Infective Endocarditis

Jorge Fernandez and Jessica L. Osterman

Outline

- Introduction 1
- Epidemiology and Microbiology 1
- Clinical Features 1
- Differential Diagnosis 2
- Laboratory and Radiographic Findings 3
- Treatment and Prophylaxis 4
- Complications and Admission Criteria 4
- Pearls and Pitfalls 5
- References 5
- Additional Readings 5

Introduction

Infectious endocarditis (IE) is a difficult diagnosis to make in the emergency setting. Early diagnosis and management requires an understanding of endocarditis risk factors, typical and atypical clinical presentations, and current diagnostic and empiric treatment strategies.

Epidemiology and Microbiology

In developed countries, the incidence of IE is roughly 5 cases per 100,000 persons per year. It more commonly affects males (2:1). Well-recognized risk factors for IE include presence of a prosthetic heart valve (which carry an annual incidence of approximately 1%), congenital heart disease, endocarditis devices, injection drug use (see Chapter 61), and a prior history of endocarditis. Rheumatic heart disease is now an uncommon predisposing risk factor in the United States. However, in modern series, there is no easily identifiable risk factor for underlying valve damage in approximately 50% of endocarditis cases. Such cases are believed to be due to age-related degenerative valve disease and subtle immunosuppression from diabetic endocarditis and other factors. Health-care associated cases, often in the elderly, account for a growing proportion of endocarditis in the United States.

Infective endocarditis occurs when circulating pathogens adhere to damaged endothelium and form a vegetation, usually on or around a cardiac valve. Abnormal turbulent flow and damaged endothelium lead to fibrin and platelet deposition which presents a nidus for bacterial infection during bacteremia. In the setting of frequent bacteremia, such as intravenous drug use and dental infection, IE may occur even without an identifiable pathologic valvular lesion. Growth of the infected vegetation eventually leads to valve destruction and impaired function, typically regurgitation, and eventually heart failure. Invasion of the myocardium can lead to paravalvular abscess and heart block. Large, mobile vegetations are associated with embolization and metastatic infection (see below).

The list of pathogens that have been reported to cause IE is enormous and includes fungi and protozoa. The most common etiologies, however, are gram-positive cocci, including *Staphylococcus* species, both *S. aureus* and coagulase-negative *S. epidermidis*, and *Streptococcus* species, particularly viridans Streptococci and group D *Streptococcus*. *S. aureus* is the most common etiology and the pathogen most often associated with metastatic complications. *Enterococcus* is common in the elderly. The clinical setting may suggest the pathogen involved: *S. aureus* is the most common in injection drug users, viridans Streptococci in patients with recent dental procedures, and gram-negative bacilli in patients that have undergone invasive genitourinary procedures.

Pathogens that are less commonly implicated in IE include the “HACEK” (*Haemophilus aphrophilus, Haemophilus paraphrophilus, Haemophilus parainfluenzae, Actinobacillus actinomycetemcomitans, Cardiobacterium hominis, Eikenella corrudens, and Kingella kingae*) group of fastidious bacteria, *Bartonella*, chlamydia, *Legionella*, and fungi. Infections with these organisms may be difficult to detect because they do not always grow in routine blood cultures.

Clinical Features

The presentation of IE (see Table 1.1 and Figure 1.1) ranges from the well-appearing patient with non-specific symptoms to the toxic patient in severe septic shock with multi-organ failure. Symptoms are often frustratingly non-specific, and may include low-grade fever, malaise, myalgias, headache, and anorexia. Patients with mild symptoms are often misdiagnosed as having a viral syndrome. Approximately 80% of patients with IE will have a fever during their initial emergency department stay. The presence of a new murmur may be helpful;
Chapter 1: Infective Endocarditis

