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Basic Definitions

Algebraic K3 surfaces can be defined over arbitrary fields. Over the field of complex

numbers a more general notion exists that includes non-algebraic K3 surfaces. In

Section 1, the algebraic variant is introduced and some of the most important explicit

examples are discussed. Classical numerical invariants are computed in Section 2. In

Section 3, complex K3 surfaces are defined and Section 4 contains more examples

which are used for illustration in later chapters.

1 Algebraic K3 Surfaces

Let k be an arbitrary field. A variety over k (usually) means a separated, geometrically

integral scheme of finite type over k.

Definition 1.1 A K3 surface over k is a complete non-singular variety X of dimension

two such that1

�2
X/k ≃ OX and H1(X,OX) = 0.

Once the base field is fixed, we often simply write �X instead of �X/k. The canonical

bundle of a non-singular variety X, i.e. the determinant of �X , shall be denoted KX or

ωX , depending on whether we regard it as a divisor or as an invertible sheaf.

By definition, the cotangent sheaf �X of a K3 surface X is locally free of rank two

and ωX ≃ OX . Moreover, the natural alternating pairing

�X × �X
�� ωX ≃ OX ,

1 By definition, a variety over a field k is complete if the given morphism X �� Spec(k) is proper and X

over k is non-singular if the cotangent sheaf �X/k is locally free of rank dim(X), which is equivalent to

X�k ≔ X ×k
�k being regular; see e.g. [375, Prop. 6.2.2].
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2 Chapter 1 Basic Definitions

of which we think as an algebraic symplectic structure, induces a non-canonical

isomorphism

TX ≔ �∗
X ≔ Hom(�X ,OX) ≃ �X .

Remark 1.2 Any smooth complete surface is projective. So, with the above definition,

K3 surfaces are always projective.

There are various proofs for the general fact. For example, Goodman (see [235])

shows that the complement of any non-empty open affine subset is the support of an

ample divisor. The proof in [33], written for smooth compact complex surfaces, uses

fibrations of the surface associated with some rational functions. See [375, Ch. 9.3] for

a proof over an arbitrary field.

Example 1.3 (i) A smooth quartic X ⊂ P3 is a K3 surface. Indeed, from the short

exact sequence

0 ��O(−4) ��O ��OX
�� 0

on P3 and the vanishings H1(P3,O) = H2(P3,O(−4)) = 0 one deduces H1(X,OX) =

0. Taking determinants of the conormal bundle sequence (see [236, II.Prop. 8.12])

0 ��O(−4)|X ���P3 |X ���X
�� 0

yields the adjunction formula ωX ≃ ωP3 ⊗ O(4)|X ≃ OX . In local homogeneous

coordinates with X given as the zero set of a quartic polynomial f , a trivializing section

of ωX can be written explicitly as the residue

Res

(∑
(−1)ixidx0 ∧ · · · ∧ d̂xi ∧ · · · ∧ dx3

f

)
, (1.1)

which, for example, on the affine chart x0 = 1 with affine coordinates y1, y2, y3 is

Res

(
dy1 ∧ dy2 ∧ dy3

f (1, y1, y2, y3)

)
. (1.2)

A particularly interesting special case is provided by the Fermat quartic X ⊂ P3 defined

by the equation

x4
0 + x4

1 + x4
2 + x4

3 = 0.

In order for it to be smooth one has to assume char(k) � 2.

(ii) Similarly, a smooth complete intersection of type (d1, . . . , dn) in Pn+2 is a K3

surface if and only if
∑

di = n + 3. Note that under the natural assumption that all

di > 1 there are in fact only three cases (up to permutation): n = 1, d1 = 4 (as in (i));

n = 2, d1 = 2, d2 = 3; and n = 3, d1 = d2 = d3 = 2. This yields examples of K3

surfaces of degree four, six, and eight.
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1 Algebraic K3 Surfaces 3

(iii) Let k be a field of char(k) � 2 and let A be an abelian surface over k.2 The natural

involution ι : A
✤ �� A, x

✤ �� − x, has the 16 two-torsion points as fixed points. (They

are geometric points and not necessarily k-rational.) The minimal resolution X �� A/ι

of the quotient, which has only rational double point singularities (cf. Section 14.0.3),

defines a K3 surface. K3 surfaces of this type are called Kummer surfaces. For details

in the case of k = C; see [43, Prop. VIII.11] and for a completely algebraic discussion

[28, Thm. 10.6].3

An alternative way of describing X starts with blowing up the fixed points Ã �� A.

