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Group theory

1.1 Introduction and basic notation

In this book we are assuming that the reader has studied group theory at un-

dergraduate level, and is familiar with its fundamental results, including the

basic theory of free groups and group presentations. However, in many of the

interactions between group theory and formal language theory, it is convenient

to consider group presentations as special cases of semigroup and monoid pre-

sentations, so we describe them from that aspect here.

We refer the reader to one of the standard textbooks on group theory, such

as [223] or [221] for the definitions and basic properties of nilpotent, soluble

(solvable) and polycyclic groups,

We also include some specific topics, mainly from combinatorial group the-

ory, that will be required later. The normal form theorems for free products

with amalgamation and HNN-extensions are used in the proofs of the insol-

ubility of the word problem in groups, and we summarise their proofs. We

introduce Cayley graphs and their metrical properties, and the idea of quasi-

isometry between groups, which plays a central role in the area and throughout

geometric group theory, and we define the small cancellation properties of pre-

sentations and describe related results.

The final section of the chapter is devoted to a brief introduction to some of

the specific families of groups, such as Coxeter groups and braid groups, that

arise frequently as examples throughout the book. The informed reader may

prefer not to read this chapter in detail, but to refer back to it as necessary.

1.1.1 Some basic notation For g, h in a group, we define the conjugate of g

by h, often written as gh, to be hgh−1 and the commutator [g, h] to be ghg−1h−1.

But we note that some authors use the notations gh and [g, h] to mean h−1gh

and g−1h−1gh, respectively.
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4 Group theory

We recall that a semigroup is a set with an associative binary operation,

usually written as multiplication, a monoid is a semigroup with an identity

element, and a group is a monoid G in which every element is invertible.

We extend the multiplication of elements of a semigroup S to its subsets,

defining TU = {tu : t ∈ T, u ∈ U} and we frequently shorten {t}U to tU, as we

do for cosets of subgroups of groups.

1.1.2 Strings and words Strings over a finite set are important for us, since

they are used to represent elements of a finitely generated group.

Let A be a finite set: we often refer to A as an alphabet. We call the elements

of A its letters, and we call a finite sequence a1a2 · · · ak of elements from A a

string or word of length k over A. We use these two terms interchangeably. We

denote by ε the string of length 0, and call this the null string or empty word.

For a word w, we write |w| for the length of w.

We denote by Ak the set of all strings of length k over A, by A∗ the set (or

monoid) of all strings over A, and by A+ the set (or semigroup) of all nonempty

strings over A; that is

A∗ =

∞
⋃

k=0

Ak, A+ =

∞
⋃

k=1

Ak
= A∗ \ {ε}.

For w = a1a2 · · · ak and i ∈ N0, we write w(i) for the prefix a1a2 · · · ai of w

when 0 < i ≤ k, w(0) = ε and w(i) = w for i > k.

In this book, A often denotes the set X∪X−1 of generators and their inverses

for a group G; we abbreviate X ∪ X−1 as X±. In this situation, we often refer

to words in A∗ as words over X even though they are really words over the

alphabet A.

For g ∈ G, a word w over X of minimal length that represents g is called

a geodesic word over X, and we denote the set of all such geodesic words by

G(G, X). If w is an arbitrary word representing g ∈ G, then we write |g| or |w|G

(or |g|X or |w|G,X if X needs to be specified) for the length of a geodesic word

over X that represents g. Similarly, we use v = w to mean that the words v

and w are identical as strings of symbols, and v =G w to mean that v and w

represent the same element of the group.

We call a set of strings (i.e. a subset of A∗) a language; the study of languages

is the topic of Chapter 2. It is convenient at this stage to introduce briefly the

notation of a language for a group.

1.1.3 Languages for groups For a group G generated by X, we call a subset

of (X±)∗ that contains at least one representative of each element in G a lan-

guage for G; if the set contains precisely one representative of each element we
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1.2 Generators, congruences and presentations 5

call it a normal form for G. We shall be interested in finding good languages for

a group G; clearly we shall need to decide what constitutes a good language.

Typically we find good examples as the minimal representative words under a

word order, such as word length or shortlex, <slex, defined below in 1.1.4. The

shortlex normal form for a group selects the least representative of each group

element under the shortlex ordering as its normal form word. The set G(G, X)

of all geodesic words provides a natural language that is not in general a normal

form.

1.1.4 Shortlex orderings Shortlex orderings (also known as lenlex orderings)

of A∗ arise frequently in this book. They are defined as follows. We start with

any total ordering <A of A. Then, for u, v ∈ A∗, we define u <slex v if either

(i) |u| < |v| or (ii) |u| = |v| and u is less than v in the lexicographic (dictionary)

ordering of strings induced by the chosen ordering <A of A.