Table 1.1 Clinical Features: Infective Endocarditis

<table>
<thead>
<tr>
<th>Pathogens</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus aureus</td>
<td></td>
</tr>
<tr>
<td>Streptococcus epidermidis</td>
<td></td>
</tr>
<tr>
<td>Viridans</td>
<td></td>
</tr>
<tr>
<td>Streptococcus bovis</td>
<td></td>
</tr>
<tr>
<td>Enterococcus spp.</td>
<td></td>
</tr>
<tr>
<td>HACEK</td>
<td></td>
</tr>
<tr>
<td>Immuno-compromised: fungal, rickettsial, protozoan</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signs and symptoms</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fever, malaise, weight loss, night sweats, myalgias, headache, chest/neck/back pain, cough, dyspnea, hematuria, edema, neurologic symptoms, jaundice, rash.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Laboratory and radiologic findings</th>
<th>Duke Clinical Criteria:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 Major or 1 Major + 3 Minor or 5 Minor</td>
</tr>
</tbody>
</table>

Major (microbiology):
- Typical organisms × 2 blood cultures (*S. viridans*, *S. bovis*, HACEK, *S. aureus*, or *Enterococcus*)
- Persistent bacteremia (≥ 12 hours)
- 3/3 or 3/4 positive blood cultures

Major (valve):
- Positive echocardiogram
- New valve regurgitation

Minor:
- Predisposing heart condition or IDU
- Fever ≥ 38 °C (100.4 °F)
- Vascular phenomenon (arterial embolism, mycotic aneurysm, intracerebral bleed, conjunctival hemorrhage, Janeway lesions)
- Immune phenomenon (glomerulonephritis, Osler node, Roth spot, rheumatoid factor)
- Positive blood culture not meeting above criteria
- Echocardiogram – abnormal but not diagnostic

IDU – intravenous drug use.

However, the high prevalence of a baseline murmur in older adults makes this finding non-specific.

Patients with a more indolent or subacute presentation may display physical findings that result from the deposition of immune complexes in end-vessels throughout the body. These findings include the classic stigmata of IE: *Roth spots* (exudative lesions on the retina), *Janeway lesions* (painless erythematous lesions on the palms and soles), and *Osler nodes* (painful violet lesions on the fingers or toes), as well as *hematuria* (due to glomerulonephritis), subungual splinter hemorrhages, or petechiae of the palate and conjunctiva. These subtle signs of IE should be sought on examination; however, they are actually quite uncommon and their absence does not rule out IE.

Inlet-sided endocarditis, arterial embolization may occur in any organ system. The central nervous system is the most common location. Infections that initially appear to be focal or localized, particularly when due to *S. aureus*, may actually be the result of septic emboli from IE. Examples include stroke and spinal cord syndromes, mycotic aneurysms, osteomyelitis, epipodial abscesses, septic arthropathies, necrotic skin lesions, and cold, pulseless extremities. Mycotic aneurysms may cause meningitis, headaches, or focal neurological deficits. Destruction of the mitral or aortic valve can cause acute respiratory failure and cardiogenic shock. Right-sided endocarditis may present with septic pulmonary emboli, which cause respiratory symptoms that may be mistaken for pneumonia or pulmonary embolism. Mechanical failure of the pulmonic or tricuspid valves can cause signs and symptoms of acute right-sided heart failure.

Other serious sequelae of endocarditis include intravascular hemolysis, and disseminated intravascular coagulation. Abscesses around the annulae of the cardiac valves may result in conduction blocks and bradydysrhythmias. Ventricular wall rupture may lead to cardiac tamponade or hemorrhagic shock, and extension into the coronary arteries may cause acute coronary syndrome.

Differential Diagnosis

The differential diagnosis of IE includes both acute and chronic infections, malignancies, and a wide spectrum of inflammatory and autoimmune disorders. However, IE should be suspected in any febrile patient with the following risk factors:

- injection drug use
- rheumatic heart disease
- valvular insufficiency
- indwelling catheter
- pacemaker
Chapter 1: Infective Endocarditis

- prosthetic heart valve
- congenital heart disease
- prior endocarditis

In more severe cases, the differential diagnosis will depend on the presenting signs and symptoms:

- severe sepsis with end-organ dysfunction: pneumonia, urinary tract infection, peritonitis, soft-tissue infections, and meningitis
- left- or right-sided heart failure: myocardial infarction, acute myocarditis, decompensated valvular disease, pulmonary embolism, or aortic dissection
- systemic embolization: carotid stenosis, vascular dissection, or cardiac dysrhythmias
- altered mental status with fever: meningitis, encephalitis, brain abscess

