Singular Intersection Homology

Intersection homology is a version of homology theory that extends Poincaré duality and its applications to stratified spaces, such as singular varieties. This is the first comprehensive expository book-length introduction to intersection homology from the viewpoint of singular and piecewise linear chains. Recent breakthroughs have made this approach viable by providing intersection homology and cohomology versions of all the standard tools in the homology toolbox, making the subject readily accessible to graduate students and researchers in topology as well as researchers from other fields.

This text includes both new research material and new proofs of previously known results in intersection homology, as well as treatments of many classical topics in algebraic and manifold topology. Written in a detailed but expository style, this book is suitable as an introduction to intersection homology or as a thorough reference.

GREG FRIEDMAN is Professor of Mathematics at Texas Christian University. Professor Friedman's primary research is in geometric and algebraic topology, with particular emphases on stratified spaces and high-dimensional knot theory. He has given introductory lecture series on intersection homology at the University of Lille and the Fields Institute for Research in Mathematical Sciences. He has received grants from the National Science Foundation and the Simons Foundation.

Cambridge University Press 978-1-107-15074-4 — Singular Intersection Homology Greg Friedman Frontmatter <u>More Information</u>

NEW MATHEMATICAL MONOGRAPHS

Editorial Board Béla Bollobás, William Fulton, Frances Kirwan, Peter Sarnak, Barry Simon, Burt Totaro

All the titles listed below can be obtained from good booksellers or from Cambridge University Press. For a complete series listing visit www.cambridge.org/mathematics.

- 1. M. Cabanes and M. Enguehard Representation Theory of Finite Reductive Groups
- 2. J. B. Garnett and D. E. Marshall Harmonic Measure
- 3. P. Cohn Free Ideal Rings and Localization in General Rings
- 4. E. Bombieri and W. Gubler Heights in Diophantine Geometry
- 5. Y. J. Ionin and M. S. Shrikhande Combinatorics of Symmetric Designs
- 6. S. Berhanu, P. D. Cordaro and J. Hounie An Introduction to Involutive Structures
- 7. A. Shlapentokh Hilbert's Tenth Problem
- 8. G. Michler Theory of Finite Simple Groups I
- 9. A. Baker and G. Wüstholz Logarithmic Forms and Diophantine Geometry
- 10. P. Kronheimer and T. Mrowka Monopoles and Three-Manifolds
- 11. B. Bekka, P. de la Harpe and A. Valette Kazhdan's Property (T)
- 12. J. Neisendorfer Algebraic Methods in Unstable Homotopy Theory
- 13. M. Grandis Directed Algebraic Topology
- 14. G. Michler Theory of Finite Simple Groups II
- 15. R. Schertz Complex Multiplication
- 16. S. Bloch Lectures on Algebraic Cycles (2nd Edition)
- 17. B. Conrad, O. Gabber and G. Prasad *Pseudo-reductive Groups*
- 18. T. Downarowicz Entropy in Dynamical Systems
- 19. C. Simpson Homotopy Theory of Higher Categories
- 20. E. Fricain and J. Mashreghi The Theory of H(b) Spaces I
- 21. E. Fricain and J. Mashreghi The Theory of H(b) Spaces II
- 22. J. Goubault-Larrecq Non-Hausdorff Topology and Domain Theory
- 23. J. Śniatycki Differential Geometry of Singular Spaces and Reduction of Symmetry
- 24. E. Riehl Categorical Homotopy Theory
- 25. B. A. Munson and I. Volić Cubical Homotopy Theory
- 26. B. Conrad, O. Gabber and G. Prasad Pseudo-reductive Groups (2nd Edition)
- 27. J. Heinonen, P. Koskela, N. Shanmugalingam and J. T. Tyson Sobolev Spaces on Metric Measure Spaces
- 28. Y.-G. Oh Symplectic Topology and Floer Homology I
- 29. Y.-G. Oh Symplectic Topology and Floer Homology II
- 30. A. Bobrowski Convergence of One-Parameter Operator Semigroups
- 31. K. Costello and O. Gwilliam Factorization Algebras in Quantum Field Theory I
- 32. J.-H. Evertse and K. Györy Discriminant Equations in Diophantine Number Theory
- 33. G. Friedman Singular Intersection Homology
- 34. S. Schwede Global Homotopy Theory
- 35. M. Dickmann, N. Schwartz and M. Tressl Spectral Spaces
- 36. A. Baernstein II Symmetrization in Analysis
- 37. A. Defant, D. Garcia, M. Maestre and P. Sevilla-Peris *Dirichlet Series and Holomorphic Functions in High Dimensions*
- 38. N. Th. Varopoulos Potential Theory and Geometry on Lie Groups
- 39. D. Arnal and B. Currey Representations of Solvable Lie Groups

Singular Intersection Homology

GREG FRIEDMAN Texas Christian University

Cambridge University Press 978-1-107-15074-4 — Singular Intersection Homology Greg Friedman Frontmatter <u>More Information</u>

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107150744 DOI: 10.1017/9781316584446

© Greg Friedman 2020

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2020

A catalogue record for this publication is available from the British Library.