More precisely, if u = a1 · · · am, v = b1 · · · bn, then u <slex v if either (i)

m < n or (ii) m = n and, for some k with 1 ≤ k ≤ m, we have ai = bi for i < k

and ak <A bk.

Note that <slex is a well-ordering whenever <A is, which of course is the case

when A is finite.

1.2 Generators, congruences and presentations

1.2.1 Generators If X is a subset of a semigroup S, monoid M or group G,

then we define Sgp〈X〉, Mon〈X〉 or 〈X〉 to be the smallest subsemigroup, sub-

monoid or subgroup of S, M or G that contains X. Then X is called a semi-

group, monoid or group generating set if that substructure is equal to S, M or

G respectively, and the elements of X are called generators.

We say that a semigroup, monoid or group is finitely generated if it possesses

a finite generating set X.

1.2.2 Congruences If S is a semigroup and ∼ is an equivalence relation on S,

then we say that ∼ is a congruence if

s1 ∼ s2, t1 ∼ t2 =⇒ s1t1 ∼ s2t2.

We then define the semigroup S/∼ to be the semigroup with elements the

equivalence classes [s] = {t ∈ S : t ∼ s} of ∼, where [s1][s2] = [s1s2].
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6 Group theory

1.2.3 Presentations for semigroups, monoids and groups For a semigroup

S generated by a set X, let R = {(αi, βi) : i ∈ I} be a set of pairs of words from

X+ with αi =S βi for each i. The elements of R are called relations of S . If ∼

is the smallest congruence on X+ containing R, and S is isomorphic to X+/∼,

then we say that R is a set of defining relations for S, and that Sgp〈X | R〉 is a

presentation for S . In practice, we usually write αi = βi instead of (αi, βi). (This

is an abuse of notation but the context should make it clear that we do not mean

identity of words here.) Similarly the monoid presentation Mon〈X | R〉 defines

the monoid X∗/≃, for which ≃ is the smallest congruence on X∗ containing R.

For groups the situation is marginally more complicated. If G is a group

generated by a set X and A = X±, then G is isomorphic to A∗/∼, where ∼ is

some congruence on A∗ containing {(aa−1, ε), (a−1a, ε) : a ∈ X}. We define a

relator of G to be a word α ∈ A∗ with α =G ε. Let R = {αi : i ∈ I} be a set of

relators of G. If ∼ is the smallest congruence on A∗ containing

{(α, ε) : α ∈ R} ∪ {(aa−1, ε) : a ∈ X} ∪ {(a−1a, ε) : a ∈ X},

and if G is isomorphic to A∗/∼, then we say that R is a set of defining relators

for G and that 〈X | R〉 is a presentation for G. Rather than specifying a relator

α, so that α represents the identity, we can specify a relation β = γ (as in the

case of monoids or semigroups), which is equivalent to βγ−1 being a relator.

We say that a semigroup, monoid or group is finitely presented (or, more

accurately, finitely presentable) if it has a presentation in which the sets of

generators and defining relations or relators are both finite.

1.2.4 Exercise Let G = 〈X | R〉 and let A = X±. Show that

G � Mon〈A | IX ∪ R〉,

where IX = {(xx−1, ε) : x ∈ X} ∪ {(x−1x, ε) : x ∈ X} and R = {(w, ε) : w ∈ R}.

1.2.5 Free semigroups, monoids and groups If S is a semigroup with pre-

sentation Sgp〈X | ∅〉 (which we usually write as Sgp〈X |〉), then we say that S

is the free semigroup on X; we see that S is isomorphic to X+ in this case. Sim-

ilarly, if M is a monoid with presentation Mon〈X |〉, then we say that M is the

free monoid on X, and we see that M is then isomorphic to X∗. If S = X+ and

L ⊆ S, then Sgp〈L〉 = L+; similarly, if M = X∗ and L ⊆ M, then Mon〈L〉 = L∗.

If F is a group with a presentation 〈X |〉, then we say that F is the free group

on X; if |X| = k, then we say that F is the free group of rank k (any two free

groups of the same rank being isomorphic). We write F(X) for the free group

on X and Fk to denote a free group of rank k.
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1.3 Decision problems 7

1.2.6 Exercise Let G = 〈X | R〉 be a presentation of a group G. Show that the

above definition of G, which is essentially as a monoid presentation, agrees

with the more familiar definition 〈X | R〉 = F(X)/〈RF(X)〉, where 〈RF(X)〉 de-

notes the normal closure of R in F(X).

