
Cambridge University Press
978-1-107-15164-2 — Singularities, Bifurcations and Catastrophes
James Montaldi 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1

What’s it all about?

M
athematical models of nature almost always involve solving equations

(often differential equations) and these models, and their equations, fre-

quently depend on external parameters. Examples of parameters might

be the temperature of a chemical reaction, or the load on a bridge, or the tension in

a rope (will it snap?), or the temperature of the ocean for plankton populations. In

such models, it is important to understand how phenomena associated to that model

can change as the parameters are varied. Usually one finds that a small change in

the value of the parameters produces a corresponding small change in the (set of)

solutions of the equation. But occasionally, for particular values of the parameter

there is a more radical change, and such changes are called bifurcations. Often

these bifurcations involve simply a change in the number of solutions. This chapter

illustrates these ideas with a few examples.

Bifurcation theory is the (mathematical) study of such qualitative changes aris-

ing as parameters are varied. In this book, we consider a subset of this very general

theory, namely local bifurcations, which excludes for example, routes to chaos

in dynamical systems and other global bifurcations: everything we study can be

described by local questions and local changes.

The majority of applications of mathematics involve differential equations (or-

dinary or partial), and the theory of bifurcations can be applied to these in a straight-

forward manner, as we will see in the first example below. However, the ideas are

more general, and can be applied to other systems that depend on parameters, not

just differential equations.

The general approach is to consider an equation �(�) = 0, where � may have

several components,

�(�) = (�1(�), �2(�), . . . , �� (�)),

and indeed so may �, that is � = (�1, �2, . . . , ��). Then introduce a parameter �

(also possibly multi–dimensional), writing

�� (�) = 0,
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2 What’s it all about?

or � (�;�) = 0. This is called a family of equations, depending on the parameter �.

We shall always assume our families are smooth as functions of (�, �) (i.e. of class

�∞). The basic question of bifurcation theory is, how do solutions in � of these

equations change as � varies? And a bifurcation occurs when the change is in some

sense qualitative.

There are many applications where the equation is a so-called variational

problem, which means that the equation �(�) = 0 is in fact of the form ∇� (�) = 0

for some scalar function � , usually called the potential. Then solutions of the

equations �(�) = 0 are critical points of the function � . Zeeman’s catastrophe

machine described in Section 1.3 is one such physical example. A more geometric

example is described in Section 1.4.

1.1 The fold or saddle-node bifurcation

The simplest mathematical example exhibiting a bifurcation is provided by the

ordinary differential equation (ode),

.

� = �2 + �. (1.1)

Here � ∈ R is the parameter, and one often refers to � ∈ R as the state variable. The

dot over the � denotes the time-derivative, and a solution to the equation would be a

function � (�). Since this is a first order ode, an equilibrium point occurs wherever

the right-hand side vanishes. The equilibria therefore occur where

�2 + � = 0.

Define ��(�) = �2 + �. Then we are interested in solutions of ��(�) = 0, that is in

the zeros of �. We call this set � . Thus,

� =

{

(�, �) ∈ R2 | �2 + � = 0
}

.

The question we address is how the number of points in � depends on �. In this

example, the curve � is a parabola in the left half of the plane, as illustrated in Figure

1.1a. For � < 0 there are two solutions (two equilibrium points), at � = ±
√
−�, and

as � increases to 0 these coalesce and then for � > 0 there are no solutions (or they

become complex, but we are just interested in real solutions). The transition, or

bifurcation, occurs when � = 0 (marked in red). The set of parameter values where

such a bifurcation occurs is called the bifurcation set or discriminant. The map �

shown in the diagram is simply the projection taking (�, �) ∈ � to the parameter

value �.
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1.1 The fold or saddle-node bifurcation 3
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(b) Phase diagram for the saddle-

node bifurcation (1.1)

Figure 1.1 (a) shows the equilibrium points, forming a smooth curve

in the (�, �)-plane. (b) shows whether � is increasing or decreasing (the

sign of 	�) for different values of �; the dots represent the equilibrium

points and correspond to points on the curve in (a).