ISBN 978-1-107-15074-4 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press 978-1-107-15074-4 — Singular Intersection Homology Greg Friedman Frontmatter <u>More Information</u>

To Angie

Contents

Pre	face		<i>page</i> xiii
Not	ations a	and Conventions	xvii
1	Intro	1	
	1.1	What Is Intersection Homology?	1
	1.2	Simplicial vs. PL vs. Singular	9
	1.3	A Note about Sheaves and Their Scarcity	10
	1.4	GM vs. Non-GM Intersection Homology	11
	1.5	Outline	13
2	Strat	16	
	2.1	First Examples of Stratified Spaces	18
	2.2	Filtered and Stratified Spaces	20
		2.2.1 Filtered Spaces	20
		2.2.2 Stratified Spaces	24
		2.2.3 Depth	27
	2.3	Locally Cone-like Spaces and CS Sets	28
	2.4	Pseudomanifolds	34
	2.5	PL Spaces and PL Pseudomanifolds	38
		2.5.1 PL Spaces	39
		2.5.2 Piecewise Linear and Simplicial Pseudomanifold	s 42
	2.6	Normal Pseudomanifolds	48
	2.7	Pseudomanifolds with Boundaries	51
	2.8	Other Species of Stratified Spaces	55
		2.8.1 Whitney Stratified Spaces	55
		2.8.2 Thom–Mather Spaces	56
		2.8.3 Homotopically Stratified Spaces	58
	2.9	Maps of Stratified Spaces	60
	2.10	Advanced Topic: Intrinsic Filtrations	63
		2.10.1 Intrinsic PL Filtrations	69

viii		Contents			
	2.11 Advanced Topic: Products and Joins				
	2.11.1 Products of Intrinsic Filtrations				
3	Inter	Intersection Homology			
	3.1	Perversities	86		
		3.1.1 GM Perversities	87		
		3.1.2 Dual Perversities	89		
	3.2	Simplicial Intersection Homology	90		
		3.2.1 First Examples	93		
		3.2.2 Some Remarks on the Definition	104		
	3.3	PL Intersection Homology	107		
		3.3.1 PL Homology	108		
		3.3.2 A Useful Alternative Characterization of PL Chains	115		
		3.3.3 PL Intersection Homology	120		
		3.3.4 The Relation between Simplicial and PL Intersection			
		Homology	121		
	3.4	Singular Intersection Homology	128		
4	Basic	c Properties of Singular and PL Intersection Homology	135		
	4.1	Stratified Maps, Homotopies, and Homotopy equivalences	136		
	4.2	The Cone Formula			
	4.3	Relative Intersection Homology	146		
		4.3.1 Further Commentary on Subspace Filtrations	150		
		4.3.2 Stratified Maps Revisited	153		
		4.3.3 Reduced Intersection Homology and the Relative Cone			
		Formula	154		
	4.4 Mayer–Vietoris Sequences and Excision		157		
		4.4.1 PL Excision and Mayer–Vietoris	158		
		4.4.2 Singular Subdivision, Excision, and Mayer–Vietoris	163		
5	Mayer–Vietoris Arguments and Further Properties of Intersection Ho-				
	molo	gy	187		
	5.1	Mayer–Vietoris Arguments	188		
		5.1.1 First Applications: High Perversities and Normalization	194		
	5.2	Cross Products and the Künneth Theorem with a Manifold Factor			
		5.2.1 The Singular Chain Cross Product	199		
		5.2.2 The PL Cross Product	204		
		5.2.3 Properties of the Cross Product	209		
		5.2.4 Künneth Theorem when One Factor Is a Manifold	216		
	5.3	Intersection Homology with Coefficients and Universal Coefficient			
		Theorems	220		
		5.3.1 Definitions of Intersection Homology with Coefficients	220		
		5.3.2 Universal Coefficient Theorems	226		

			Contents	ix
	5.4	Equiva 5.4.1	alence of PL and Singular Intersection Homology on PL CS Sets Barycentric Subdivisions and Maps from PL Chains to	234
		5 4 9	Singular Chains	235
		5.4.2	The Isomorphism of PL and Singular Intersection Homology	237
	5.5		bgical Invariance	241
		5.5.1	which Perversities work? The Statement of the Theorem and Some Corollaries	242
		5.5.2	Proof of Topological Inversional	244
	56	J.J.J Einita	Concretion	249
6	J.0	CM Int		257
0	NOII-	GM III0 Motiv	ersection nonlology	202
	6.2	Definit	tions of Non-CM Intersection Homology	202
	0.2	6 2 1	First Definition of <i>IH</i>	200
		6.2.1	Second Definition of IH	200
		623	Third Definition of IH	209
		624	Non-GM Intersection Homology below the Top Perversity	273
		625	A New Cone Formula	273
		6.2.6	Relative Non-GM Intersection Homology and the Relative	271
		0.210	Cone Formula	275
	6.3	Proper	ties of $\mathbf{I}^{\bar{\mathbf{p}}}\mathbf{H}_{*}(\mathbf{X};\mathbf{G})$	276
		6.3.1	Basic Properties	277
		6.3.2	Dimensional Homogeneity	291
		6.3.3	Local coefficients	299
	6.4	A Gen	eral Künneth Theorem	302
		6.4.1	A Key Example: the Product of Cones	303
		6.4.2	The Künneth Theorem	313
		6.4.3	A Relative Künneth Theorem	319
		6.4.4	Applications of the Künneth Theorem	321
		6.4.5	Some Technical Stuff: the Proof of Lemma 6.4.2	325
	6.5	Advan	ced Topic: Chain Splitting	337
7	Inter	section	Cohomology and Products	353
	7.1	Interse	ection Cohomology	355
	7.2	Cup, C	Cap, and Cross Products	363
		7.2.1	Philosophy	363
		7.2.2	Intersection Homology Cup, Cap, and Cross Products	369
	7.3	Properties of Cup, Cap, and Cross Products.		
		7.3.1	Naturality	381
		7.3.2	Commutativity	392
		7.3.3	Unitality and Evaluation	395
		7.3.4	Associativity	404

