

Compact Data Structures

A Practical Approach

Compact data structures help represent data in reduced space while allowing querying, navigating, and operating it in compressed form. They are essential tools for efficiently handling massive amounts of data by exploiting the memory hierarchy. They also reduce the resources needed in distributed deployments and make better use of the limited memory in low-end devices.

The field has developed rapidly, reaching a level of maturity that allows practitioners and researchers in application areas to benefit from the use of compact data structures. This first comprehensive book on the topic focuses on the structures that are most relevant for practical use. Readers will learn how the structures work, how to choose the right ones for their application scenario, and how to implement them. Researchers and students in the area will find in the book a definitive guide to the state of the art in compact data structures.

Gonzalo Navarro is Professor of Computer Science at the University of Chile. He has worked for 20 years on the relation between compression and data structures. He has directed or participated in numerous large projects on web research, information retrieval, compressed data structures, and bioinformatics. He is the Editor in Chief of the *ACM Journal of Experimental Algorithmics* and also a member of the editorial board of the journals *Information Retrieval* and *Information Systems*. His publications include the book *Flexible Pattern Matching in Strings* (with M. Raffinot), 20 book chapters, more than 100 journal papers and 200 conference papers; he has also chaired eight international conferences.

Compact Data Structures

A Practical Approach

Gonzalo Navarro

Department of Computer Science, University of Chile

CAMBRIDGEUNIVERSITY PRESS

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107152380

© Gonzalo Navarro 2016

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2016

Printed in the United States of America by Sheridan Books, Inc.

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Navarro, Gonzalo, 1969- author.

Title: Compact data structures: a practical approach / Gonzalo Navarro,

Universidad de Chile.

Description: New York, NY: University of Cambridge, [2016] | Includes

bibliographical references and index.

Identifiers: LCCN 2016023641 | ISBN 9781107152380 (hardback : alk. paper) Subjects: LCSH: Data structures (Computer science) | Computer algorithms.

Classification: LCC QA76.9.D35 N38 2016 | DDC 005.7/3-dc23

LC record available at https://lccn.loc.gov/2016023641

ISBN 978-1-107-15238-0 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

> A Aylén, Facundo y Martina, que aún me creen. A Betina, que aún me soporta. A mi padre, a mi hermana, y a la memoria de mi madre.

Contents

lgorithms	<i>page</i> xiii	
l	xvii	
edgments	xix	
oduction	1	
Why Compact Data Structures?	1	
•	3	
•	4	
_	6	
Mathematics and Notation	7	
Bibliographic Notes	10	
opy and Coding	14	
Worst-Case Entropy	14	
Shannon Entropy	16	
Empirical Entropy	17	
2.3.1 Bit Sequences	18	
2.3.2 Sequences of Symbols	20	
High-Order Entropy	21	
Coding	22 25	
Huffman Codes		
2.6.1 Construction	25	
2.6.2 Encoding and Decoding	26	
2.6.3 Canonical Huffman Codes	27	
2.6.4 Better than Huffman	30	
Variable-Length Codes for Integers	30	
2.8 Jensen's Inequality		
Application: Positional Inverted Indexes	35	
Summary	36	
Bibliographic Notes		
	Mathematics and Notation Bibliographic Notes opy and Coding Worst-Case Entropy Shannon Entropy Empirical Entropy 2.3.1 Bit Sequences 2.3.2 Sequences of Symbols High-Order Entropy Coding Huffman Codes 2.6.1 Construction 2.6.2 Encoding and Decoding 2.6.3 Canonical Huffman Codes 2.6.4 Better than Huffman Variable-Length Codes for Integers Jensen's Inequality Application: Positional Inverted Indexes Summary	