Since the fixed points are ι-invariant, the involution ι lifts to an involution ι̃ of Ã. The

quotient Ã �� X by ι is a ramified double covering of degree two. A local calculation

shows that smoothness of X and Ã are equivalent (in characteristic � 2).

Ãι̃ ��
��

��

A

��
X �� A/ι.

Moreover, the canonical bundle formulae for the blow-up Ã �� A (cf. [236, V. Prop.

3.3]) and for the branched covering π : Ã �� X (cf. [33, I.16] or [442, Ch. 6]) yield

ωÃ ≃ O(�Ei) and ωÃ ≃ π∗ωX ⊗ O(�Ei).

This shows π∗ωX ≃ OÃ. Here, the Ei are the exceptional divisors of Ã �� A. Their

images �Ei in X satisfy π∗O(�Ei) ≃ O(2Ei). Note that π∗OÃ ≃ OX ⊕ L∗, where the

line bundle L is a square root of O(
∑

�Ei), and hence π∗ωX ≃ OÃ implies ωX ≃ OX .

Finally note that the image of the injection H1(X,OX)
�

�

�� H1(̃A,OÃ) = H1(A,OA) is

contained in the invariant part of the action induced by ι. Hence, H1(X,OX) = 0. See

Remark 14.3.16 for a converse describing which K3 surfaces are Kummer surfaces.

The Fermat surface in (i) is in fact a Kummer surface, but this is not obvious to see;

cf. Example 14.3.18.

(iv) Consider a double covering

π : X �� P2

branched along a curve C ⊂ P2 of degree six. Then π∗OX ≃ OP2 ⊕ O(−3) which

in particular shows H1(X,OX) = 0. Note that for char(k) � 2 the surface X is

non-singular if C is. The canonical bundle formula for branched coverings shows

2 The standard reference for abelian varieties is Mumford’s [443], but the short introduction [407] by Milne
is also highly recommended.

3 The same construction works in characteristic 2 under additional assumptions on A; see [283, 561]. There
are fewer fixed points (4, 2, or 1), but the singularities of the quotient A/ι are worse and the minimal
resolution defines a K3 surface if and only if A is not supersingular. Recently the case of char(k) = 2 has
been revisited by Schröer, Shimada, and Zhang in [532, 558].
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4 Chapter 1 Basic Definitions

ωX ≃ π∗(ωP2 ⊗ O(3)) ≃ OX , and, therefore, for C non-singular X is a K3 surface

(of degree two), called a double plane.

If C is the union of six generic lines in P2, a local calculation reveals that the double

cover X has 15 rational double points. The 15 points correspond to the pairwise inter-

sections of the six lines. Blowing up these 15 singular points produces a K3 surface X′.

The canonical bundle does not change under the blow-up; see [33, III. Prop. 3.5].

2 Classical Invariants

We start by recalling basic facts on the intersection pairing of divisors on general smooth

surfaces before specializing to the case of K3 surfaces.

2.1 Let X be an arbitrary non-singular complete surface over k. For line bundles

L1, L2 ∈ Pic(X) the intersection form (L1.L2) can be defined as the coefficient of n1 · n2

in the polynomial χ(X, L
n1

1 ⊗ L
n2

2 ) (Kleiman’s definition; see [235, I. Sec. 5]) or, more

directly, as (see [437, Lect. 12])

(L1.L2) ≔ χ(X,OX) − χ(X, L∗
1) − χ(X, L∗

2) + χ(X, L∗
1 ⊗ L∗

2). (2.1)

Of course, both definitions define the same symmetric bilinear form with the

following properties:

(i) If L1 = O(C) for some (e.g. for simplicity integral) curve C ⊂ X, then (L1.L2) =

deg(L2|C).