Cambridge University Press 978-1-107-15074-4 — Singular Intersection Homology Greg Friedman Frontmatter <u>More Information</u>

х

Contents

		7.3.5	Stability	414
		7.3.6	Criss-Crosses	432
		7.3.7	Locality	452
		7.3.8	The Cohomology Künneth Theorem	461
		7.3.9	Summary of Properties	465
		7.3.10	Products on ∂ -pseudomanifolds	473
	7.4	Interse	ction Cohomology with Compact Supports	480
8	Poin	caré Dua	ality	498
	8.1	Orienta	ations and Fundamental Classes	498
		8.1.1	Orientation and Fundamental Classes of Manifolds	499
		8.1.2	Orientation of CS Sets	501
		8.1.3	Homological Properties of Orientable Pseudomanifolds	505
		8.1.4	Lack of Global Fundamental Classes for Subzero Perversities	521
		8.1.5	Invariance of Fundamental Classes	523
		8.1.6	Intersection Homology Factors the Cap Product	530
		8.1.7	Product Spaces	535
	8.2	Poinca	ré Duality	536
		8.2.1	The Duality Map	536
		8.2.2	The Poincaré Duality Theorem	540
		8.2.3	Duality of Torsion-Free Conditions	546
		8.2.4	Topological Invariance of Poincaré Duality	547
	8.3	Lefsch	etz Duality	549
		8.3.1	Orientations and Fundamental Classes	549
		8.3.2	Lefschetz Duality	558
	8.4	The Cu	p Product and Torsion Pairings	568
		8.4.1	Some Algebra	568
		8.4.2	The Cup Product Pairing	571
		8.4.3	The Torsion Pairing	574
		8.4.4	Topological Invariance of Pairings	587
		8.4.5	Image Pairings	590
	8.5	The Go	presky–MacPherson Intersection Pairing	596
		8.5.1	The Intersection Pairing on Manifolds	596
		8.5.2	The Intersection Pairing on PL Pseudomanifolds	604
		8.5.3	An Intersection Pairing on Topological Pseudomanifolds	
			and Some Relations of Goresky and MacPherson	609
9	Witt	Spaces a	and IP Spaces	613
	9.1	Witt ar	nd IP Spaces	614
		9.1.1	Witt Spaces	614
		9.1.2	IP Spaces	621
		9.1.3	Products and Stratification Independence	623

			Contents	xi
	9.2 Self-Pairings			
	9.3	Witt Si	Ignatures	632
		9.3.1	Definitions and Basic Properties	632
		9.3.2	Properties of Witt Signatures	638
		9.3.3	Novikov Additivity	643
		9.3.4	Perverse Signatures	647
	9.4	L-Clas	ses	648
		9.4.1	Outline of the Construction of <i>L</i> -Classes (without Proofs)	650
		9.4.2	Maps to Spheres and Embedded Subspaces	660
		9.4.3	Cohomotopy	666
		9.4.4	The <i>L</i> -Classes	669
		9.4.5	L-Classes in Small Degrees	673
		9.4.6	Characterizing the L-Classes	681
	9.5	A Surv	yey of Pseudomanifold Bordism Theories	689
		9.5.1	Bordism	689
		9.5.2	Pseudomanifold Bordism	691
10	Sugge	stions f	or Further Reading	703
	10.1	Backgr	ound, Foundations, and Next Texts	703
		10.1.1	Deeper Background	705
	10.2	Bordis	m	706
10.3 Characteristic Classes		teristic Classes	707	
	10.4 Intersection Spaces		708	
	10.5	Analyt	ic Approaches to Intersection Cohomology	708
		10.5.1	L ² -Cohomology	708
		10.5.2	Perverse Forms	709
	10.6	Stratifi	ed Morse Theory	710
10.7 Perverse Sheaves and the Decomposition Theorem		se Sheaves and the Decomposition Theorem	710	
	10.8	Hodge	Theory	711
	10.9	Miscel	laneous	712
Appe	ndix A	Algebi	ra	713
	A.1	Koszul	Sign Conventions	713
		A.1.1	Why Sign?	713
		A.1.2	Homological versus Cohomological Grading	714
		A.1.3	The Chain Complex of Maps of Chain Complexes	715
		A.1.4	Chain Maps and Chain Homotopies	716
		A.1.5	Consequences	717
	A.2	Some More Facts about Chain Homotopies		720
A.3 Shifts an		Shifts a	and Mapping Cones	723
		A.3.1	Shifts	723
		A.3.2	Algebraic Mapping Cones	723

