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66 An introduction to sieve methods and their applications, ALINA CARMEN COJOCARU &

M. RAM MURTY

67 Elliptic functions, J. V. ARMITAGE & W. F. EBERLEIN

68 Hyperbolic geometry from a local viewpoint, LINDA KEEN & NIKOLA LAKIC

69 Lectures on Kähler geometry, ANDREI MOROIANU

70 Dependence logic, JOUKU VÄÄNÄNEN
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Preface

This book explores connections between group theory and automata theory.

We were motivated to write it by our observations of a great diversity of such

connections; we see automata used to encode complexity, to recognise aspects

of underlying geometry, to provide efficient algorithms for practical computa-

tion, and more.

The book is pitched at beginning graduate students, and at professional aca-

demic mathematicians who are not familiar with all aspects of these intercon-

nected fields. It provides background in automata theory sufficient for its ap-

plications to group theory, and then gives up-to-date accounts of these various

applications. We assume that the reader already has a basic knowledge of group

theory, as provided in a standard undergraduate course, but we do not assume

any previous knowledge of automata theory.

The groups that we consider are all finitely generated. An element of a group

G is represented as a product of powers of elements of the generating set X,

and hence as a string of symbols from A := X ∪ X−1, also called words. Many

different strings may represent the same element. The group may be defined by

a presentation; that is, by its generating set X together with a set R of relations,

from which all equations in the group between strings can be derived. Alterna-

tively, as for instance in the case of automata groups, G might be defined as a

group of functions generated by the elements of X.

Certain sets of strings, also called languages, over A are naturally of interest.

We study the word problem of the group G, namely the set WP(G, A) of strings

over A that represent the identity element. We define a language for G to be a

language over A that maps onto G, and consider the language of all geodesics,

and various languages that map bijectively to G. We also consider combings,

defined to be group languages for which two words representing either the

same element or elements that are adjacent in the Cayley graph fellow travel;

that is, they are at a bounded distant apart throughout their length.

ix
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x Preface

We consider an automaton to be a device for defining a, typically infinite, set

L of strings over a finite alphabet, called the language of the automaton. Any

string over the finite alphabet may be input to the automaton, and is then either

accepted if it is in L, or rejected if it is not. We consider automata of varying

degrees of complexity, ranging from finite state automata, which define regular

languages, through pushdown automata, defining context-free languages, to

Turing machines, which set the boundaries for algorithmic recognition of a

language. In other words, we consider the full Chomsky hierarchy of formal

languages and the associated models of computation.

Finite state automata were used by Thurston in his definition of automatic

groups after he realised that both the fellow traveller property and the finite-

ness of the set of cone types that Cannon had identified in the fundamental

groups of compact hyperbolic manifolds could be expressed in terms of reg-

ular languages. For automatic groups a regular combing can be found; use of

the finite state automaton that defines this together with other automata that

encode fellow travelling allows in particular a quadratic time solution to the

word problem. Word-hyperbolic groups, as defined by Gromov, can be charac-

terised by their possession of automatic structures of a particular type, leading

to linear time solutions to the word problem.

For some groups the set of all geodesic words over A is a regular language.

This is true for word-hyperbolic groups and abelian groups, with respect to any

generating set, and for many other groups, including Coxeter groups, virtually

free groups and Garside groups, for certain generating sets. Many of these

groups are in fact automatic.

The position of a language in the Chomsky hierarchy can be used as a mea-

sure of its complexity. For example, the problem of deciding whether an input

word w over A represents the identity of G (which, like the set it recognises,

is called the word problem) can be solved by a terminating algorithm if and

only if the set WP(G, A) and its complement can be recognised by a Turing

machine; that is, if and only if WP(G, A) is recursive. We also present a proof

of the well-known fact that finitely presented groups exist for which the word

problem is not soluble; the proof of this result encodes the existence of Turing

machines with non-recursive languages.

When the word problem is soluble, some connections can be made between

the position of the language WP(G, A) in the Chomsky hierarchy and the alge-

braic properties of the group. It is elementary to see that WP(G, A) is regular if

and only if G is finite, while a highly non-trivial result of Muller and Schupp

shows that a group has context-free word problem if and only if it has a free

subgroup of finite index.

Attaching an output-tape to an automaton extends it from a device that
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Preface xi

defines a set of strings to a function from one set of strings to another. We

call such a device a transducer, and show how transducers can be used to de-

fine groups. Among these groups are finitely generated infinite torsion groups,

groups of intermediate growth, groups of non-uniform exponential growth, it-

erated monodromy groups of post-critically finite self-coverings of the Rie-

mann sphere, counterexamples to the strong Atiyah conjecture, and many oth-

ers. Our account is by no means complete, as it concentrates on introducing

terminology, the exposition of some basic techniques and pointers to the liter-

ature.

There is a shorter book by Ian Chiswell [68] that covers some of the same

material as we do, including groups with context-free word problem and an in-

troduction to the theory of automatic groups. Our emphasis is on connections

between group theory and formal language theory rather than computational

complexity, but there is a significant overlap between these areas. We recom-

mend also the article by Mark Sapir [226] for a survey of results concerning

the time and space complexity of the fundamental decision problems in group

theory.
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