyable two-phase flow and boiling class I had ever taught. Many of the newly added end-of-chapter problems have been solved and in some cases modified/corrected by the students of that class. I thank them all!

Preface to the First Edition

This book is the outcome of more than fifteen years of teaching graduate courses on nuclear reactor thermal-hydraulics and two-phase flow, boiling, and condensation to mechanical and nuclear engineering students. It is targeted to be the basis of a semester-level graduate course for nuclear, mechanical, and possibly chemical engineering students. It will also be a useful reference for practicing engineers.

The art and science of multiphase flow are indeed vast, and it is virtually impossible to provide a comprehensive coverage of all of their major disciplines in a graduate textbook, even at an introductory level. This textbook is therefore focused on gasliquid two-phase flow, with and without phase change. Even there, the arena is too vast for comprehensive and in-depth coverage of all major topics, and compromise is needed to limit the number of topics as well as their depth and breadth of coverage. The topics that have been covered in this textbook are meant to familiarize the reader with a reasonably wide range of subjects, including well-established theory and technique, as well as some rapidly developing areas of current interest.

Gas—liquid two-phase flow and flows involving change-of-phase heat transfer apparently did not receive much attention from researchers until around the middle of the twentieth century, and predictive models and correlations prior to that time were primarily empirical. The advent of nuclear reactors around the middle of the twentieth century, and the recognition of the importance of two-phase flow and boiling in relation to the safety of water-cooled reactors, attracted serious attention to the field and led to much innovation, including the practice of first-principle modeling, in which two-phase conservation equations are derived based on first principles and are numerically solved. Today, the area of multiphase flow is undergoing accelerating expansion in a multitude of areas, including direct numerical simulation, flow and transport phenomena at mini- and microscales, and flow and transport phenomena in reacting and biological systems, to name a few. Despite the rapid advances in theory and computation, however, the area of gas—liquid two-phase flow remains highly empirical owing to the extreme complexity of the processes involved.

In this book I have attempted to come up with a balanced coverage of fundamentals, well-established as well as recent empirical methods, and rapidly developing topics. Wherever possible and appropriate, derivations have been presented at least at a heuristic level.

The book is divided into seventeen chapters. The first chapter gives a concise review of the fundamentals of single-phase flow and heat and mass transfer. Chapter 2 discusses two-phase interfacial phenomena. The hydrodynamics and mathematical modeling aspects of gas-liquid two-phase flow are then discussed in

xvii

xviii Preface to the First Edition

Chapters 3 through 9. Chapter 10 rounds out Part One of the book and is devoted to the hydrodynamic aspects of two-phase flow in mini- and microchannels.

Part Two focuses on boiling and condensation. Chapters 11 through 14 are devoted to boiling. The fundamentals of boiling and pool boiling predictive methods are discussed in Chapter 11, followed by the discussion of flow boiling and critical and postcritical heat flux in Chapters 12 and 13, respectively. Chapter 14 is devoted to the discussion of boiling in mini- and microchannels. External and flow condensation, with and without noncondensables, and condensation in small flow passages are then discussed in Chapters 15 and 16. The last chapter is devoted to two-phase choked flow. Various property tables are provided in several appendices.