xii		Contents	
A.4	A.4 Projective Modules and Dedekind Domains		
	A.4.1	Projective Modules	724
	A.4.2	Dedekind Domains	727
A.5	Linear	Algebra of Signatures	729
	A.5.1	Signatures of Nonsingular Pairings	733
	A.5.2	Signatures of Orthogonal Sums	735
	A.5.3	Antisymmetric Pairings	736
Appendix B	Appendix B An Introduction to Simplicial and PL Topology		
B.1	Simpli	Simplicial Complexes and Euclidean Polyhedra	
	B.1.1	Simplicial Complexes	740
	B.1.2	Euclidean Polyhedra	742
B.2	B.2 PL Spaces and PL Maps		
B.3	B.3 Comparing Our Two Notions of PL Spaces		
B.4 PL SubspacesB.5 Cones, Joins, and Products of PL SpacesB.6 The Eilenberg–Zilber Shuffle Triangulation of Products			754
			755
			756
	B.6.1	The Definition of the Eilenberg–Zilber Triangulation	757
	B.6.2	Realization of Partially Ordered Sets	758
	B.6.3	Products of Partially Ordered Sets and Their Product	
		Triangulations	760
	B.6.4	Triangulations of Products of Simplicial Complexes and	
		PL Spaces	763
	B.6.5	The Simplicial Cross Product	765
References			769
Glossary of	Symbol	s	781
Index			787

Preface

This book arose thanks to a short course the author was asked to give in Lille in 2013 as an introduction to intersection homology theory. Originally conceived as a set of written lecture notes, the project quickly grew into the more comprehensive volume that follows. The goal has been to provide a single coherent exposition of the basic PL (piecewise linear) and singular chain intersection homology theory as it has come to exist today. Older results have been given more detailed treatments than previously existed in the literature, and several newer, though likely not unexpected, topics have been newly developed here, such as intersection homology Poincaré duality and products over Dedekind rings, including \mathbb{Z} .

To say a word about our primary topic, though a more extensive introduction will be provided in Chapter 1, intersection homology was first developed by Mark Goresky and Robert MacPherson in the late 1970s and early 1980s in order to generalize to spaces with singularities some of the most significant tools of manifold theory, including Poincaré duality and signatures. Although originally introduced in the language of PL chain complexes, it was soon reformulated in terms of sheaf theory, and it was in this form that it quickly found much success, particularly in applications to algebraic geometry and representation theory. Early highlights in these directions include a key role in the proof of the Kazhdan-Lusztig conjecture, a singular variety version of the Weil conjectures, and generalizations to singular complex projective varieties of the "Kähler package" for smooth complex projective varieties, including a Lefschetz hyperplane theorem, a hard Lefschetz theorem, and Hodge decomposition and signature theorems¹. In the time since, intersection homology has exploded. As of 2017, Mathematical Reviews records 700 entries that mention intersection homology or intersection cohomology, and this jumps to over 1100 when including the closely related perverse sheaves, which developed out of intersection homology. Viewpoints have also proliferated. In addition to definitions via PL and singular chains and through sheaf theory, an analytic L^2 -cohomology formulation initially due to Jeff Cheeger developed concurrently to the work of Goresky and MacPherson, and another approach via what we might call perverse differential forms is the setting for some of the

¹ The book [140] by Kirwan and Woolf provides an excellent introduction to these applications of intersection homology.

Cambridge University Press 978-1-107-15074-4 — Singular Intersection Homology Greg Friedman Frontmatter <u>More Information</u>

xiv

Preface

most exciting current work in the field, providing a means to explore an intersection homology version of the rational homotopy type of a singular space. Each of these perspectives has its merits, and, as is often the case in mathematics, sometimes the most powerful results come by considering the interplay among different perspectives.

The intent of this book is to introduce the reader to the PL and singular chain perspectives on intersection homology. By this choice we do not mean at all to undervalue the other approaches. Rather, by sticking to the chain-theoretic context we hope to provide an introduction that will be readily accessible to the student or researcher familiar with the basics of algebraic topology without the need for the additional prerequisites of the sheaf-theoretic or more analytic formulations. This may then motivate the reader on to further study requiring more background; to facilitate this, we provide in Chapter 10 a collection of suggested references for the reader who wishes to pursue these other vantage points and their applications, including references for several excellent introductory textbooks and expositions. We also feel that the time is ripe for such a chain-based text given recent developments that allow for a thorough treatment of intersection homology duality via cup and cap products that completely parallels the modern approach to duality on manifolds as presented, for example, in Hatcher [125]. We provide such a textbook treatment for the first time here.

Prerequisites This book is intended to be as self-contained as possible, with the main prerequisite being a course in algebraic topology, particularly homology and cohomology through Poincaré duality. Some additional background in homological algebra may be useful throughout, and some familiarity with manifold theory and characteristic classes will serve as good motivation in the later chapters. In fact, we hope that this material might make for a good reading course for second- or third-year graduate students, as much of our development parallels and reinforces that of the standard tools of homology theory, though often the proofs need some modifications. The book also includes a number of sections, including the two appendices at the end, that provide some of the less standard background results in detail, as well as some expository sections regarding further directions and applications that there was not space to pursue here. When it is necessary to use facts from further afield, such as some occasional elementary sheaf theory or more advanced algebraic or geometric topology, we have attempted to provide copious references, with a preference for textbooks when at all possible. Our favored sources include topology texts by Hatcher [125], Munkres [181, 182], Dold [71], Spanier [220], Bredon [38], and Davis and Kirk [67]; books on PL topology by Hudson [130] and Rourke and Sanderson [198]; algebra books by Lang [147], Lam [146], and Bourbaki [30]; homological algebra books by Hilton and Stammbach [126], Weibel [238], and Rotman [197]; and introductions to sheaf theory by Bredon [37] and Swan [230].