Laboratory and Radiographic Findings

Blood cultures are a crucial basis for the definitive diagnosis of IE. Thus, it is important for emergency providers to obtain blood cultures prior to giving antibiotics whenever IE is suspected. At least two and preferably three sets of blood cultures should be drawn with aseptic technique, be of

Figure 1.1 Classic physical examination findings in IE. Splinter hemorrhages (A); conjunctival petechiae (B); Osler nodes (C); and Janeway lesions (D).

sufficient volume (10 mL), and be drawn at multiple sites. The sensitivity of three sets of blood cultures approaches 90% in patients who have not received antibiotics. Serologies for Bartonella, Brucella, and Coxiella Burnetii (Q fever) may be indicated if standard cultures are negative. Other routine blood tests such as inflammatory markers (complete blood count [CBC], erythrocyte sedimentation rate [ESR], C-reactive protein [CRP]) lack specificity.

Endocarditis produces abnormal findings on standard diagnostic tests that can lead the clinician to an incorrect initial diagnosis. For example, an abnormal urinalysis may lead to a diagnosis of cystitis or glomerulonephritis, infiltrates on a chest X-ray may be interpreted as pneumonia, or abnormalities on a lumbar puncture may lead to a diagnosis of primary meningitis.

Electrocardiography (ECG) is seldom helpful in establishing the diagnosis of IE. The most common ECG abnormality in IE is sinus tachycardia. A valve ring abscess can produce heart block, particularly an elongating PR interval. Cardiac ischemia may result if IE extends into a coronary artery lumen.

Like blood cultures, echocardiography is an essential test in establishing the definitive diagnosis of IE. However, its main utility in the emergency setting is in the detection of life-threatening complications such as pericardial effusion, cardiac tamponade, and valvular rupture. Transthoracic echocardiography is useful if positive for a clear-cut vegetation; however, transesophageal echocardiography has higher sensitivity and is generally required in suspected IE if the transthoracic echocardiogram is negative.

The Duke Criteria (see Table 1.1) are a widely accepted, structured diagnostic tool for assisting in the often challenging diagnosis of IE. However, these criteria have limited utility in the emergency setting. Emergency providers must maintain constant vigilance for IE, have a low threshold for obtaining blood cultures and echocardiography in suspicious cases, and must exercise judgment in when to admit patients for empiric therapy.

Treatment and Prophylaxis

Empiric therapy targeting common IE bacterial pathogens is indicated when the diagnosis is strongly suspected. The empiric regimen should be tailored to whether or not there is a prosthetic valve, and, when possible, to the current hospital antibiogram (see Table 1.2). The duration of therapy is typically 4 to 6 weeks. It may be appropriate to withhold antibiotics pending culture results in patients with chronic, intermittent fevers who otherwise appear well, provided that close follow-up is available.

Antibiotic prophylaxis was previously recommended to all patients at risk from IE prior to certain invasive dental, gastrointestinal, and genitourinary procedures; however, this practice has now become controversial, with conflicting guidelines in the United States and Europe. While most procedures routinely performed in the emergency department do not require prophylaxis, prophylaxis should be strongly considered for dental or skin abscess incision and drainage (see Table 1.3) or skin infections (with vancomycin 20mg/kg IV × 1) in very high risk patients: those with a prior history of IE; prosthetic valve; heart transplant with abnormal valve function; repaired congenital heart disease.

Complications and Admission Criteria

The treatment of septic and mechanical complications of endocarditis can be challenging. In cases of suspected acute valvular dysfunction with pump failure, emergent echocardiography and consultation with a cardiothoracic surgeon and cardiologist are indicated. Anticoagulation with heparin is not recommended for septic emboli because it does not reduce further embolization and the risk of hemorrhagic transformation is very high. Limb-threatening emboli (e.g. a cold, pulseless extremity) may require revascularization with interventional or surgical techniques, such as the administration of local fibrinolytics.