The behaviour of the differential equation is illustrated in Figure 1.1b. There are

two equilibrium points when � < 0 and none for � > 0. In differential equations,

this transition is often called a saddle-node bifurcation because in two dimensions,

when � < 0, one of the equilibria would be a saddle and the other a node. In

singularity theory, where the specific application is not of concern, it is more

generally called a fold bifurcation, because of the shape of the curve � folding over

with respect to the parameter space (the �-axis).

Remark In this simple example, the differential equation is a standard one and

can be solved explicitly (by separation of variables, the type of solution depends on

the sign of �). However, more generally, bifurcation theory can be used to study

equilibria (and neighbouring dynamics) of systems of odes where this is not the

case, such as for example the ode
.

� = �2
e
� + �, which does not have a closed form

solution but still exhibits a saddle-node bifurcation. ❞

The beauty of these ideas is that while the example above is so simple (� is

quadratic), it contains essentially all that is expected to occur if there is just one

parameter and no other restrictions. Imagine a small perturbation of the curve �

shown in Figure 1.1a; it seems reasonable to think that there will still be a single

point where the curve ‘folds over’, with two solutions on the left and none on the
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4 What’s it all about?

ℎ(�, �) = �2 − �2

ℎ(�, �) = �2 + �2

� < 0

�

� = 0 � > 0

Figure 1.2 Two examples of bifurcation of contours ℎ(�, �) = � as �

varies across the critical value of the function ℎ.

right of this fold point (and one can prove this using the implicit function theorem;

see Problem 1.6). This illustrates the robustness of the saddle-node bifurcation. In

Section 1.5 below, we look briefly at an important bifurcation with one parameter,

the pitchfork bifurcation, but where small perturbations do change its form. But

first we look at two places bifurcations occur, the contours of a function as a

parametrized set of equations, and a mechanical example with two parameters.

1.2 Bifurcations of contours

Landscape is determined in part by the height above sea level of each point of some

region of the Earth. A contour is a curve on the landscape along which the height

is constant; that is, for a given height the associated contour is the set of all points

with that particular height. Let �, � be coordinates in the region in question, and

ℎ(�, �) the height function. Then a contour at height � is the set of solutions of the

equation

ℎ(�, �) − � = 0.

Here we have a fixed function ℎ and we can consider � as a parameter. Of course,

height is only one example; another is the atmospheric pressure as a function on the

surface, in which case the ‘contours’ are the familiar isobars from weather maps

(although atmospheric pressure is best expressed as a function of three variables

�(�, �, �) as it varies with altitude �).

Consider a function ℎ(�, �) and the resulting equation ℎ(�, �) = �. Most of the

contours are curves, and a natural question to ask is, as � is varied, how can these

curves change? The contours of a function are also called its level sets.
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1.3 Zeeman catastrophe machine 5
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Figure 1.3 Schematic diagram of the Zeeman catastrophe machine.

The red curve marked D is the discriminant or bifurcation set; notice

the four cusps. Its precise size and position depend on the physical

characteristics of the elastics and the position of the point �.

For example, suppose ℎ(�, �) = �2−�2. Then the contours are either hyperbolae

or a pair of lines and the transition is depicted in the top row of Figure 1.2. For

ℎ(�, �) = �2 + �2 the contour is a circle for � > 0, a single point for � = 0 and is

empty for � < 0. See the lower figures in Figure 1.2. In both cases a change occurs

as one crosses the level � = 0, and one can show in general that qualitative changes

only occur at critical values of the function; that is, the value the function takes at

a critical point. We will study this in greater depth in later chapters.

A similar example in more variables is provided by ℎ(�, �, �) = �2 + �2 − �2.

The zero level of this function is a circular cone in R3, while ℎ = 1 is a one-sheeted

hyperboloid and ℎ = −1 is a two-sheeted hyperboloid.

1.3 Zeeman catastrophe machine

Conceived by Christopher Zeeman to illustrate the ideas of catastrophe theory, the

Zeeman catastrophe machine consists of a wheel free to rotate about its centre,

with a peg � attached at a point of its circumference. To the peg are attached two

elastics: the other end of the first is pinned at a fixed point � in the plane of the

wheel, while the other end of the second elastic is held by hand at a second point

�(�, �) in that plane. See Figure 1.3. The question is, how many equilibrium states

are there of the wheel?