viii CONTENTS

3	Arra	arrays			
	3.1	Elements of Fixed Size	40		
	3.2	Elements of Variable Size	45		
		3.2.1 Sampled Pointers	46		
		3.2.2 Dense Pointers	47		
	3.3	Partial Sums	48		
	3.4	Applications	49		
		3.4.1 Constant-Time Array Initialization	49		
		3.4.2 Direct Access Codes	53		
		3.4.3 Elias-Fano Codes	57		
		3.4.4 Differential Encodings and Inverted Indexes	59		
		3.4.5 Compressed Text Collections	59		
	3.5	Summary	61		
	3.6	Bibliographic Notes	61		
4	Bity	ectors	64		
-	4.1		65		
		4.1.1 Zero-Order Compression	65		
		4.1.2 High-Order Compression	71		
	4.2	Rank	73		
		4.2.1 Sparse Sampling	73		
		4.2.2 Constant Time	74		
		4.2.3 Rank on Compressed Bitvectors	76		
	4.3	Select	78		
	•••	4.3.1 A Simple Heuristic	78		
		4.3.2 An $\mathcal{O}(\log \log n)$ Time Solution	80		
		4.3.3 Constant Time	81		
	4.4		82		
		4.4.1 Constant-Time Select	83		
		4.4.2 Solving Rank	83		
		4.4.3 Bitvectors with Runs	86		
	4.5	Applications	87		
		4.5.1 Partial Sums Revisited	87		
		4.5.2 Predecessors and Successors	89		
		4.5.3 Dictionaries, Sets, and Hashing	91		
	4.6	Summary	98		
	4.7	Bibliographic Notes	98		
5	Perr	mutations	103		
	5.1	Inverse Permutations	103		
	5.2	Powers of Permutations	106		
	5.3	Compressible Permutations	108		
	5.4	Applications	115		
		5.4.1 Two-Dimensional Points	115		
		5.4.2 Inverted Indexes Revisited	116		
	5.5	Summary	117		
	5.6	Bibliographic Notes	117		

			CONTENTS	ix
6	Seq	iences		120
	6.1	Using Permuta	tions	121
		6.1.1 Chunk-	Level Granularity	121
		6.1.2 Operation	ons within a Chunk	123
		6.1.3 Constru	ction	126
		6.1.4 Space a	nd Time	127
	6.2	Wavelet Trees		128
		6.2.1 Structur	re	128
		6.2.2 Solving	Rank and Select	132
		6.2.3 Constru	ction	134
		6.2.4 Compre	essed Wavelet Trees	136
		6.2.5 Wavelet	Matrices	139
	6.3	Alphabet Parti	tioning	150
	6.4	Applications		155
		6.4.1 Compre	essible Permutations Again	155
		-	essed Text Collections Revisited	157
		6.4.3 Non-po	sitional Inverted Indexes	157
		-	Quantile Queries	159
		6.4.5 Revisiti	ng Arrays of Variable-Length Cells	160
	6.5	Summary		161
	6.6	Bibliographic l	Notes	162
7		Parentheses		
	7.1	A Simple Impl		170
		_	Min-Max Trees	170
			l and Backward Searching	175
		_	Minima and Maxima	180
			nd Select Operations	188
	7.2	Improving the	÷ •	188
		=	inside Buckets	190
			l and Backward Searching	191
		_	Minima and Maxima	196
			nd Select Operations	200
	7.3	Multi-Parenthe	-	200
			Marked Ancestors	201
	7.4	Applications		202
			t Range Minimum Queries	202
		7.4.2 XML D	ocuments	204
	7.5	Summary	•	207
	7.6	Bibliographic 1	Notes	207
8	Tree			211
	8.1		mple Representation	212
		•	and Cardinal Trees	219
	8.2	Balanced Parer	ntheses	222
		8.2.1 Binary	Trees Revisited	228

X CONTENTS

8.3	DFUD	S Representation	233
		Cardinal Trees Revisited	240
8.4	Labele	d Trees	241
8.5	Applica	ations	245
	8.5.1	Routing in Minimum Spanning Trees	246
	8.5.2	Grammar Compression	248
	8.5.3	Tries	252
	8.5.4	LZ78 Compression	259
	8.5.5	XML and XPath	262
	8.5.6	Treaps	264
		Integer Functions	266
8.6	Summa	•	272
8.7	Bibliog	graphic Notes	272
9 Graj	ohs		279
9.1	Genera	al Graphs	281
	9.1.1	Using Bitvectors	281
	9.1.2	Using Sequences	281
	9.1.3	Undirected Graphs	284
	9.1.4	Labeled Graphs	285
	9.1.5	Construction	289
9.2		red Graphs	291
		K^2 -Tree Structure	291
		Queries	292
		Reducing Space	294
		Construction	296
9.3	_	e Graphs	296
		One-Page Graphs	297
		K-Page Graphs	299
0.4		Construction	307
9.4	Planar	-	307
		Orderly Spanning Trees	308 315
		Triangulations Construction	317
9.5	Applica		327
7.3		Binary Relations	327
	9.5.2	•	328
	9.5.3		330
		Planar Drawings	336
9.6	Summa		338
9.7		graphic Notes	338
10 Grid			347
10.1		et Trees	348
10.1		Counting	350
		Reporting	353
		Sorted Reporting	355
		1 0	,