Acknowledgments This work would likely not have been conceived without the kind invitation from David Chataur, Martin Saralegi, and Daniel Tanré to visit and lecture at Université Lille 1 and Université Artois. I thank those universities for their support, and I thank David,

Cambridge University Press 978-1-107-15074-4 — Singular Intersection Homology Greg Friedman Frontmatter <u>More Information</u>

Preface

Martin, and Daniel for the wonderful opportunity to visit and talk intersection homology with them and their students. I would also like to thank my colleagues at TCU who suffered through endless questions about background material and occasional lectures as I sorted things out. In particular, thanks to Scott Nollet, Loren Spice, Efton Park, Ken Richardson, and Igor Prokhorenkov. The book further benefited from conversations with Markus Banagl, Laurențiu Maxim, Jörg Schürmann, and Jonathan Woolf. My perpetual thanks go to my Ph.D. advisor, Sylvain Cappell, for first suggesting that intersection homology would be something I would find interesting to think about and for his continued support throughout my career. Most of all, I would like to thank my collaborator Jim McClure, without whom much of the work on intersection homology I have participated in over the past several years would never have occurred. In particular, the intersection (co)homology cup and cap products presented in this book owe their existence to Jim's deep insights and instincts. More specific thanks also to Jim for reading over various draft sections of the manuscript, for helping with a number of technical issues, and for suggesting additional results to be included.

Many of the diagrams in this book were typeset using the T_EX commutative diagrams package by Paul Taylor.

Support During the writing of this book, in addition to primary support from my home institution, Texas Christian University, I received support from a grant from the Simons Foundation (#209127 to Greg Friedman), a grant from the National Science Foundation (DMS-1308306), and funding from Université Lille 1 and Université Artois for my visits. I am grateful to all.

Notations and Conventions

We now describe some conventions, notational and otherwise, we attempt to use throughout the book, making no claim to complete consistency.

Spaces

- 1. Manifolds and ∂ -manifolds are usually denoted M or N. A manifold is a Hausdorff space that is locally homeomorphic to Euclidean space; we do not assume manifolds must be paracompact or second-countable. A ∂ -manifold² is a Hausdorff space that is locally homeomorphic to Euclidean space or Euclidean half-space $\{(x_1, \ldots, x_k) \in \mathbb{R}^k \mid x_1 \ge 0\}$; in other words, a ∂ -manifold is what is often called a "manifold with boundary." The boundary of a ∂ -manifold may be empty. "Manifold" will always mean a ∂ -manifold with empty boundary. There is also an empty manifold of every dimension.
- 2. Arbitrary spaces have letters from the end of the alphabet such as *Z*, though sometimes also other letters. The space with one point is occasionally denoted pt.
- 3. Open subsets get letters such as U, V, W.
- 4. Subsets will be denoted $A \subset X$, rather than $A \subseteq X$; in other words $A \subset X$ includes the possibility that A = X. The interior of A is denoted \mathring{A} and the closure is denoted \overline{A} .
- 5. Simplicial complexes will be given letters such as K, L. Subdivisions will generally be denoted by a prime, such as K'. We will often abuse notation and use K to represent both the simplicial complex (a space with a combinatorial structure as a union of simplices) and its underlying space as a topological space disregarding the extra structure. When we wish to emphasize the difference, for example in Appendix B, we will use |K| to denote the underlying space.

² We mostly avoid the phrase "manifold with boundary," which sounds as though it specifies some particular class of manifolds but which is really a generalization of the concept of "manifold." Furthermore, we take the view that a "manifold with boundary" that has a non-empty boundary is not a manifold! This is because points on the boundary fail to satisfy the property that they should have Euclidean neighborhoods, which we take as part of the definition of being a manifold. The other problem is that "manifold with boundary" implies that there is a boundary and it is tempting to think then that the boundary cannot be empty. As an alternative, some authors have taken to using the notation "∂-manifold" as a replacement for "manifold with boundary." This seems to avoid these issues as well as eliminate some clunky phrasing.

Cambridge University Press 978-1-107-15074-4 — Singular Intersection Homology Greg Friedman Frontmatter <u>More Information</u>