(ii) If Li = O(Ci) for two curves Ci ⊂ X, i = 1, 2, intersecting in only finitely many

points x1, . . . , xn, then

(L1.L2) =

n∑

i=1

dimk(OX,xi
/( f1,xi

, f2,xi
)).

Here, f1,xi
, f2,xi

are the local equations for C1 and C2, respectively, in xi.

(iii) If L1 is ample and L2 = O(C) for a curve C ⊂ X, then

(L1.L2) = (L1.C) = deg(L1|C) > 0. (2.2)

(iv) The Riemann–Roch theorem for line bundles on surfaces asserts:4

χ(X, L) =
(L.L ⊗ ω∗

X)

2
+ χ(X,OX). (2.3)

4 Of course, this is a special case of the much more general Hirzebruch–Riemann–Roch theorem (or of the
even more general Grothendieck–Riemann–Roch theorem), but a direct, much easier proof exists in the
present situation; see [437, Lect. 12] or [236, V.1].
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2 Classical Invariants 5

We often write (L.C) and (C1.C2) instead of (L.O(C)) and (O(C1).O(C2)) for curves

or divisors C, Ci on X. Instead of (L.L), we often use (L)2 and similarly (C)2 instead of

(C.C).

The Néron–Severi group of an algebraic surface X is the quotient

NS(X) ≔ Pic(X)/Pic0(X)

by the connected component of the Picard variety Pic(X), i.e. by the subgroup of line

bundles that are algebraically equivalent to zero.

A line bundle L is numerically trivial if (L.L′) = 0 for all line bundles L′. For

example, any L ∈ Pic0(X) is numerically trivial. The subgroup of all numerically trivial

line bundles is denoted Pic(X)τ ⊂ Pic(X) and yields a quotient of NS(X)

Num(X) ≔ Pic(X)/Picτ (X).

Clearly, Num(X) is a free abelian group endowed with a non-degenerate, symmetric

pairing:

( . ) : Num(X) × Num(X) �� Z.

Proposition 2.1 The Néron–Severi group NS(X) and its quotient Num(X) are finitely

generated. The rank of NS(X) is called the Picard number ρ(X) = rk NS(X).5

2.2 The signature of the intersection form on Num(X) is (1, ρ(X) − 1). This is called

the Hodge index theorem; cf. e.g. [236, V.Thm. 1.9]. Thus, ( . ) on

NS(X)R ≔ NS(X) ⊗Z R

can be diagonalized with entries (1, −1, . . . , −1).

Remark 2.2 The Hodge index theorem has the following immediate consequences.

(i) The cone of all classes L ∈ NS(X)R with (L)2 > 0 has two connected components.

The positive cone CX ⊂ NS(X)R is defined as the connected component that is distin-

guished by the property that it contains an ample line bundle. See Chapter 8 for more

on the positive cone of K3 surfaces.

(ii) If L1 and L2 are line bundles such that (L1)
2 ≥ 0, then

(L1)
2(L2)

2 ≤ (L1.L2)
2. (2.4)

5 In [348] Lang and Néron gave a simplified proof of Néron’s original result. To prove that Num(X) is finitely
generated, one can use an appropriate cohomology theory. See Section 3.2 for an argument in the complex
setting. Numerically trivial line bundles form a bounded family, and, therefore, NS(X) �� Num(X)

has finite kernel and, in particular, NS(X) is finitely generated as well. Also, ρ(X) = rk NS(X) =

rk Num(X).
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6 Chapter 1 Basic Definitions

Just apply the Hodge index theorem to the linear combination (L1)
2L2 − (L1.L2)L1

(written additively) which is orthogonal to L1. Note that (2.4) is simply expressing the

fact that the determinant of the intersection matrix
(

(L1)
2 (L1.L2)

(L1.L2) (L2)
2

)

is non-positive.