			CONTENTS	xi
	10.2	K^2 -Tre	nas.	357
	10.2		Reporting	359
	10.3		ted Points	362
	10.5	_	Wavelet Trees	362
			K^2 -Trees	365
	10.4		Dimensions	371
		Applic		372
			Dominating Points	372
			Geographic Information Systems	373
			Object Visibility	377
			Position-Restricted Searches on Suffix Arrays	379
			Searching for Fuzzy Patterns	380
			Indexed Searching in Grammar-Compressed Text	382
	10.6	Summa	-	388
	10.7		graphic Notes	388
11	Texts			395
	11.1	Compr	ressed Suffix Arrays	397
		_	Replacing A with Ψ	398
			Compressing Ψ	399
			Backward Search	401
			Locating and Displaying	403
	11.2		M-Index	406
			Order Compression	409
		_	The Burrows-Wheeler Transform	409
		11.3.2	High-Order Entropy	410
			Partitioning <i>L</i> into Uniform Chunks	413
			High-Order Compression of Ψ	414
	11.4	Constr	· ·	415
		11.4.1	Suffix Array Construction	415
			Building the BWT	416
			Building Ψ	418
	11.5	Suffix '	•	419
		11.5.1	Longest Common Prefixes	419
		11.5.2	Suffix Tree Operations	420
		11.5.3	A Compact Representation	424
		11.5.4	Construction	426
	11.6	Applic	ations	429
		11.6.1	Finding Maximal Substrings of a Pattern	429
		11.6.2	Labeled Trees Revisited	432
		11.6.3	Document Retrieval	438
		11.6.4	XML Retrieval Revisited	441
	11.7	Summa	ary	442
	11.8	Bibliog	graphic Notes	442

xii CONTENTS

	_			4=0
	Dynamic Structures			450
1	12.1			450
			Solving Queries	452
			Handling Updates	452
			Compressed Bitvectors	461
	12.2		and Partial Sums	463
		Sequen	nces	465
1	12.4	Trees		467
		12.4.1	LOUDS Representation	469
		12.4.2	BP Representation	472
		12.4.3	DFUDS Representation	474
		12.4.4	Dynamic Range Min-Max Trees	476
		12.4.5	Labeled Trees	479
1	12.5	Graphs	s and Grids	480
		12.5.1	Dynamic Wavelet Matrices	480
		12.5.2	Dynamic k^2 -Trees	482
1	12.6	Texts		485
		12.6.1	Insertions	485
		12.6.2	Document Identifiers	486
		12.6.3	Samplings	486
		12.6.4	Deletions	490
1	12.7	Memor	ry Allocation	492
1	12.8	Summa	ary	494
1	12.9	Bibliog	graphic Notes	494
13 1	Racai	nt Tren	de	501
	13.1			502
J	13.1		ing Data Structures	502
			Effective Entropy The Entropy of PMOs	503
			The Entropy of RMQs	504
			Expected Effective Entropy Other Encoding Problems	504
1	13.2		Other Encoding Problems tive Text Collections	508
J	13.2			509
			Lempel-Ziv Compression	513
			Lempel-Ziv Indexing	516
			Faster and Larger Indexes	
1	122		Compressed Suffix Arrays and Trees	519
J	13.3		lary Memory	523
			Bitvectors	524
			Sequences	527
		13.3.3		528
			Grids and Graphs	530
		13.3.5	Texts	534
Inda				549
Inde	A			349