1.2.7 Reduced and cyclically reduced words In F(X), the free group on X,

every element has a unique representation of the form w = x
ǫ1
1

x
ǫ2
2
. . . x

ǫn
n , where

n ≥ 0, xi ∈ X and ǫi ∈ {1,−1} for all i, and where we do not have both xi = xi+1

and ǫi = −ǫi+1 for any i; in this case, we say that the word w is reduced. Each

word v ∈ A∗ is equal in F(X) to a unique reduced word w.

If w is a reduced word and w is not of the form x−1vx or xvx−1 for some

x ∈ X and v ∈ A∗, then we say that w is cyclically reduced. Since replacing

a defining relator by a conjugate in F(X) does not change the group defined,

we may (and often do) assume that all defining relators are cyclically reduced

words.

1.3 Decision problems

In his two well-known papers in 1911 and 1912 [75, 76], Dehn defined and

considered three decision problems in finitely generated groups, the word, con-

jugacy and isomorphism problems. While the word problem in groups is one

of the main topics studied in this book, the other two will only be fleetingly

considered. A good general reference on these and other decision problems in

groups is the survey article by Miller [192].

1.3.1 The word problem A semigroup S is said to have soluble word prob-

lem if there exists an algorithm that, for any given words α, β ∈ X+, decides

whether α =S β. The solubility of the word problem for a monoid or group

generated by X is defined identically except that we consider words α, β in X∗

or (X±)∗. For groups, the problem is equivalent to deciding whether an input

word is equal to the identity element. The word problem for groups is dis-

cussed further in Chapter 3 and in Part Three of this book. Examples of finitely

presented semigroups and groups with insoluble word problem are described

in Theorems 2.9.7 and 10.1.1.

1.3.2 The conjugacy and isomorphism problems The conjugacy problem

in a semigroup S is to decide, given two elements x, y ∈ S, whether there exists

z ∈ S with zx = yz. Note that this relation is not necessarily symmetric in x and
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8 Group theory

y, but in a group G it is equivalent to deciding whether x and y are conjugate

in G.

Since the word problem in a group is equivalent to deciding whether an el-

ement is conjugate to the identity, the conjugacy problem is at least as hard as

the word problem, and there are examples of groups with soluble word problem

but insoluble conjugacy problem. A number of such examples are described in

the survey article by Miller [192], including Theorem 4.8 (an extension of one

finitely generated free group by another), Theorem 4.11 (examples showing

that having soluble conjugacy problem is not inherited by subgroups or over-

groups of index 2), Theorem 5.4 (residually finite examples), Theorem 6.3 (a

simple group), Theorem 7.7 (asynchronously automatic groups), and Theorem

7.8 (groups with finite complete rewriting systems) of that article.

The isomorphism problem is to decide whether two given groups, monoids

or semigroups are isomorphic. Typically the input is defined by presentations,

but could also be given in other ways, for example as groups of matrices. There

are relatively few classes for which the isomorphism problem is known to be

soluble. These classes include polycyclic and hyperbolic groups [232, 234, 72].

1.3.3 The generalised word problem Given a subgroup H of a group G, the

generalised word problem is to decide, given g ∈ G, whether g ∈ H. So the

word problem is the special case in which H is trivial. We shall encounter

some situations in which this problem is soluble in Chapter 8. As for the con-

jugacy problem, the survey article [192] is an excellent source of examples (in

particular in Theorems 5.4 and 7.8 of that article), in this case of groups with

soluble word problem that have finitely generated subgroups with insoluble

generalised word problem.

1.4 Subgroups and Schreier generators

Let H be a subgroup of a group G = 〈X〉, and let U be a right transversal of H

in G. For g ∈ G, denote the unique element of Hg ∩ U by g. Define

Z :=
{

uxux
−1 : u ∈ U, x ∈ X

}

.

Then Z ⊆ H.

1.4.1 Theorem With the above notation, we have H = 〈Z〉.

Our proof needs the following result.

1.4.2 Lemma Let S = {ux−1ux−1
−1

: u ∈ U, x ∈ X}. Then Z−1
= S .
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1.4 Subgroups and Schreier generators 9

Proof Let g ∈ Z−1, so g = (uxux
−1)−1

= uxx−1u−1. Let v := ux ∈ U. Then,

since the elements vx−1 and u are in the same coset of H, we have vx−1 = u,

and g = vx−1vx−1
−1
∈ S .