2.3 For a K3 surface X one has by definition h0(X,OX) = 1 and h1(X,OX) = 0.

Moreover, by Serre duality H2(X,OX) ≃ H0(X, ωX)∗ and hence h2(X,OX) = 1.6

Therefore,

χ(X,OX) = 2.

Remark 2.3 This can be used to prove that the (algebraic) fundamental group π1(X)

of a K3 surface X over a separably closed field k is trivial. Indeed, if X̃ �� X is an

irreducible étale cover of finite degree d, then X̃ is a smooth complete surface over k

with trivial canonical bundle such that

χ(X̃,OX̃) = d χ(X,OX) = 2 d

and h0(X̃,OX̃) = h2(X̃,OX̃) = 1 (use Serre duality). Combined this yields 2 − h1

(X̃,OX̃) = 2 d and hence d = 1.

The Riemann–Roch formula (2.3) for a line bundle L on a K3 surface X reads

χ(X, L) =
(L)2

2
+ 2. (2.5)

Recall that a line bundle L is trivial if and only if H0(X, L) and H0(X, L∗) are both

non-trivial. Thus, as Serre duality for a line bundle L shows H2(X, L) ≃ H0(X, L∗)∗, the

Riemann–Roch formula for non-trivial line bundles L expresses h0(X, L) − h1(X, L) or

h0(X, L∗) − h1(X, L).

Also note that for an ample line bundle L the first cohomology H1(X, L) vanishes (we

comment on this in Theorem 2.1.8 and Remark 2.1.9) and hence (2.5) computes directly

the number of global sections of an ample line bundle L:

h0(X, L) =
(L)2

2
+ 2.

6 In [236] Serre duality is proved over algebraically closed fields, but it holds true more generally. The pairing
is compatible with base change, so one can pass to algebraically closed fields once the trace map is shown to
exist over k. In fact, the trace map exists in much broader generality; see Hartshorne [234]. For our purposes

working with Serre duality over an algebraically closed field is enough: by flat base change H2(X,OX)⊗�k =

H2(X�k ,OX�k
) and X�k is again a K3 surface.
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2 Classical Invariants 7

Proposition 2.4 For a K3 surface X the natural surjections are isomorphisms7

Pic(X)
∼

− �� NS(X)
∼

− �� Num(X).

Moreover, the intersection pairing (.) on Pic(X) is even, non-degenerate, and of

signature (1, ρ(X) − 1).

Proof Suppose L is non-trivial, but (L.L′) = 0 for an ample line bundle L′. Then

H0(X, L) = 0 and H2(X, L) ≃ H0(X, L∗)∗ = 0 by (2.2). Therefore, (2.5) yields 0 ≥

χ(X, L) = (1/2)(L)2 + 2 and thus (L)2 < 0. In particular, L cannot be numerically

trivial and, hence, Pic(X)
∼

− �� NS(X)
∼

− �� Num(X). Moreover, the intersection form is

negative definite on the orthogonal complement of any ample line bundle, which proves

the claim on the signature. Finally, the Riemann–Roch formula (L)2 = 2 χ(X, L) − 4 ≡

0 (2) shows that the pairing is even. �

For a K3 surface X the lattice (NS(X), ( . )) is thus even and non-degenerate, but rarely

unimodular. For more information about lattices that can be realized as Néron–Severi

lattices of K3 surfaces, see Section 14.3.1 and Chapter 17.

Remark 2.5 Even without using the existence of an ample line bundle, one can show

that there are no non-trivial torsion line bundles on K3 surfaces. Indeed, if L is torsion,

then by the Riemann–Roch formula χ(L) = 2 and hence L (or its dual) is effective.

However, if 0 � s ∈ H0(X, L), then 0 � sk ∈ H0(X, Lk) for all k > 0, and, moreover, the

zero sets of both sections coincide. Thus, if Lk is trivial, L is also trivial. The argument

also applies to (non-projective) complex K3 surfaces.