List of Algorithms

2.1	Building a prenx code given the desired lengths	page 24
2.2	Building a Huffman tree	27
2.3	Building a Canonical Huffman code representation	29
2.4	Reading a symbol with a Canonical Huffman code	29
2.5	Various integer encodings	34
3.1	Reading and writing on bit arrays	41
3.2	Reading and writing on fixed-length cell arrays	44
3.3	Manipulating initializable arrays	52
3.4	Reading from a direct access code representation	55
3.5	Creating direct access codes from an array	56
3.6	Finding optimal piece lengths for direct access codes	58
3.7	Intersection of inverted lists	60
4.1	Encoding and decoding bit blocks as pairs (c, o)	67
4.2	Answering access on compressed bitvectors	69
4.3	Answering rank with sparse sampling	74
4.4	Answering rank with dense sampling	75
4.5	Answering rank on compressed bitvectors	77
4.6	Answering select with sparse sampling	80
4.7	Building the select structures	82
4.8	Answering select and rank on very sparse bitvectors	85
4.9	Building the structures for very sparse bitvectors	86
4.10	Building a perfect hash function	94
5.1	Answering π^{-1} with shortcuts	105
5.2	Building the shortcut structure	107
5.3	Answering π^k with the cycle decomposition	108
5.4	Answering π and π^{-1} on compressible permutations	112
5.5	Building the compressed permutation representation, part 1	113
5.6	Building the compressed permutation representation, part 2	114
6.1	Answering queries with the permutation-based structure	125
6.2	Building the permutation-based representation of a sequence	126

xiii

xiv

Cambridge University Press 978-1-107-15238-0 — Compact Data Structures Gonzalo Navarro Frontmatter More Information

6.3 Answering access and rank with wavelet trees6.4 Answering select with wavelet trees6.5 Building a wavelet tree

6.4	Answering select with wavelet trees	134
6.5	Building a wavelet tree	135
6.6	Answering access and rank with wavelet matrices	143
6.7	Answering select with wavelet matrices	144
6.8	Building a wavelet matrix	145
6.9	Building a suitable Huffman code for wavelet matrices	149
6.10	Building a wavelet matrix from Huffman codes	150
6.11	Answering queries with alphabet partitioning	153
6.12	Building the alphabet partitioning representation	155
6.13	Answering π and π^{-1} using sequences	156
6.14	Inverted list intersection using a sequence representation	158
6.15	Non-positional inverted list intersection	159
6.16	Solving range quantile queries on wavelet trees	161
7.1	Converting between leaf numbers and positions of rmM-trees	171
7.2	Building the <i>C</i> table for the rmM-trees	174
7.3	Building the rmM-tree	175
7.4	Scanning a block for $fwdsearch(i, d)$	177
7.5	Computing fwdsearch (i, d)	178
7.6	Computing $bwdsearch(i, d)$	181
7.7	Scanning a block for $min(i, j)$	182
7.8	Computing the minimum excess in $B[i, j]$	183
7.9	Computing $mincount(i, j)$	186
7.10	Computing $minselect(i, j, t)$	187
7.11	Computing $rank_{10}(i)$ on B	189
	Computing select ₁₀ (j) on B	189
7.13	Finding the smallest segment of a type containing a position	202
7.14	Solving rmq_A with $2n$ parentheses	204
7.15	Building the structure for succinct RMQs	205
8.1	Computing the ordinal tree operations using LOUDS	216
8.2	Computing $lca(u, v)$ on the LOUDS representation	217
8.3	Building the LOUDS representation	218
8.4	Computing the cardinal tree operations using LOUDS	220
8.5	Computing basic binary tree operations using LOUDS	221
8.6	Building the BP representation of an ordinal tree	223
8.7	Computing the simple BP operations on ordinal trees	225
8.8	Computing the complex BP operations on ordinal trees	227
8.9	Building the BP representation of a binary tree	230
	Computing basic binary tree operations using BP	231
	Computing advanced binary tree operations using BP	234
	Building the DFUDS representation	235
	Computing the simple DFUDS operations on ordinal trees	239
	Computing the complex DFUDS operations on ordinal trees	240
	Computing the additional cardinal tree operations on DFUDS	241
	Computing the labeled tree operations on LOUDS or DFUDS	244
8.17	Enumerating the path from u to v with LOUDS	247