xviii

Notations and Conventions

- 6. When working with product spaces, we may write elements of $X \times Y$ as either (x, y) or $x \times y$. Product maps are usually written $f \times g$.
- 7. Generic maps between spaces will be denoted by letters such as f or g. The letter i, or variants such as i, generally denotes an inclusion. The map **d** is the diagonal map $\mathbf{d} : Z \to Z \times Z$, $\mathbf{d}(z) = (z, z)$.
- 8. While we will attempt to parenthesize fairly thoroughly, we will occasionally rely on a few simplifying conventions. In particular, expressions of the form A B should be understood as (A) (B). So, for example, $X \times Y A \times B$ means $(X \times Y) (A \times B)$ and not $X \times (Y A) \times B$, and $X K \cup L$ means $X (K \cup L)$.
- 9. For a compact space Z, the space cZ is the open cone $cZ = [0,1) \times Z/\sim$, where \sim is the relation $(0,w) \sim (0,z)$ for all $w, z \in Z$. We typically denote the vertex of a cone by v. Similarly, the closed cone is $\bar{c}Z = [0,1] \times Z/\sim$. More generally, for r > 0, we let $c_r Z = [0,r) \times Z/\sim$ and $\bar{c}_r Z = [0,r] \times Z/\sim$; in particular, $cZ = c_1 Z$. Then $c_r Z \subset \bar{c}_r Z \subset c_s Z \subset \bar{c}_s Z$ whenever r < s.
- 10. For a compact space Z, the (unreduced) suspension is $SZ = [-1,1] \times X/\sim$, where the relation \sim is such that $(-1,w) \sim (-1,z)$ and $(1,w) \sim (1,z)$ for any $w, z \in Z$. So $SZ = \overline{c}Z \cup_Z \overline{c}Z$.
- 11. When taking the product of a space with a Euclidean space, interval, or sphere, we usually put the Euclidean space, interval, or sphere on the left, e.g. $\mathbb{R} \times Z$ instead of $Z \times \mathbb{R}$. This has some ramifications for signs. For example, if ξ is a singular cycle in Z and $\bar{c}\xi$ denotes the singular cone on ξ in $\bar{c}Z$ (see Example 3.4.7), this is the convention that is consistent with adding the cone vertex as the first vertex and so gives us $\partial(\bar{c}\xi) = \xi$.
- 12. We use \amalg to denote disjoint union.
- 13. Filtered spaces (our main object of study) are generally denoted by capital letters near the end of the alphabet, in particular X (or Y when we talk about multiple filtered spaces at the same time); the filtrations are usually left implicit in the sense that we say "the filtered space X." When we need to refer to the filtration explicitly, we let X^i denote the *i*th *skeleton* of the filtration, and we let $X_i = X^i X^{i-1}$; see Section 2.2. The connected components of each $X^i X^{i-1}$ are called *strata*. The *formal dimension* of a filtered space is generically denoted *n* (or *m* for a second filtered space). When we wish to emphasize the formal dimension of X, we write $X = X^n$. The *codimension* of X^i in X^n is $codim(X^i) = n i$. If S is a stratum in $X^i X^{i-1}$, then $codim(S) = codim(X^i)$. Subspaces of filtered spaces, which inherit filtrations by intersection with the X^i , have letters like A or B, so we tend to have filtered pairs (X, A) or (Y, B).
- 14. If we wish to consider the underlying topological space of a filtered space X, i.e. we wish to explicitly disregard the filtration, we may write |X|.
- 15. The *singular locus* of a filtered space $X = X^n$ is defined to be X^{n-1} and can also be written Σ_X , or simply Σ if the space is clear. Strata contained in the singular locus are called *singular strata*.
- 16. Generic *strata* (see Section 2.2) of a filtered space have letters such as *S* and *T*. *Regular strata* are sometimes denoted *R*.

Cambridge University Press 978-1-107-15074-4 — Singular Intersection Homology Greg Friedman Frontmatter <u>More Information</u>

Notations and Conventions

- 17. The *links* occurring in locally cone-like spaces (see Section 2.3), in particular CS sets or stratified pseudomanifolds, are denoted *L* or, occasionally, ℓ . We let Lk(*x*) denote the *polyhedral link* of a point in a piecewise linear space, i.e. if *x* is contained in the piecewise linear space *X*, then Lk(*x*) is the unique PL space such that *x* has a neighborhood piecewise linearly homeomorphic to *c*Lk(*x*); see [198, Section 1.1].
- 18. If X is a piecewise linear space, we let \mathfrak{X} denote the filtered space with the underlying space of X but with its intrinsic PL filtration; see Section 2.10. Similarly, if X is a CS set, \mathfrak{X} will denote the underlying space of X with its intrinsic filtration as a CS set.

Algebra

- 1. *G* will always be an abelian group, *R* a commutative ring with unity. In some contexts, *R* will be assumed to be a Dedekind domain, though this will be established at the relevant time.
- 2. Subgroups (or submodules) will be denoted $H \subset G$, rather than $H \subseteq G$; in other words $H \subset G$ includes the possibility that H = G.
- 3. We use the standard notations for standard algebraic objects: ℤ for integers, ℚ for rational numbers, ℝ for real numbers (which also notates the *space* of real numbers, i.e. one-dimensional Euclidean space).
- 4. When working with *R*-modules in the context of a fixed ring *R*, we write Hom(*A*, *B*) and $A \otimes B$ rather than Hom_{*R*}(*A*, *B*) and $A \otimes_R B$.
- 5. Dedekind domains have cohomological dimension ≤ 1 (this follows from [197, Proposition 8.1] using that Dedekind domains are hereditary by definition [197, page 161]). Therefore, if *R* is a Dedekind domain, $\operatorname{Ext}_{R}^{n}(A, B) = 0$ for n > 1 and for any *R*-modules *A*, *B*. Hence, we simply write $\operatorname{Ext}(A, B)$ instead of $\operatorname{Ext}_{R}^{1}(A, B)$. Similarly, $\operatorname{Tor}_{R}^{n}(A, B) = 0$ for n > 1 and for any *R*-modules *A*, *B*; rather than $\operatorname{Tor}_{R}^{1}(A, B)$ we write A * B.
- 6. Generic purely algebraic chain complexes are denoted C_* , D_* , etc. Cohomologically graded complexes can be denoted C^* , D^* , etc.
- 7. For almost³ all chain complexes, the boundary maps are all denoted ∂ . For cohomologically graded complexes, we use *d* for the coboundary maps. If we wish to emphasize that ∂ is the boundary map of the chain complex C_* , we can write ∂_{C_*} , and analogously for coboundary maps of cochain complexes.
- 8. Elements of geometric chain complexes are typically denoted by lower-case Greek letters such as ξ, ζ, η , though we sometimes also use x, y, z. Note that we generally abuse notation by using the same symbol to refer to both a homology class and a chain representing it. For example, $\xi \in H_i(C_*)$ means that ξ is a homology class that we also think of as being represented by a cycle in C_i that we also denote ξ . In most contexts, this should not cause much confusion, though in those instances where confusion might reasonably occur, we use ξ just to denote the chain and $[\xi]$ to specify the homology class. We will indicate this notation specifically when it occurs. More generally, $[\cdot]$ indicates some
- ³ We will see an exception in Section 6.2 for $I^{\bar{p}}S_*(X)$.