Patients for whom the diagnosis of IE is suspected should generally be admitted for further work-up and empiric intravenous antibiotics. In selected cases, it may be appropriate to discharge febrile but otherwise well-appearing patients home with blood cultures pending, provided that reliable, urgent
follow-up is available. Patients with septic or mechanical complications of IE should be managed in a closely monitored setting, preferably one in which cardiothoracic surgical intervention is readily available.

Pearls and Pitfalls

1. Endocarditis is important to consider in any febrile patient with a predisposing valve disease or other risk factors.
2. Emergency providers can play an essential role in IE diagnosis by obtaining blood cultures prior to empiric antibiotics.
3. Mechanical complications of IE may require emergent cardiovascular surgery.
4. Do not heparinize patients with septic emboli and endocarditis.

References

Chapter 1: Infective Endocarditis

Table 1.3 Antibiotic Prophylaxis for Invasive Procedures in Highest Risk Patients

<table>
<thead>
<tr>
<th>Patient Category</th>
<th>Recommended Antibiotic for ED Dental Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults</td>
<td>Amoxicillin 2 g PO x 1 if PCN/allergy</td>
</tr>
<tr>
<td></td>
<td>Clindamycin 600 mg PO x 1 if PCN/allergy</td>
</tr>
<tr>
<td></td>
<td>Unable to take oral medications:</td>
</tr>
<tr>
<td></td>
<td>Ceftriaxone 1 g IV/IM x 1 if PCN/allergy</td>
</tr>
<tr>
<td></td>
<td>Clindamycin 600 mg IV/IM x 1</td>
</tr>
<tr>
<td>Children</td>
<td>Amoxicillin 50 mg/kg PO x 1 (max. 2 g/dose)</td>
</tr>
<tr>
<td></td>
<td>if PCN/allergy</td>
</tr>
<tr>
<td></td>
<td>Clindamycin 20 mg/kg PO x 1 (max. 600 mg/</td>
</tr>
<tr>
<td></td>
<td>dose)</td>
</tr>
<tr>
<td></td>
<td>Unable to take oral medications:</td>
</tr>
<tr>
<td></td>
<td>Ceftriaxone 50 mg/kg IV/IM x 1 (max. 1 g/dose)</td>
</tr>
<tr>
<td></td>
<td>Clindamycin 20 mg/kg IV/IM x 1 (max. 600 mg/</td>
</tr>
<tr>
<td></td>
<td>dose)</td>
</tr>
<tr>
<td>Pregnant women</td>
<td>As above</td>
</tr>
<tr>
<td>Immunocompromised</td>
<td>As above</td>
</tr>
<tr>
<td>IM – intramuscular; IV – intravenous; PCN – penicillin; PO – by mouth.</td>
<td></td>
</tr>
</tbody>
</table>

Additional Readings

Introduction
Cardiac infections are classified by the affected site: pericardium, myocardium, or endocardium. Since pericarditis and myocarditis often coexist, and the infectious etiologies are very similar, these will be discussed together here. Endocarditis is a fundamentally different type of infection that is covered in Chapter 1. Pericarditis is a common cause of chest pain that has the potential to result in significant morbidity and mortality. Acute care providers should be well versed in the identification, risk stratification, and evidence-based management of this common condition.

Pericarditis
The pericardium is composed of two layers of fibrous tissue, the visceral and parietal, which envelop and protect the heart. The visceral layer is firmly attached to the epicardium, whereas the parietal layer moves freely within the mediastinum. Approximately 15 to 50 mL of fluid is normally present within the pericardial sac.

Pericarditis is defined as inflammation of the pericardium. It frequently causes a small pathologic pericardial effusion and may be associated with adjacent myocardial inflammation or infection, termed myopericarditis. Large pericardial fluid accumulations may occur in pericarditis, which can result in cardiac tamponade, if they develop rapidly.

The majority of infectious pericarditis and myocarditis are due to direct viral infection or less commonly bacterial seeding of the pericardium. Contiguous spread to the pericardium from pleural, pulmonary, or mediastinal infections, or from endocarditis, can also occur. There are also numerous non-infectious causes of both pericarditis and myocarditis.

Epidemiology and Microbiology
While the epidemiology of pericarditis is not well described, it is clearly a common condition, estimated to account for 5% of non-ischemic chest pain cases seen in emergency departments (EDs). Pericarditis commonly affects young men, for reasons that are not well understood.