The answer will depend on where the end � is held; that is on the values of �

and �, so these are the parameters. For each choice of point (�, �), the total elastic
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6 What’s it all about?

potential �(�,�) (�) is a function of �, the position of the wheel (see Figure 1.4), and

the equilibrium points are the points � where� has a critical point: d

d�
�(�,�) (�) = 0.

The computation of the potential is straightforward but lengthy (and not relevant

here), but the conclusion can be described simply. In the (�, �)-plane, there is a

curve with four cusps, marked D in the figure. If the point � is within the curve, the

wheel has four equilibrium points, two of which are stable (where � ′′ > 0) and two

are unstable (where � ′′ < 0). On the other hand, if � lies outside this curve, then

the wheel has only one stable and one unstable equilibrium point. The transition

from four to two critical points happens when � approaches the curve D from the

inside, and two of the critical points get closer and coalesce becoming degenerate in

the process, and then disappearing; this curve D is therefore the discriminant of this

family. This transition is the same as that in the fold bifurcation described above,

although something more involved happens at the cusp points of the discriminant.

1.4 An example from geometry: the evolute

Consider a smooth simple closed curve � in the plane (e.g. an ellipse: a curve is

said to be smooth if it has a parametrization whose derivative is nowhere zero).

Let �(�, �) be a point in the plane (possibly on �) with coordinates (�, �). The

geometric question is, can you draw a perpendicular to the curve from the point �,

and if so how many? (If � lies on the curve then we allow that the ‘segment’ (of

zero length) from � to � is perpendicular to the curve.)

For example, if� is an ellipse, and � is at its centre, then it is not hard to see that

there are 4 such perpendiculars – one to each of the points on the axes of the ellipse.

What happens to those 4 points if � is perturbed? The feet of the perpendiculars

will move, but can there be a different number of them? Imagine instead a point

�′ on the major axis of the ellipse, but outside the ellipse. It is easy to see that

there are now only 2 perpendiculars from �′ to �. See Figure 1.5. The bifurcation

question is, how does 4 change to 2 as � is moved? And more completely, what is

this number for all possible points �?

One observation is that for any � there are at least two such perpendiculars, and

these arise at the nearest and furthest points of the curve to � as some thought should

convince you (and which we prove below). This suggests defining the function on

� which is the distance of each point of � to �. In fact we use the square of the

distance which leads to simpler expressions after differentiating.

Let r(�) be a regular parametrization of the plane curve �, where ‘regular’

means that its derivative
.

r(�) is never zero, and for each point c = (�, �) in the
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Figure 1.4 Graphs of the potential � in Zeeman’s catastrophe ma-

chine for the six different parameter values shown in the bottom figure.

Note that Figures b and f have degenerate critical points, and the corre-

sponding points in the bottom diagram lie on the discriminant D. The

horizontal axis in diagrams a–f is � ∈ [0, 2�].
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8 What’s it all about?

�

�

�

�

�′

�

Figure 1.5 The dashed lines are perpendiculars from � and �′ to the

ellipse �.

plane, define the function

�c (�) = − 1
2
‖c − r(�)‖2.

(c is the position vector of the point � from the discussion above, and the factor − 1
2

is for convenience.) This is a family of functions of �, with two parameters � and �.

It measures the square of the distance from the point c to the point r(�); it’s called

the distance squared function, or distance squared family.

Question: where does �c have a critical point, and when is it degenerate?

First differentiate �c (with respect to �),

� ′c (�) = (c − r(�)) · 	r(�). (1.2)

Since 	r(�) is the derivative of r(�), it represents a non-zero tangent vector to the

curve. It follows that � ′c (�) = 0, if c lies on the normal line to the curve at r(�). The

set of critical points is therefore a very geometric object:

� = {(�, �, �) ∈ R3 | (�, �) lies on the normal to the curve at r(�)}. (1.3)

Thus, for given � the original question is now, how many critical points does �c
have? In particular, the question of how many normals there are for a given point

� is now cast as a variational problem.