Frequently Used Notation

A	Flow area (m ²); atomic number
$A_{ m C}$	Flow area in the vena-contracta location (m ²)
A_{d}	Frontal area of a dispersed phase particle (m ²)
a	Speed of sound (m/s)
$a_{ m I}^{\prime\prime}$	Interfacial surface area concentration (surface area per unit mixture
•	volume; m ⁻¹)
Bd	Bond number = $l^2 / \left(\frac{\sigma}{g \Delta \rho} \right)$
$B_{ m h}$	Mass-flux-based heat transfer driving force
$ ilde{B}_{ m h}$	Molar-flux-based heat transfer driving force
$B_{ m m}$	Mass-flux-based mass transfer driving force
$ ilde{B}_{ m m}$	Molar-flux-based mass transfer driving force
Bi	Biot number = hl/k
Во	Boiling number = $q''_{\rm w}/(Gh_{\rm fg})$
C	Concentration (kmol/m ³)
C	Constant in Wallis's flooding correlation; various constants
c	Wave propagation velocity (m/s)
Ca	Capillary number = $\mu_L U / \sigma$
Cr	Crispation number = $\frac{\mu}{\sigma l} \left(\frac{k}{\rho C_{\rm P}} \right)$
C_2	Constant in Tien–Kutateladze flooding correlation
C_{C}	Contraction ratio
C_{D}	Drag coefficient
C_{He}	Henry's coefficient (Pa; bar)
Co	Convection number = $(\rho_g/\rho_f)^{0.5}[(1-x)/x]^{0.8}$
C_{P}	Constant-pressure specific heat (J/kg·K)
$ ilde{C}_{ extsf{P}}$	Molar-based constant-pressure specific heat (J/kmol·K)
$C_{ m sf}$	Constant in the nucleate pool boiling correlation of Rohsenow
$C_{ m v} \ ilde{C}_{ m v}$	Constant-volume specific heat (J/kmol·K)
$\tilde{C}_{ m v}$	Molar-based constant-volume specific heat (J/kg·K)
C_0	Two-phase distribution coefficient in the drift flux model
D	Tube or jet diameter (m)
$D_{ m H}$	Hydraulic diameter (m)
Dn	Dean number $\left[= \operatorname{Re}_{D_{\mathrm{H}}}(R_{\mathrm{i}}/R_{\mathrm{cl}})^{1/2} \right]$
Dn_{eq}	Equivalent Dean number
\boldsymbol{D}	Mass diffusivity (m ² /s)
$D_{ m ij}$	Binary mass diffusivity for species i and j (m ² /s)
$oldsymbol{D}_{iG},oldsymbol{D}_{iL}$	Mass diffusivity of species i in gas and liquid phases (m ² /s)

xix

xx Frequently Used Notation

d	Bubble or droplet diameter (m)
$d_{ m cr}$	Critical diameter for spherical bubbles (m)
d_{Sm}	Sauter mean diameter of bubbles or droplets (m)
E	Eddy diffusivity (m ² /s)
\mathbf{E}_1, \mathbf{E}	One-dimensional and three-dimensional turbulence energy spectrum
1,	functions based on wave number (m ³ /s ²)
$\mathbf{E_1^*}, \mathbf{E^*}$	One-dimensional and three-dimensional turbulence energy spectrum
1'	functions based on frequency (m ² /s)
\mathbf{E}_{B}	Bulk modulus of elasticity (N/m ²)
$E_{ m H}$	Eddy diffusivity for heat transfer (m ² /s)
Eo	Eötvös number = $g\Delta \rho l^2/\sigma$
$e^{-\epsilon}$	Total specific convected energy (J/kg)
e	Unit vector
F	Degrees of freedom; force (N); Helmholtz free energy (J); correction
	factor
$F^{ m I}$	Interfacial Helmholtz free energy (J)
$F_{ m i}$	Interfacial force, per unit mixture volume (N/m ³)
Fo	Fourier number $= \left(\frac{k}{\rho C_P}\right) \frac{t}{l^2}$
Fr	Froude number $= \binom{\rho C_P}{l^2}$
$F_{ m vm}$	Virtual mass force, per unit mixture volume (N/m^3)
$F_{ m w}$	Wall force, per unit mixture volume (N/m ³)
$F_{ m wG}, F_{ m wL}$	Wall force, per unit mixture volume, exerted on the liquid and gas
$T_{\mathrm{WG}}, T_{\mathrm{WL}}$	phases (N/m^3)
F_{σ}	Surface tension force (N)
f	Fanning friction factor; frequency (Hz); distribution function (m ⁻¹ or
J	m ⁻³); specific Helmholtz free energy (J/kg)
f'	Darcy friction factor
∫ f I	Specific interfacial Helmholtz free energy (J/m ²)
$f' \ f^{ m I} \ \hat{f}$	Fugacity (Pa)
$f_{ m cond}$	Condensation efficiency
G	Mass flux (kg/m ² ·s); Gibbs free energy (J)
G^{I}	Interfacial Gibbs free energy (J)
Ga	Galileo number = $\frac{\rho_{\rm L} \Delta \rho g l^3}{\mu_1^2}$
	. · · · · · · · · · · · · · · · · · · ·
Gr	Grashof number $=\left(\frac{gl^3}{v_L^2}\right)\left(\frac{\rho_L-\rho_g}{\rho_L}\right)$
Gz	Graetz number = $\frac{4Ul^2}{z} \left(\frac{\rho C_P}{k} \right)$
\vec{g}	Gravitational acceleration vector (m/s ²)
g	Specific Gibbs free energy (J/kg); gravitational constant (= 9.807 m/s^2
O .	at sea level); breakup frequency (s^{-1})
g^{I}	Specific interfacial Gibbs free energy (J/m ²)
H	Heat transfer coefficient (W/m ² ·K); height (m); enthalpy (J)
Hn	Helical coil number $\left[= \operatorname{Re}_{D_{\mathrm{H}}} \left(R_{i} / R_{\mathrm{c}} \right)^{1/2} \right]$
$H_{ m r}$	Radiative heat transfer coefficient (W m^2 ·K)
He	Henry number
h	Specific enthalpy (J/kg); mixed-cup specific enthalpy (J/kg); collision
-	frequency function ($m^3 ext{-s}$)
	1 <i>JJ</i> (<i>v)</i>