xix

Cambridge University Press 978-1-107-15074-4 — Singular Intersection Homology Greg Friedman Frontmatter <u>More Information</u>

xх

Notations and Conventions

sort of equivalence class, so, depending on context, $[\xi]$ might reference a singular chain $\xi \in S_*(X)$ representing an element $[\xi] \in S_*(X, A)$ or an element $[\xi] \in H_*(X)$ or $[\xi] \in H_*(X, A)$. Similarly, if ξ is a simplicial chain, $[\xi]$ might denote the class in the PL chain complex $\mathfrak{C}_*(X)$ represented by ξ . See "Algebraic topology" notation item 5 below.

- 9. Elements of cochain complexes are denoted by lower-case Greek letters such as α, β, γ . Again, we typically abuse notation by using the same symbol to refer to both a cohomology class and a cochain representing it. For example, $\alpha \in H^i(C^*)$ means that α is a cohomology class that we also think of as being represented by a cocycle in C^i that we also denote α . In most contexts, this should not cause much confusion, though in those instances where confusion might reasonably occur, we use α just to denote the cochain and $[\alpha]$ to specify the cohomology class. We will indicate this notation specifically when it occurs. More generally, $[\cdot]$ indicates an equivalence class.
- 10. The connecting morphisms in long exact homology sequences are denoted ∂_* . The connecting morphisms in long exact cohomology sequences are denoted d^* .
- 11. Augmentation maps of chain complexes are denoted **a**; for example, we might have $\mathbf{a}: S_*(X) \to \mathbb{Z}$.
- 12. If x is an element of a chain or cochain complex, then we use |x| to indicate the degree x. For example, if $x \in C_i$ or $X \in C^i$, then⁴ |x| = i.

Algebraic topology

1. Δ^i denotes the standard geometric *i*-dimensional simplex. For definiteness, we can suppose that Δ^i is embedded in \mathbb{R}^i with vertices

$$(0,\ldots,0), (1,0,\ldots,0),\ldots, (0,\ldots,0,1).$$

By an "open simplex" or an "open face," we mean the interior of a simplex, e.g. the complement in Δ^i of the union of its faces of dimension < i.

- 2. Lower-case Greek letters such as σ , τ , and often others can denote either simplices in a simplicial complex or singular simplices, depending on context. The symbol $\mathring{\sigma}$ denotes an open simplex.
- 3. Lower-case Greek letters such as ξ and η will typically be used for chains and α and β will typically be used for cochains.
- 4. If ξ is a chain, then we use |ξ| to indicate its support. If ξ is a simplicial chain, this is the union of the simplices appearing in ξ, while if ξ is singular it is the union of the images of the singular simplices of ξ. If σ is an oriented simplex in a simplicial complex, then we will typically write σ instead of |σ| unless we really need to emphasize the notion of σ as a space. Note that |ξ| might also indicate the degree of ξ, depending on context.

⁴ Technically, this is not quite the right thing to do as the standard equivalence between homological and cohomological gradings tells us that the notation C^i should be equivalent to the notation C_{-i} . However, matters of degree will arise only when working with signs, and so |x| will really only have significance mod 2. Therefore, we will live with this inconsistency.

Cambridge University Press 978-1-107-15074-4 — Singular Intersection Homology Greg Friedman Frontmatter <u>More Information</u>