Local changes in the number of critical points can only occur when a critical

point is degenerate (as follows from the implicit function theorem). To see if the

critical point is degenerate, we find the second derivative:

� ′′c (�) = (c − r(�)) · �r(�) − ‖	r(�)‖2. (1.4)

Thus �c has a degenerate critical point at � if both (1.2) and (1.4) are equal to zero.

We can rewrite the two equations as,

{

	r(�) · c = r(�) · 	r(�)
�r(�) · c = r(�) · �r(�) + ‖	r(�)‖2
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1.4 The evolute 9

This is simply a pair of linear equations for c, and if the coefficients �r(�) and 	r(�)
are not parallel (they are both vectors), there is a unique solution c, so giving a

unique point1 on that normal line. Call this point e(�): the resulting curve is called

the evolute of the original curve. We have shown that the point c = e(�) if and only

if the function �c has a degenerate critical point at �; the set of e(�) as � varies is

therefore the discriminant of this family �c.

Example 1.1. As a specific example, consider the ellipse

r(�) = (3 cos �, 2 sin �).

Then, with c = (�, �),

�c (�) = − 1
2
(� − 3 cos �)2 − 1

2
(� − 2 sin �)2. (1.5)

The first two derivatives are � ′c (�) = −3� sin � + 2� cos � + 5 sin � cos �, and

� ′′c (�) = −3� cos � − 2� sin � + 10 cos2 � − 5.

Solving � ′(�) = � ′′(�) = 0 gives

� =

5

3
cos3 �, � = −5

2
sin3 �. (1.6)

That is, e(�) =
(

5
3

cos3 �, − 5
2

sin3 �
)

; this curve is shown in Figure 1.6, together with

the ellipse (notice that the ellipse is traversed anticlockwise, while the resulting

parametrization of the evolute is clockwise). Note that this evolute or discriminant

also has 4 cusps, like the ZCM above. We will see in later chapters that cusps occur

very often on discriminants for 2 parameter families of functions, and using the

theory of unfoldings we will explain why.

If c lies inside the evolute, the function �c has 4 critical points, all nondegenerate,

and if outside it has just 2. Indeed, using the symmetry of the ellipse if you take

c = (0, 0) it is easy to see the 4 points of the curve for which the normal line passes

through c. If, on the other hand, c lies on the evolute but not at one of the cusps,

then �c has precisely 3 critical points, of which one is degenerate. Finally, if c lies

at a cusp, �c has a ‘doubly’ degenerate critical point and a nondegenerate one. As

c varies from the interior of the evolute to the exterior, crossing at a regular point

(ie, not at a cusp) then two of the critical points will coalesce and then disappear,

1it is in fact the centre of curvature of the curve at r(�); the evolute was originally defined by

Huygens in the seventeenth century in his study of the pendulum, and it was later realised to be the

locus of centres of curvature.
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10 What’s it all about?

r(�)

e(�)

Figure 1.6 An ellipse with its evolute

just as they do for the fold family in Section 1.1 and the Zeeman Catastrophe

Machine in Section 1.3. The 4 cusps are interesting geometrically: they are points

on the evolute (centres of curvature) corresponding to points on the curve where

the curvature has a local maximum or minimum.

If the major and minor axes of the ellipse were closer in value (here they are

equal to 3 and 2 respectively), the evolute would be smaller, and in the limit as the

ellipse tends to a circle, so the evolute tends to a single point: the centre of the

circle. ✐

Applications of these ideas to the study of the geometry of curves and surfaces

can be found in two books [18] and [61]; there is also a brief discussion in Chapter

15 in this book.

One question arising from the two very different examples, the evolute and

Zeeman’s catastrophe machine, is why do the bifurcation curves or discriminants

have cusps? We will show in later chapters that this is very natural, given that we

are studying a 2–parameter family of functions. The fact that in both cases there is

only one variable � or � turns out not to be important: it’s the number of parameters

that is central.

These two examples are both variational problems (arising from looking for

critical points of functions), and such problems will be the study of the first part of

this book. Later we will study more general (non-variational) bifurcation problems,

but it will turn out that for two parameters, folds and cusps are still all that are to be

expected.
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