More Information

Cambridge University Press 978-1-107-15330-1 — Two-Phase Flow, Boiling, and Condensation 2nd Edition Frontmatter

Frequently Used Notation

xxi

$h_{ m L}$	Liquid level height in stratified flow regime (m); specific enthalpy of liquid (J/kg)
$h_{ m fg}, h_{ m sf}, h_{ m sg}$	Latent heats of vaporization, fusion, and sublimation (J/kg)
$ ilde{h}_{ ext{fg}}, ilde{h}_{ ext{sf}}, ilde{h}_{ ext{sg}} \ ilde{h}_{ ext{fg}}, ilde{h}_{ ext{sg}}, ilde{h}_{ ext{sg}}$	Molar-based latent heats of vaporization, fusion, and sublimation
$n_{\rm Ig}, n_{\rm SI}, n_{\rm Sg}$	(J/kmol)
I_m	Modified Bessels function of the first kind and <i>m</i> th order
J	Diffusive molar flux (kmol/m ² ·s)
Ja	Jakob number = $(\rho C_P)_L \Delta T / \rho_g h_{fg}$ or $C_{PL} \Delta T / h_{fg}$
J^{**}	Flux of a transported property in the generic conservation equations
	(Chapters 1 and 5)
J^*	Dimensionless superficial velocity in Wallis's flooding correlation
Ja*	Modified Jacob number = $\sqrt{\frac{\rho_{\rm L}}{\rho_{\rm G}}} \frac{C_{\rm PL} \Delta T}{h_{\rm fg}}$
j	Diffusive mass flux (kg/m ² ·s); molecular flux (m ⁻² ·s ⁻¹); superficial
	velocity (m/s)
k	Thermal conductivity $(W/m \cdot K)$; wave number (m^{-1})
K	Loss coefficient; Armand's flow parameter; mass transfer coefficient
	$(kg/m^2 \cdot s)$
K ~	Parameter in Katto's DNB correlation (Chapter 13)
$ ilde{K}$	Molar-based mass transfer coefficient (kmol/m²·s)
K*	Kutateladze number; dimensionless superficial velocity in Tien-
17 -	Kutateladze flooding correlation
Ka v	Kapitza number = $v_L^4 \rho_L^3 g/\sigma^3$ Correction factor for critical heat flux in horizontal channels
$K_{ m hor}$ Le	Lewis number = α/D
$L_{ m B}$	Boiling length (m); bubble (vapor clot) length (m)
$L_{ m heat}$	Heated length (m)
$L_{ m slug}$	Liquid slug length (m)
l - siug	Length (m); characteristic length (m)
$l_{ m D}$	Kolmogorov's microscale (m)
$l_{ m E}$	Churn flow entrance length before slug flow is established (m)
$l_{ m F}^-$	Length scale applied to liquid films (m)
M	Molar mass (kg/kmol); component of the generalized drag force (per
	unit mixture volume) (N/m³)
Ma	Marangoni number = $\left(\frac{\partial \sigma}{\partial T}\right) \nabla T \frac{l^2}{\mu} \left(\frac{\rho C_P}{k}\right)$
Mo	Morton number = $g \mu_{\rm L}^4 \Delta \rho / (\rho_{\rm L}^2 \sigma^3)$
$\dot{M}_{ m IK}$	Generalized interfacial drag force (N/m^3) exerted on phase k
$ec{M}_{ ext{ID}}$	Interfacial drag force term (N/m ³)
$ec{M}_{ m IV}$	Virtual mass force term (N/m³)
M_K	Signal associated with phase k
M_2	Constant in Tien–Kutateladze flooding correlation
m	Mass fraction; mass of a single molecule (kg); dimensionless constant
m m"	Mass (kg) Mass flux (kg/m²·s)
N''	Molar flux (kmol/m ² ·s)
$ec{N}$	Unit normal vector
$N_{ m Av}$	Avogadro's number (= 6.022×10^{26} molecules/kmol)
$N_{\rm con}$	Confinement number $= \sqrt{\sigma/g\Delta\rho}/l$
Nu	Nusselt number Hl/k
	,