Acute pericarditis is often idiopathic, in that routine evaluation reveals no definite cause; the majority of such cases are presumed to be viral. When a pathogen is identified, viruses predominate, including coxsackieviruses, echoviruses, influenza, EBV, VZV, mumps, and hepatitis. Human immunodeficiency virus (HIV) can cause pericarditis and myocarditis and remains a common cause of pericardial disease in developing countries where HIV is prevalent.

Bacterial pericarditis, termed purulent pericarditis, is fortunately rare. It can result from hematogenous seeding or direct spread, usually from pneumonia. Myriad bacteria have been reported to cause pericarditis, with the most common pathogens being *Staphylococcus aureus* and *Streptococcus pneumoniae*. Pneumococcal pneumonia and empyema and *S. aureus* endocarditis (via endomyocardial abscess) are the infections that classically spread directly to the pericardium. Mediastinitis, penetrating trauma, and thoracic surgery can also lead to purulent pericarditis. *S. aureus* is the predominant pathogen in hematogenous cases.

Mycobacterium tuberculosis is considered to be the most uncommon etiology of infectious endocarditis in developing countries. Fungi are a relatively uncommon cause of...
pericarditis. Histoplasmosi pericarditis is seen in endemic regions of the United States and *Candida* species are a common etiology in nosocomial cases.

The list of non-infectious causes of acute pericarditis is very long (see Table 2.1). These include uremia, trauma, malignancy (lymphoma, cancers of the breast, lung, and kidney), radiation, chemotherapy, drug reactions (penicillin, minoxidil), post-cardiotomy or thoracic surgery, and autoimmune disorders (systemic lupus erythematosus [SLE], rheumatoid arthritis [RA], Dressler’s syndrome after myocardial infarction postpericardiotomy syndrome).

Clinical Features

The clinical presentation of infectious pericarditis varies depending on the pathogen and the host immune response (see Table 2.2). Most patients with acute viral (or ideopathic) pericarditis have mild symptoms, which include low-grade fever, malaise, and substernal chest pain. There may be a history of a preceeding viral respiratory or gastrointestinal illness. The pain is typically described as sharp or stabbing, but may be squeezing. It usually has a pleuritic quality — worsened by inspiration and cough. The pain is commonly postural: lying supine exacerbates the pain, whereas sitting upright or leaning slightly forward relieves it. The phrenic nerve traverses the pericardium, so the pain of pericarditis is often described as radiating to the trapezial ridges. Patients with pericarditis may also complain of cough, odynophagia, or dysphagia, presumably secondary to the spread of the inflammatory process to adjacent structures.

Patients with slowly accumulating effusions, such as in uremic or autoimmune pericarditis, may have no chest pain and limited hemodynamics signs. Those with rapidly accumulating effusions may present with tamponade and shock. This classically occurs from malignancy, in patients on anticoagulants and in purulent pericarditis. Associated myocarditis can lead to rapid heart failure, cardiogenic shock, and arrhythmias. Patients with purulent pericarditis usually appear toxic with an acute febrile illness and may have evidence of pneumonia, empyema, endocarditis, or mediastinal infection. Tuberculous pericarditis generally presents as an indolent illness with non-specific symptoms such as fever, night sweats, weight loss, and fatigue.

The classic physical finding in acute pericarditis is a pericardial friction rub, which is typically a three-phase “scratchy” heart sound that comes and goes, best heard while the patient leans forward. Signs of pericardial tamponade are discussed under “Complications and Admission Criteria.”