LIST OF ALGORITHMS

131

	LIST OF ALGORITHMS	XV
8.18	Extraction and pattern search in tries	255
8.19	Extraction of a text substring from its LZ78 representation	262
8.20	Reporting the largest values in a range using a treap	265
8.21	Computing $f^k(i)$ with the compact representation	268
8.22	Computing $f^{-k}(i)$ with the compact representation	269
9.1	Operations on general directed graphs	283
9.2	Operations on general undirected graphs	284
9.3	Operations on labeled directed graphs	289
9.4	Label-specific operations on directed graphs	290
9.5	Operation adj on a k^2 -tree	293
9.6	Operations neigh and rneigh on a k^2 -tree	294
9.7	Building the k^2 -tree	297
9.8	Operations on one-page graphs	300
9.9	Operations degree and neigh on <i>k</i> -page graphs	304
9.10	Operation adj on <i>k</i> -page graphs	305
9.11	Operations on planar graphs	312
9.12	Finding which neighbor of u is v on planar graphs	313
9.13	Additional operations on the planar graph representation	314
9.14	Operations neigh and degree on triangular graphs	317
9.15	Operation adj on triangular graphs	318
9.16	Object-object join on RDF graphs using k^2 -trees	331
9.17	Subject-object join on RDF graphs using k^2 -trees	332
9.18	Routing on a planar graph through locally maximum benefit	333
9.19	Routing on a planar graph through face traversals	334
9.20	Two-visibility drawing of a planar graph	337
10.1	Answering count with a wavelet matrix	351
10.2	Procedures for report on a wavelet matrix	354
10.3	Finding the leftmost point in a range with a wavelet matrix	356
10.4	Finding the highest points in a range with a wavelet matrix	357
10.5	Procedure for report on a k^2 -tree	360
10.6	Answering top with a wavelet matrix	363
10.7	Prioritized traversal for top on a k^2 -tree	368
10.8	Recursive traversal for top on a k^2 -tree	370
10.9	Procedure for closest on a k^2 -tree	375
10.10	Searching for P in a grammar-compressed text T	387
11.1	Comparing <i>P</i> with $T[A[i], n]$ using Ψ	399
11.2	Backward search on a compressed suffix array	402
11.3	Obtaining $A[i]$ on a compressed suffix array	404
11.4	Displaying $T[j, j + \ell - 1]$ on a compressed suffix array	405
11.5	Backward search on an FM-index	406
11.6	Obtaining $A[i]$ on an FM-index	408
11.7	Displaying $T[j, j + \ell - 1]$ on an FM-index	408
11.8	Building the BWT of a text T in compact space	417
11.9	Generating the partition of A for BWT construction	418
11.10	Computing the suffix tree operations	425
11.11	Building the suffix tree components	429

xvi

LIST OF ALGORITHMS

11.12	Finding the maximal intervals of <i>P</i> that occur often in <i>T</i>	431
11.13	Emulating operations on virtual suffix tree nodes	433
11.14	Subpath search on BWT-like encoded labeled trees	435
11.15	Navigation on BWT-like encoded labeled trees	437
11.16	Document listing	439
12.1	Answering access and rank queries on a dynamic bitvector	453
12.2	Answering select queries on a dynamic bitvector	454
12.3	Processing insert on a dynamic bitvector	456
12.4	Processing delete on a dynamic bitvector, part 1	458
12.5	Processing delete on a dynamic bitvector, part 2	459
12.6	Processing bitset and bitclear on a dynamic bitvector	460
12.7	Answering access queries on a sparse dynamic bitvector	463
12.8	Inserting and deleting symbols on a dynamic wavelet tree	466
12.9	Inserting and deleting symbols on a dynamic wavelet matrix	468
12.10	Inserting and deleting leaves in a LOUDS representation	470
12.11	Inserting and deleting leaves in a LOUDS cardinal tree	471
12.12	Inserting and deleting nodes in a BP representation	473
12.13	Inserting and deleting nodes in a DFUDS representation	475
12.14	Inserting parentheses on a dynamic rmM-tree	477
12.15	Computing fwdsearch (i, d) on a dynamic rmM-tree	478
12.16	Computing the minimum excess in a dynamic rmM-tree	479
12.17	Inserting and deleting grid points using a wavelet matrix	481
12.18	Inserting and deleting grid points using a k^2 -tree	483
12.19	Inserting a document on a dynamic FM-index	488
12.20	Locating and displaying on a dynamic FM-index	489
12.21	Deleting a document on a dynamic FM-index	491
13.1	Reporting τ -majorities from an encoding	508
13.2	Performing the LZ76 parsing	512
13.3	Reporting occurrences on the LZ76-index	517
13.4	Answering count with a wavelet matrix on disk	531
13.5	Backward search on a reduced FM-index	538