xxii Frequently Used Notation

N_{μ}	Viscosity number = $\mu_L/[\rho_L\sigma\sqrt{\sigma/(g\Delta\rho)}]^{1/2}$
n	Number density (m ⁻³); number of chemical species in a mixture; dimen-
	sionless constant; polytropic exponent
p	Perimeter (m)
P	Pressure (N/m ²); Legendre polynomial
$\Delta P_{ m P}$	Pump (supply) pressure drop (N/m ²)
$\Delta P_{ m C}$	Channel (demand) pressure drop (N/m ²)
Pe	Péclet number = $Ul(\rho C_P/k)$
Pr	Prandtl number = $\mu C_P/k$
$P_{ m r}$	Reduced pressure = P/P_{cr}
Pr_{turb}	Turbulent Prandtl number
$p_{ m f}$	Wetted perimeter (m)
$p_{ m heat}$	Heated perimeter (m)
Q	Volumetric flow rate (m ³ /s); dimensionless wall heat flux
q'	Heat generation rate per unit length (W/m)
q''	Heat flux (W/m ²)
$\dot{q}_{ m v}$	Volumetric energy generation rate (W/m ³)
R	Radius (m); gas constant $(N \cdot m/kg \cdot K)$
R_{c}	Radius of curvature (m)
$R_{ m C}$	Wall cavity radius (m)
$R_{ m cl}$	Coil radius in helically coiled tube (m)
R_{t}	Radius of torsion (m)
Re	Reynolds number $(\rho U l/\mu)$
Re_F	Liquid film Reynolds number = $4\Gamma_F/\mu_L$
$R_{ m j}$	Equilibrium radius of a jet (m)
R_l	Volumetric generation rate of species l (kmol/m ³ ·s)
$R_{ m u}$	Universal gas constant (= $8314 \text{ N} \cdot \text{m/kmol} \cdot \text{K}$)
r	Distance between two molecules (Å) (Chapter 1); radial coordinate
	(m)
\dot{r}_l	Volumetric generation rate of species l (kg/m ³ ·s)
S	Sheltering coefficient; entropy (J/K); source and sink terms in interfa-
	cial area transport equations (s ⁻¹ ·m ⁻⁶); distance defining intermittency
9	(m)
Sc	Schmidt number = ν/D
Sh	Sherwood number = $Kl/\rho D$ or $\tilde{K}l/CD$
So	Soflata number = $[(3\sigma^3)/(\rho^3 g v^4)]^{1/5}$
Su	Suratman number = $\rho l \sigma / \mu^2$
$S_{ m r}$	Slip ratio
$ec{T}$	Specific entropy (J/kg·K)
	Unit tangent vector
T	Temperature (K)
$T_{\rm r}$	Reduced temperature = $T/T_{\rm cr}$
t	Time (s); thickness (m)
$t_{\rm c}$	Characteristic time (s)
$t_{ m c,D}$	Kolmogorov's time scale (s)
$t_{ m gr}$	Growth period in bubble ebullition cycle (s)
$t_{\rm res}$	Residence time (s) Westing period in hubble challition guale (s)
$t_{ m wt}$	Waiting period in bubble ebullition cycle (s)

More Information

Cambridge University Press 978-1-107-15330-1 — Two-Phase Flow, Boiling, and Condensation 2nd Edition Frontmatter