Differential Diagnosis

The differential diagnosis of a patient complaining of chest pain or dyspnea in an emergent or urgent setting includes the following:

- aortic dissection
- pulmonary embolism
- pneumothorax and tension pneumothorax
- acute coronary syndrome
- esophageal perforation
- myopericarditis
- mediastinitis
- pneumonia
- pleurisy

<table>
<thead>
<tr>
<th>Table 2.1 Important Causes of Pericarditis and Myocarditis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idiopathic</td>
</tr>
<tr>
<td>Viral infections</td>
</tr>
<tr>
<td>Coxackievirus A and B</td>
</tr>
<tr>
<td>Echoviruses</td>
</tr>
<tr>
<td>Adenoviruses</td>
</tr>
<tr>
<td>HIV</td>
</tr>
<tr>
<td>Bacterial infections</td>
</tr>
<tr>
<td>Gram-positive species</td>
</tr>
<tr>
<td>Gram-negative species</td>
</tr>
<tr>
<td>Anaerobes</td>
</tr>
<tr>
<td>Rickettsial infections</td>
</tr>
<tr>
<td>RMSF</td>
</tr>
<tr>
<td>Q fever</td>
</tr>
<tr>
<td>Scrub typhus</td>
</tr>
<tr>
<td>Spirochetes</td>
</tr>
<tr>
<td>Lyme disease</td>
</tr>
<tr>
<td>Syphilis</td>
</tr>
</tbody>
</table>

RMSF — Rocky Mountain spotted fever.
signs of toxicity. Skin testing and sputum testing for acid-fast bacilli should be considered in the appropriate setting.

Chest X-ray is useful in excluding pneumonia and pneumothorax, and it may reveal a pleural effusion, lung mass, or infiltrate suggestive of active tuberculosis, which can focus the differential diagnosis. A large pericardial effusion or severe myocarditis with heart failure will cause cardiomegaly (see Figure 2.1).

Electrocardiography is a cornerstone of pericarditis diagnosis. Typical findings are shown in Figure 2.2. Acute pericarditis causes a characteristic progression of ECG findings through four distinct phases. Stage one lasts for days and is characterized by diffuse ST elevation in all leads except avR and V1 and PR segment depression. Stage two is normalization of the ST and PR segments. Stage 3 is characterized by diffuse T wave inversion without Q wave formation, and stage 4 is ECG normalization. In the case of a large effusion, these signs are usually not seen; rather, there may be tachycardia, loss of QRS voltage, and electrical alternans.

Echocardiography is recommended for risk stratification in suspected pericarditis (See Figure 2.4). In typical acute idiopathic pericarditis, a small effusion may or may not be seen. An effusion greater than 20 mm is considered high risk, generally necessitating admission. Echocardiographic evidence of tamponade (discussed below under "Complications and Admission Criteria") or decreased ventricular function, suggesting associated myocarditis, also necessitate admission.

Diagnostic pericardiocentesis should be considered in patients with a significant effusion and fever, to rule out purulent pericarditis, in those with tamponade or impending tamponade, and to work up suspected malignant pericardial effusion.

A single set of biomarkers is recommended; elevated cardiac biomarkers suggest associated myocarditis (myopericarditis). Blood culture should be drawn in patients with a high fever or signs of toxicity. Skin testing and sputum testing for acid-fast bacilli should be considered in the appropriate setting.

Chest X-ray is useful in excluding pneumonia and pneumothorax, and it may reveal a pleural effusion, lung mass, or infiltrate suggestive of active tuberculosis, which can focus the differential diagnosis. A large pericardial effusion or severe myocarditis with heart failure will cause cardiomegaly (see Figure 2.1).

Electrocardiography is a cornerstone of pericarditis diagnosis. Typical findings are shown in Figure 2.2. Acute pericarditis causes a characteristic progression of ECG findings through four distinct phases. Stage one lasts for days and is characterized by diffuse ST elevation in all leads except avR and V1 and PR segment depression. Stage two is normalization of the ST and PR segments. Stage 3 is characterized by diffuse T wave inversion without Q wave formation, and stage 4 is ECG normalization. In the case of a large effusion, these signs are usually not seen; rather, there may be tachycardia, loss of QRS voltage, and electrical alternans.

Echocardiography is recommended for risk stratification in suspected pericarditis (See Figure 2.4). In typical acute idiopathic pericarditis, a small effusion may or may not be seen. An effusion greater than 20 mm is considered high risk, generally necessitating admission. Echocardiographic evidence of tamponade (discussed below under "Complications and Admission Criteria") or decreased ventricular function, suggesting associated myocarditis, also necessitate admission.