Conversely, let g = ux−1ux−1
−1
∈ S, so g−1

= ux−1xu−1. Let v := ux−1. Then

vx = u, so g−1
= vxvx

−1
∈ Z and g ∈ Z−1. �

Proof of Theorem 1.4.1 Let U ∩ H = {u0}. (We usually choose u0 = 1, but

this is not essential.) Let h ∈ H. Then we can write u−1
0

hu0 = a1 · · · al for some

ai ∈ A := X±. For 1 ≤ i ≤ l, let ui := a1 · · · al. Since u−1
0

hu0 ∈ H, we have

ul = u0. Then

h =G (u0a1u−1
1 )(u1a2u−1

2 ) · · · (ul−1alu
−1
l ).

Note that ui+1 = a1 · · · al+1 is in the same coset of H as uiai+1, so uiai+1 = ui+1,

and

h =G (u0a1u0a1
−1)(u1a2u1a2

−1) · · · (ul−1alul−1al
−1). (†)

Each bracketed term is in Z if ai ∈ X, and in Z−1 if ai ∈ X−1 by Lemma 1.4.2.

So H = 〈Z〉. �

1.4.3 Corollary A subgroup of finite index in a finitely generated group is

finitely generated.

1.4.4 Rewriting The process described in the above proof of calculating a

word v over Z from a word w over X that represents an element of H is called

Reidemeister–Schreier rewriting. We may clearly omit the identity element

from the rewritten word, which results in a word over Y = Z \ {1}, which

we denote by ρX,Y (w). From the proof, we see immediately that:

1.4.5 Remark If 1 ∈ U, then |ρX,Y (w)| ≤ |w|.

1.4.6 Schreier generators and transversals The above set Y of non-identity

elements of Z is called the set of Schreier generators of H in G. Of course, this

set depends on X and on U.

The set U is called a Schreier transversal if there is a set of words over X

representing the elements of U that is closed under taking prefixes. Note that

such a set must contain the empty word, and hence 1 ∈ U. By choosing the

least word in each coset under some reduction ordering of A∗ (where A = X±),

it can be shown that Schreier transversals always exist. Reduction orderings

are defined in 4.1.5. They include the shortlex orderings defined in 1.1.4.

It was proved by Schreier [228] that, if G is a free group and U is a Schreier

transversal, then the Schreier generators freely generate H.
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10 Group theory

The following result, known as the Reidemeister–Schreier Theorem, which

we shall not prove here, provides a method of computing a presentation of

the subgroup H from a presentation of the group G. Note that it immediately

implies the celebrated Nielsen–Schreier Theorem, that any subgroup of a free

group is free. As with many of the results stated in this chapter, we refer the

reader to the standard textbook on combinatorial group theory by Lyndon and

Schupp [183] for the proof.

1.4.7 Theorem (Reidemeister–Schreier Theorem [183, Proposition II.4.1])

Let G = 〈X | R〉 = F/N be a group presentation, where F = F(X) is the free

group on X, and let H = E/N ≤ G. Let U be a Schreier transversal of E in

F and let Y be the associated set of Schreier generators. Then 〈Y | S 〉 with

S =
{

ρX,Y (uru−1) : u ∈ U, r ∈ R
}

is a presentation of H.

1.4.8 Corollary A subgroup of finite index in a finitely presented group is

finitely presented.

1.5 Combining groups

In this section we introduce various constructions that combine groups. We

leave the details of many of the proofs of stated results to the reader, who is

referred to [183, Chapter IV] for details.

1.5.1 Free products Informally, the free product G ∗ H of the groups G,H is

the largest group that contains G and H as subgroups and is generated by G

and H. Formally, it can be defined by its universal property:

(i) there are homomorphisms ιG : G → G ∗ H and ιH : H → G ∗ H;

(ii) if K is any group and τG : G → K, τH : H → K are homomorphisms,

then there is a unique homomorphism α : G ∗ H → K with αιG = τG and

αιH = τH .

As is often the case with such definitions, it is straightforward to prove

uniqueness, in the sense that any two free products of G and H are isomor-

phic, and it is not hard to show that G ∗H is generated by ιG(G) and ιH(H). But

the existence of the free product is not immediately clear.

To prove existence, let G = 〈X | R〉 and H = 〈Y | S 〉 be presentations of G

and H. Then we can take

G ∗ H = 〈X ∪ Y | R ∪ S 〉,
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1.5 Combining groups 11

where ιG and ιH are the homomorphisms induced by the embeddings X →

X ∪ Y and Y → X ∪ Y; we tacitly assumed that X and Y are disjoint.

It is not completely obvious that ιG and ιH are monomorphisms. This follows

from another equivalent description of G ∗ H as the set of alternating products

of arbitrary length (including length 0) of non-trivial elements of G and H,

with multiplication defined by concatenation and multiplications within G and

H. With this description, ιG and ιH are the obvious embeddings, and G and

H are visibly subgroups of G ∗ H, known as the free factors of G ∗ H. The

equivalence of the two descriptions follows immediately in a more general

context from Proposition 1.5.12.