Frequently Used Notation

xxiii

U	Internal energy (J)
U	Velocity (m/s); overall heat transfer coefficient (W/m ² ·K)
$U_{ m B}$	Bubble velocity (m/s)
$U_{ m B,\infty}$	Rise velocity of Taylor bubbles in stagnant liquid (m/s)
$U_{ m r}$	Slip velocity (m/s)
$U_{ au}$	Friction velocity (m/s)
u	Specific internal energy (J/kg)
и	Velocity (m/s)
u_{D}	Kolmogorov's velocity scale (m/s)
V	Volume (m ³)
V_1	Volatility parameter (Section 12.16)
$V_{ m d}$	Volume of an average dispersed phase particle (m ³)
$V_{\mathrm{g}j}$	Gas drift velocity (m/s)
$V_{{g} j}^{'}$	Parameter defined as $V_{gj} + (C_0 - 1) \langle j \rangle$ (m/s)
$v^{S'}$	Specific volume (m ³ /kg)
We	Weber number = $\rho U^2 l/\sigma$
W	Width (m)
w	Interpolation length in some flooding correlations (m)
X	Quality
$x_{\rm eq}$	Equilibrium quality
X	Mole fraction; liquid-side mole fraction (in gas-liquid two-phase sys-
	tems); Martinelli's factor
Y	Gas-side mole fraction (in gas-liquid two-phase systems)
_	~

Greek characters

Compressibility factor

Z

	, 6 1 //1
α	Thermal diffusivity (m ² /s)
α_k	In situ volume fraction occupied by phase k
β	Volumetric quality; phase index; parameter defined in Eq. (1.75); coeffi-
	cient of volumetric thermal expansion (K^{-1}) ; dimensionless parameter
$\beta(V, V')$	Probability of breakup events of particles with volume V' that result in
	the generation of a particle with volume $V(m^{-1})$
eta_{ma}	Rate factor for mass transfer
eta_{th}	Dimensionless transpiration rate for heat transfer
Δ	Plate thickness (m)
δ	Kronecker delta; gap distance (m); thermal boundary layer thickness
	(m)
γ	Activity coefficient
$\delta_{ m F}$	Film thickness (m)
$\delta_{ m m}$	Thickness of the microlayer (m)
ε	Porosity; radiative emissivity; Bowring's pumping factor (Chapter 12);
	turbulent dissipation rate (W/kg); perturbation
$arepsilon_{ m D}$	Surface roughness (m)
$ ilde{arepsilon}$	Energy representing maximum attraction between two molecules (J)
Ψ	Parameter in Baker's flow regime map (Chapter 4)

Void fraction; wave growth parameter (s⁻¹); phase index

xxiv Frequently Used Notation

ψ	Cavity side angle (rad or degrees); transported property (Chapters 1
	and 5); stream function (m ² /s)
Φ^2	Two-phase multiplier for pressure drop
Φ	Two-phase multiplier for minor pressure drops; dissipation function
	(s^{-2})
arphi	Velocity potential (m ² /s); pair potential energy (J)
φ	Transported property (Chapters 1 and 5); relative humidity
$arphi \ \hat{oldsymbol{\phi}}$	Fugacity coefficient
χ	Correction factor in CHF correlations for binary mixtures
Γ	Volumetric phase change rate (per unit mixture volume) (kg/m ³ ·s); cor-
	rection factor for the kinetic model for liquid-vapor interfacial mass
	flux; dimensionless coefficient; surface concentration of surfactants
	$(kmol/m^2)$
$\Gamma_{ m F}$	Film mass flow rate per unit width (kg/m·s)
γ	Specific heat ration (C_P/C_v) ; perforation ratio
η	Local pressure divided by stagnation pressure
$\eta_{ m c}$	Convective enhancement factor
$\eta_{ m ch}$	Choking point pressure divided by stagnation pressure
K	Curvature (m ⁻¹)
κ	von Kármán's constant
$\kappa_{ m B}$	Boltzmann's constant (= 1.38×10^{-23} J/K)
П	Interfacial pressure (N/m)
λ	Molecular mean free path (m); wavelength (m); coalescence efficiency;
	parameter in Baker's flow regime map (Chapter 4)
$\lambda_{ m d}$	Fastest growing wavelength (m)
λ _H	Critical Rayleigh unstable wavelength (m)
$\lambda_{ m L}$	Laplace length scale (capillary length) = $\sqrt{\sigma/g\Delta\rho}$
μ	Viscosity (kg/m·s); chemical potential (J/kg)
ν	Kinematic viscosity (m ² /s)
π	Number of phases in a mixture; 3.1416
θ	Azimuthal angle (rad); angle of inclination with respect to the horizon-
	tal plane (rad or degrees); contact angle (rad or degrees)
heta'	Angle of inclination with respect to vertical (rad or degrees)
$\theta_0, \theta_a, \theta_r$	Equilibrium (static), advancing, and receding contact angles (rad or
-, -, -	degrees)
ρ	Density (kg/m ³)
ho'	Momentum density (kg/m³)
σ	Surface tension (N/m)
$\sigma_{ m A},\sigma_{ m A}'$	Smaller-to-lager flow area ratios in a flow-area change
$ ilde{\sigma}$	Molecular collision diameter (Å)
$\sigma_{ m A}$	Molecular scattering cross section (m ²)
$\sigma_{\rm c}, \sigma_{\rm e}$	Condensation and evaporation coefficients
T	Torsion (m^{-1})
τ	Molecular mean free time (s); shear stress (N/m ²)
$\frac{\overline{\overline{\tau}}}{\overline{\tau}}$	Viscous stress tensor (N/m²)
Ω	Azimuthal angle for film flow over horizontal cylinders (rad)
$\Omega_{ m k},\Omega_{ m D}$	Collision integrals for thermal conductivity and mass diffusivity
K, -D	