Foreword

This is a delightful book on data structures that are both time and space efficient. Space as well as time efficiency is crucial in modern information systems. Even if we have extra space somewhere, it is unlikely to be close to the processors. The space used by most such systems is overwhelmingly for structural indexing, such as B-trees, hash tables, and various cross-references, rather than for "raw data." Indeed data, such as text, take far too much space in raw form and must be compressed. A system that keeps both data and indices in a compact form has a major advantage.

Hence the title of the book. Gonzalo Navarro uses the term "compact data structures" to describe a newly emerging research area. It has developed from two distinct but interrelated topics. The older is that of text compression, dating back to the work of Shannon, Fano, and Huffman (among others) in the late 1940s and early 1950s (although text compression as such was not their main concern). Through the last half of the 20th century, as the size of the text to be processed increased and computing platforms became more powerful, algorithmics and information theory became much more sophisticated. The goal of data compression, at least until the year 2000 or so, simply meant compressing information as well as possible and then decompressing each time it was needed. A hallmark of compact data structures is working with text in compressed form saving both decompression time and space. The newer contributing area evolved in the 1990s after the work of Jacobson and is generally referred to as "succinct data structures." The idea is to represent a combinatorial object, such as a graph, tree, or sparse bit vector, in a number of bits that differs from the information theory lower bound by only a lower order term. So, for example, a binary tree on nnodes takes only 2n + o(n) bits. The trick is to perform the necessary operations, e.g., find child, parent, or subtree size, in constant time.

Compact data structures take into account both "data" and "structures" and are a little more tolerant of "best effort" than one might be with exact details of information theoretic lower bounds. Here the subtitle, "A Practical Approach," comes into play. The emphasis is on methods that are reasonable to implement and appropriate for today's (and tomorrow's) data sizes, rather than on the asymptotics that one sees with the "theoretical approach."

xvii

xviii FOREWORD

Reading the book, I was taken with the thorough coverage of the topic and the clarity of presentation. Finding, easily, specific results was, well, easy, as suits the experienced researcher in the field. On the other hand, the careful exposition of key concepts, with elucidating examples, makes it ideal as a graduate text or for the researcher from a tangentially related area. The book covers the historical and mathematical background along with the key developments of the 1990s and early years of the current century, which form its core. Text indexing has been a major driving force for the area, and techniques for it are nicely covered. The final two chapters point to long-term challenges and recent advances. Updates to compact data structures have been a problem for as long as the topic has been studied. The treatment here is not only state of the art but will undoubtedly be a major influence on further improvements to dynamic structures, a key aspect of improving their applicability. The final chapter focuses on encodings, working with repetitive text, and issues of the memory hierarchy. The book will be a key reference and guiding light in the field for years to come.

J. Ian Munro University of Waterloo

Acknowledgments

I am indebted to Joshimar Córdova and Simon Gog, who took the time to exhaustively read large portions of the book. They made a number of useful comments and killed many dangerous bugs. Several other students and colleagues read parts of the book and also made useful suggestions: Travis Gagie, Patricio Huepe, Roberto Konow, Susana Ladra, Veli Mäkinen, Miguel Ángel Martínez-Prieto, Ian Munro, and Alberto Ordóñez. Others, like Yakov Nekrich, Rajeev Raman, and Kunihiko Sadakane, saved me hours of searching by providing instant answers to my questions. Last but not least, Renato Cerro carefully polished my English grammar. It is most likely that some bugs remain, for which I am the only one to blame.

Ian Munro enthusiastically agreed to write the Foreword of the book. My thanks, again, to a pioneer of this beautiful area.

I would also like to thank my family for bearing with me along this two-year-long effort. It has been much more fun for me than for them.

Finally, I wish to thank the Department of Computer Science at the University of Chile for giving me the opportunity of a life dedicated to academia in a friendly and supportive environment.