The definition extends easily to the free product of any family of groups.

The following result, which we shall not prove here, is used in the proof of the

special case of the Muller–Schupp Theorem (Theorem 11.1.1) that torsion-free

groups with context-free word problem are virtually free.

1.5.2 Theorem (Grushko’s Theorem [183, IV.1.9]) For a group G, let d(G)

denote the minimal number of generators of G. Then d(G ∗ H) = d(G) + d(H).

1.5.3 Direct products The direct product G×H of two groups G,H is usually

defined as the set G × H with component-wise multiplication. We generally

identify G and H with the component subgroups, which commute with each

other, and are called the direct factors of G×H. Then each element has a unique

representation as a product of elements of G and H. It can also be defined by a

universal property:

(i) there are homomorphisms πG : G × H → G and πH : G × H → H;

(ii) if K is any group and τG : K → G and τH : K → H are homomorphisms,

then there is a unique homomorphism ϕ : K → G × H with τG = πG ◦ ϕ

and τH = πH ◦ ϕ.

If G = 〈X | R〉 and H = 〈Y | S 〉 are presentations, then G × H has the

presentation

G × H = 〈X ∪ Y | R ∪ S ∪ {[x, y] : x ∈ X, y ∈ Y}〉.

We can extend this definition to direct products of families of groups as fol-

lows. Let {Gω : ω ∈ Ω} be a family of groups. Then the (full) direct product,

also known sometimes as the Cartesian product,
∏

ω∈ΩGω of the family con-

sists of the set of functions β : Ω → ∪ω∈ΩGω for which β(ω) ∈ Gω for all

ω ∈ Ω, where the group operation is component-wise multiplication in each

Gω; that is, β1β2(ω) = β1(ω)β2(ω) for all ω ∈ Ω.
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12 Group theory

The elements of
∏

ω∈ΩGω consisting of the functions β with finite support

(i.e. β(ω) = 1G for all but finitely many ω ∈ Ω) form a normal subgroup of
∏

ω∈ΩGω. We call this subgroup the restricted direct product of the family

{Gω : ω ∈ Ω}. It is also sometimes called the direct sum of the family to

distinguish it from the direct product.

1.5.4 Semidirect products Let N and H be groups, and let φ : H → Aut(N)

be a right action of H on N. We define the semidirect product of H and N,

written N ⋊φ H or just N ⋊ H, to be the set {(n, h) : n ∈ N, h ∈ H} equipped

with the product

(n1, h1)(n2, h2) = (n1n
φ(h−1

1
)

2
, h1h2).

We leave it as an exercise to the reader to derive a presentation of N ⋊φ H from

presentations of H and N and the action φ. We note that sometimes the notation

H ⋉ N is used for the same product. We identify the subgroups {(n, 1) : n ∈ N}

and {(1, h) : h ∈ H} with N and H, and hence (n, h) with nh, so that the

expression above reads

n1h1n2h2 = n1n
φ(h−1

1
)

2
h1h2.

The direct product N × H is the special case when φ is the trivial action.

The semidirect product is itself a special case of a group extension, which is a

group G with normal subgroup N and G/N � H. Unfortunately roughly half of

the set of mathematicians refer to this as an extension of N by H, and the other

half call it an extension of H by N. An extension is isomorphic to a semidirect

product if and only if N has a complement in G (that is, G has a subgroup K,

with N ∩ K = {e}, G = NK), in which case it is also called a split extension.

Note that we can also define a semidirect product of two groups N and H,

from a left action of H on N.

1.5.5 Wreath products Let G and H be groups and suppose that we are given

a right action φ : H → Sym(Ω) of H on the set Ω. We define the associated

(full) permutational wreath product G ≀ H = G ≀φ H as follows.

Let N =
∏

ω∈ΩGω, where the groups Gω are all equal to the same group

G. So the elements of N are functions γ : Ω → G. We define a right action

ψ : H → Aut(N) by putting γψ(h)(ω) = γ(ωφ(h
−1)) for each γ ∈ N, h ∈ H, and

ω ∈ Ω. We then define G ≀φ H to be the semidirect product N ⋊ψ H. So the

elements have the form (γ, h) with γ ∈ N and h ∈ H. As in 1.5.4, we identify

{(γ, 1) : γ ∈ N}, {(1, h) : h ∈ H} with N and H, and hence (γ, h) with the

product γh.

If we restrict elements of N to the functions γ : Ω → G with finite support,
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