The non-existence of torsion line bundle can also be related to the triviality of the

(algebraic) fundamental group π1(X); see Remark 2.3. Indeed, the usual unbranched

covering construction (see e.g. [33, I.17]) would define for any line bundle L of order d

(not divisible by char(k)) a non-singular étale covering X̃ �� X.

2.4 We shall next explain how to use the general Hirzebruch–Riemann–Roch formula

to determine the Chern number c2(X) and the Hodge numbers

hp,q(X) ≔ dim Hq(X, �
p
X)

of a K3 surface X.

For a locally free sheaf (or an arbitrary coherent) sheaf F on a K3 surface X the

Hirzebruch–Riemann–Roch formula reads

χ(X, F) =

∫
ch(F) td(X) = ch2(F) + 2 rk(F). (2.6)

7 Warning: The second isomorphism does not hold for general complex K3 surfaces; see Section 3.2 and
Example 3.3.2.
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8 Chapter 1 Basic Definitions

The general version of this formula can be found e.g. in [236, App. A]. For F = OX the

first equality is the Noether formula

χ(X,OX) =
c2

1(X) + c2(X)

12
=

c2(X)

12

which yields c2(X) = 24.

Next, by definition one knows hp,q(X) = 1 for (p, q) = (0, 0), (0, 2), (2, 0), (2, 2) and

h0,1(X) = 0 for any K3 surface. For the remaining Hodge numbers, (2.6) implies

2 h0(X, �X) − h1(X, �X) = ch2(�X) + 4 = 4 − c2(�X) = −20.

It is also known that h0(X, �X) = 0 and hence h1(X, �X) = 20. Using TX ≃ �X ,

this vanishing can be rephrased, maybe more geometrically, as H0(X, TX) = 0, i.e. a K3

surface has no global vector fields. In positive characteristic this is a difficult theorem

on which we comment later; see Sections 9.4.1 and 9.5.1.8 For char(k) = 0 it follows

from the complex case to be discussed below and the Lefschetz principle. In any event,

the Hodge diamond of any K3 surface looks like this:

h0,0 1

h1,0 h0,1 0 0

h2,0 h1,1 h0,2 1 20 1

h2,1 h1,2 0 0

h2,2 1

(2.7)

This holds for K3 surfaces over arbitrary fields and also for non-projective complex

ones; see below.

3 Complex K3 Surfaces

Even if interested solely in algebraic K3 surfaces (and maybe even only in those defined

over fields of positive characteristic), one needs to study non-projective complex K3

surfaces as well. For example, the twistor space construction, used in the proof of the

global Torelli theorem (see Chapter 4), which is one of the fundamental results in K3

surface theory, always involves non-projective K3 surfaces. For this reason, we try to

deal simultaneously with the algebraic and the non-algebraic theory throughout this

book.

8 Note, however, that it can often easily be checked in concrete situations. For example, it is easy to see that

H0(X,TX) = 0 for smooth quartics X ⊂ P3, complete intersection K3 surfaces, and Kummer surfaces (for
the latter, see [28, Rem. 10.7]). Thanks to Christian Liedtke for pointing this out.
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3 Complex K3 Surfaces 9

3.1 The parallel theory in the realm of complex manifolds starts with the following

definition.

Definition 3.1 A complex K3 surface is a compact connected complex manifold X of

dimension two such that �2
X ≃ OX and H1(X,OX) = 0.

Serre’s GAGA principle (see [546, 446]) allows one to associate with any scheme of

finite type over C a complex space Xan whose underlying set of points is just the set

of all closed points of X. Moreover, with any coherent sheaf F on X there is naturally

associated a coherent sheaf Fan on Xan. These constructions are well behaved in the

sense that, for example, Oan
X ≃ OXan and �an

X/C ≃ �Xan . Also, there exists a natural

morphism of ringed spaces Xan �� X.

For X projective (proper is enough) the construction leads to an equivalence of abelian

categories

Coh(X)
∼

− �� Coh(Xan).