More Information

Frequently Used Notation

XXV

ω	Angular	frequency	(rad/s);	humidity	ratio;	dimensionless	parameter
----------	---------	-----------	----------	----------	--------	---------------	-----------

(Chapter 17)

 ξ Chemical potential (J/kg); noncondensable volume fraction

ζ Interphase displacement from equilibrium (m)
 Σ Tangential coordinate on the liquid–gas interphase

Superscripts

r Relative + In wall units

In the presence of mass transfer

AverageTime averaged

-tk Time averaged for phase k

= Tensor

* Dimensionless

~ Molar based; dimensionless

Subscripts

avg Average B Bubble

Bd Bubble departure b Boiling; bulk bp Boiling point

c Continuous phase; curved flow passage

ch Choked (critical) flow

cond Condensation cont Contraction cr Critical

d Dispersed phase dp Dew point eq Equilibrium ev Evaporation ex Expansion exit Exit

f Saturated liquid

f0 All vapor–liquid mixture assumed to be saturated liquid

fr Frictional

FC Forced convection
F Liquid or vapor film

G Gas phase

g Saturated vapor; gravitational

g0 All liquid-vapor mixture assumed to be saturated vapor

GI At interphase on the gas side G0 All mixture assumed to be gas

h Homogeneous

heat Heated

xxvi Frequently Used Notation

I Gas-liquid interface; irreversible

ideal Ideal in Inlet

inc Inception of waviness

L Liquid phase

LO All mixture assumed to be liquid LI At interphase on the liquid side m Mixture, mixture-average

ma Mass transfer

n Sparingly soluble (noncondensable) inert species

out Outlet
R Reversible
rad Radiation
ref Reference

res Associated with residence time

s "s" surface (gas-side interphase); isentropic; solid at melting or subli-

mation temperature; straight flow passage

sat Saturation

SB Subcooled boiling slug Liquid or gas slug

spin Spinodal

TB Transition boiling

TP Two-phase th Thermal tot Total turb Turbulent UC Unit cell

u "u" surface (liquid-side interphase)

V Virtual mass force

Vapor when it is not at saturation; vapor in a multicomponent mixture;

volumetric

W Water w Wall

wG Wall–gas interface wL Wall–liquid interface

z Local quantity corresponding to location z

0 Equilibrium state

Abbreviations

BWR Boiling water reactor

CFD Computational fluid dynamics

CHF Critical heat flux DC Direct-contact DFM Drift flux model

DNB Departure from nucleate boiling
DNBR Departure from nucleate boiling ratio
HEM Homogeneous-equilibrium mixture

Frequently Used Notation

xxvii

HM	Homogeneous mixture
MFB	Minimum film boiling
LOCA	Loss of coolant accident
NVG	Net vapor generation
OFI	Onset of flow instability
ONB	Onset of nuclear boiling
OSV	Onset of significant void
PWR	Pressurized water reactor