Diagnostic pericardiocentesis should be considered in patients with a significant effusion and fever, to rule out purulent pericarditis, in those with tamponade or impending tamponade, and to work up suspected malignant pericardial effusion.
Chapter 2: Pericarditis and Myocarditis

Treatment and Prophylaxis

Symptomatic treatment of pericarditis should be undertaken after ruling out other life-threatening causes of chest pain and life-threatening complications of pericarditis (see Table 2.3). Treatment of pain and inflammation with aspirin or non-steroidal agents like ibuprofen is the mainstay of pericarditis treatment. Based on trial data showing a reduction in recurrence, routine addition of colchicine is now recommended for acute uncomplicated pericarditis. No definitive treatment benefit of corticosteroids has been documented, except when there is an underlying collagen vascular disease such as SLE or RA. Additionally, the use of steroids in acute pericarditis appears to increase the risk of recurrent or chronic pericarditis. Exercise restriction until symptom resolution and normalization of inflammatory markers is recommended in young patients with idiopathic or viral pericarditis.

Complications and Admission Criteria

Important complications of pericarditis include myocarditis, tamponade, and recurrence (see Table 2.4). Patients with purulent or tuberculous pericarditis are at risk from progression of the infection itself. Signs of myocarditis should always be sought.

Evaluation of a patient with suspected pericarditis should routinely include assessment for signs of hemodynamic compromise and pericardial tamponade. These signs include pulsus paradoxus, tachycardia, and Beck’s triad of hypotension, JVD, and muffled heart sounds. Electrical alternans, characterized by alternating voltage of the P wave, QRS segment, and T wave, is pathognomonic of a large, hemodynamically significant pericardial effusion. Echocardiography is the gold standard test for diagnosis. Diagnostic findings include pericardial effusion, inferior vena cava dilation, diastolic collapse of the right atrial or ventricular, and leftward bowing of the septum with inspiration (see Figure 2.3). Cardiac tamponade requires aggressive fluid resuscitation followed by emergent pericardiocentesis if a patient does not immediately improve with IV fluids.

Recurrence occurs in up to 38% of patients with idiopathic pericarditis who are not treated with colchicine and 17% of those who are. Recurrence of pericarditis is thought to be autoimmune and can prove difficult to manage.

In the setting of a normal echocardiogram, patients with acute pericarditis who are well appearing may be safely discharged. Small or moderate effusions can be followed with serial echocardiograms; large effusions may require pericardiocentesis or placement of a pericardial window.

Table 2.3 Initial Treatment for Pericarditis

<table>
<thead>
<tr>
<th>Patient Category</th>
<th>Therapy Recommendation</th>
</tr>
</thead>
</table>
| Adults | Non-steroidal anti-inflammatories (avoid if isolated myocarditis):
| | Aspirin 650–1000 mg PO TID
| | or
| | Ibuprofen 600–800 mg PO TID
| | or
| | Indomethacin 50 mg PO TID
| | plus
| | Colchicine 0.6 mg PO BID
| Children | Non-steroidal anti-inflammatories (avoid if isolated myocarditis):
| | Ibuprofen 5–10 mg/kg PO QID
| | or
| | Naproxen 5–10 mg/kg PO BID
| | plus
| | Colchicine 0.3–0.6 mg PO daily
| Pregnant women | Acetaminophen 500 mg PO every 6 hours
| Immunocompromised| As above, depending on age and pregnancy status

PO – by mouth.

Figure 2.3 Echocardiographic evidence of cardiac tamponade. Echocardiographic images of large pericardial effusion with features of tamponade. (A) Apical four-chamber view of LV, LA, and RV that shows large PE with diastolic right-atrial collapse (arrow). (B) M-mode image with cursor placed through RV, IVS, and LV in parasternal long axis. The view shows circumferential PE with diastolic collapse of RV free wall (arrow) during expiration. (C) M-mode image from subcostal window in same patient that shows IVC plethora without inspiratory collapse. Reprinted with permission from Elsevier (The Lancet, 2004, vol. 363, pp. 717–27).

IVC – inferior vena cava; IVS – interventricular septum; LA – left atrium; LV – left ventricle; PE – pericardial effusion; RV – right ventricle.