In particular, H∗(X, F) ≃ H∗(Xan, Fan) for all coherent sheaves F on X and smoothness

of X implies that Xan is a manifold.

These general facts immediately yield the following proposition:

Proposition 3.2 If X is an algebraic K3 surface over k = C, then the associated

complex space Xan is a complex K3 surface.

It is important to note that all complex K3 surfaces obtained in this way are projective,

but that there are (many) complex K3 surfaces that are not. In this sense we obtain a

proper full embedding

{ algebraic K3 surfaces over C }
�

�

�� { complex K3 surfaces }.

The image consists of all complex K3 surfaces that are projective, i.e. that can be

embedded into a projective space. This is again a consequence of GAGA, because

the ideal sheaf of X ⊂ Pn is a coherent analytic sheaf and hence associated with an

algebraic ideal sheaf defining an algebraic K3 surface. A natural question at this point

is whether complex K3 surfaces are at least always Kähler. This is in fact true and of

great importance, but not easy to prove. See Section 7.3.2.

Example 3.3 The constructions described in the algebraic setting in Example 1.3

work as well here. They define different incarnations of the same geometric objects.

Only for Kummer surfaces do we gain some flexibility by working with complex

manifolds. Indeed, abelian surfaces A (over C) can be replaced by arbitrary complex

tori of dimension two, i.e. complex manifolds of the form A = C2/Ŵ with Ŵ ⊂ C2

a lattice of rank four. The surface X, obtained as the minimal resolution of A/ι or,

equivalently, as the quotient of the blow-up of all two-torsion points Ã �� A by the lift
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10 Chapter 1 Basic Definitions

ι̃ of the canonical involution, is a complex K3 surface. Indeed all algebraic arguments

explained in Example 1.3, (iii), work in the complex setting.

One can show that X is projective if and only if the torus A is projective, i.e. the

complex manifold associated with an abelian surface. It is known that many (in some

sense most) complex tori C2/Ŵ are not projective; cf. [64, 139]. Thus, we obtain many

K3 surfaces this way that really are not projective.

Describing other examples of non-projective K3 surfaces is very difficult, which

reflects a general construction problem in complex geometry.

3.2 Many but not all of the remarks and computations in Section 2 are valid for

arbitrary complex K3 surfaces. For complex K3 surfaces, however, we have in addition

at our disposal singular cohomology which sheds a new light on some of the results.

First, the long cohomology sequence of the exponential sequence

0 �� Z ��O ��O∗ �� 0

yields the exact sequence

0 �� H1(X,Z) �� H1(X,O) �� H1(X,O∗) �� H2(X,Z) ��

�� H2(X,O) �� H2(X,O∗) �� H3(X,Z) �� 0

which for a complex K3 surface X (where H1(X,O) = 0) shows

H1(X,Z) = 0

and by Poincaré duality also H3(X,Z) = 0 up to torsion. So, in addition to H0(X,Z) ≃

H4(X,Z) ≃ Z, the only other non-trivial integral singular cohomology group of X is

H2(X,Z). We come back to the computation of its rank presently.

From the above sequence and the usual isomorphism Pic(X) ≃ H1(X,O∗), one also

obtains the exact sequence

0 �� Pic(X) �� H2(X,Z) �� H2(X,O). (3.1)

In other words, Pic(X) can be realized as the kernel of H2(X,Z) �� H2(X,O). As

C ≃ H2(X,O) and by Remark 2.5 also Pic(X) are both torsion free, one finds that also

H2(X,Z) is torsion free. A standard fact in topology says that the torsion of Hi(X,Z)

can be identified with the torsion of HdimR X−i+1(X,Z), which in our case shows that

H3(X,Z) is indeed trivial (and not only up to torsion).

The intersection form (.) on Pic(X) is defined as in the algebraic case. In the

complex setting it corresponds, under the above embedding Pic(X)
�

�

�� H2(X,Z), to

the topological intersection form on H2(X,Z). The inclusion also shows that

Pic(X)
∼

− �� NS(X)

holds for complex K3 surfaces as well; cf. Proposition 2.4.
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