Notations and Conventions

- 5. Simplicial chain complexes are denoted C_{*}(X), singular chain complexes are denoted S_{*}(X), PL chain complexes are denoted C_{*}(X). When there are subspaces or coefficients involved, the notations look like C_{*}(X, A; G) for a subspace A and a coefficient group G. We use the same notation H_{*}(X) for both homology groups H_{*}(C_{*}(X)) or H_{*}(S_{*}(X)), letting context determine which is meant. Since simplicial and PL chains often occur in the same context, we use S_{*}(X) for H_{*}(C_{*}(X)).
- 6. If $f : X \to Y$ is a map of spaces, we abuse notation by letting f also denote both the induced chain maps of chain complexes defined on the spaces and the induced maps on homology, e.g. we write $f : S_*(X) \to S_*(Y)$ and $f : H_*(X) \to H_*(Y)$. The dualized maps of cochain complexes and cohomology groups are denoted f^* , e.g. $f^* : S^*(Y) \to S^*(X)$ and $f^* : H^*(Y) \to H^*(X)$. Similarly, if $f : C_* \to D_*$ is a purely algebraic map of chain complexes of *R*-modules, we also write $f : H_*(C_*) \to H_*(D_*)$ for the induced homology map and $f^* : H^*(\text{Hom}(D_*, R)) \to H^*(\text{Hom}(C_*, R))$ for the induced cohomology map.
- 7. For Mayer–Vietoris sequences, the map $H_*(U) \oplus H_*(V) \to H_*(U \cup V)$ will take (ξ, η) to $\xi + \eta$. Therefore, the map $H_*(U \cap V) \to H_*(U) \oplus H_*(V)$ will take ξ to $(\xi, -\xi)$.
- 8. The cross product chain map $S_*(X) \otimes S_*(Y) \to S_*(X \times Y)$ (and its variants) can be written as either ε or \times . For example, we tend to write $\varepsilon : S_*(X) \otimes S_*(Y) \to S_*(X \times Y)$, but given two specific chains x, y, we may write $x \times y$. Unfortunately, it is common in algebraic topology to use the symbol \times for both chain cross products and cochain cross products. We perpetuate this ambiguity, though context should make clear which is meant.
- 9. We use \smile for cup products and \frown for cap products. This distinguishes them from \cup and \cap for unions and intersections.
- 10. Fundamental classes are denoted Γ , with a decoration such as Γ_X if it is necessary to keep track of the space *X*.
- 11. The Poincaré duality map, consisting of a signed cap product with a fundamental class, is denoted \mathcal{D} .
- 12. We use $1 \in S^0(X)$ to denote the cocycle that evaluates to 1 on every 0-simplex. This is sometimes called the augmentation cocycle.

Intersection homology and cohomology

- 1. Perversities (see Section 3.1) are denoted $\bar{p}, \bar{q}, \bar{r}$, etc. In general, perversities will always have bars, with the exception⁵ of the special perversities Q that occur in the discussion of the Künneth theorem; see Section 6.4.
- 2. $\overline{0}$ denotes the perversity that always evaluates to 0. We write \overline{t} for the top perversity: $\overline{t}(S) = \operatorname{codim}(S) 2$. By \overline{m} and \overline{n} we denote respectively the lower middle perversity

xxi

⁵ This special case is partly historical, because there is little risk of confusion since Q is not used for anything else, and partly idiosyncratic. Probably we should use \overline{Q} .

Cambridge University Press 978-1-107-15074-4 — Singular Intersection Homology Greg Friedman Frontmatter <u>More Information</u>

xxii

Notations and Conventions

and upper middle perversity, i.e.

$$\bar{m}(S) = \left\lfloor \frac{\operatorname{codim}(S) - 2}{2} \right\rfloor$$
(round down),
$$\bar{n}(S) = \left\lceil \frac{\operatorname{codim}(S) - 2}{2} \right\rceil$$
(round up).

- 3. For a perversity \bar{p} , we let $D\bar{p}$ be the *dual* or *complementary* perversity with $D\bar{p}(S) = \bar{t}(S) \bar{p}(S)$ for all singular strata *S*; see Definition 3.1.7.
- 4. Throughout the first part of the book, simplicial, PL, and singular perversity \bar{p} intersection chain complexes are written $I^{\bar{p}}C^{GM}_*(X)$, $I^{\bar{p}}\mathfrak{C}^{GM}_*(X)$, $I^{\bar{p}}S^{GM}_*(X)$, with corresponding homology groups $I^{\bar{p}}H^{GM}_*(X)$, $I^{\bar{p}}\mathfrak{H}^{GM}_*(X)$, $I^{\bar{p}}H^{GM}_*(X)$. The GM here stands for "Goresky–MacPherson." In Chapter 6, we introduce the variant "non-GM" intersection homology and the notation becomes simply $I^{\bar{p}}C_*(X)$, $I^{\bar{p}}\mathfrak{C}_*(X)$, and $I^{\bar{p}}S_*(X)$ with corresponding homology groups $I^{\bar{p}}H_*(X)$, $I^{\bar{p}}\mathfrak{H}_*(X)$, and $I^{\bar{p}}K_*(X)$.
- 5. When we introduce non-GM intersection homology, the definition will use a modified boundary map that we write as $\hat{\partial}$; see Section 6.2.1.
- 6. For intersection cohomology, we raise the index and lower the perversity marking, e.g. $I_{\bar{p}}S^*(X)$ and $I_{\bar{p}}H^*(X)$. Lowering the perversity symbol has no intrinsic meaning; it is meant as a further distinguishing aid between homology and cohomology.
- 7. We write the intersection product, which appears primarily in Section 8.5, with the symbol \pitchfork . Note that this differs from the use of this symbol in the early intersection homology literature, such as [105], where $A \Uparrow B$ typically means A and B are in (stratified) general position. In [105], the intersection product is written with \cap , but for us this risks confusion with the cap product. In other sources the intersection product of chains is sometimes written $\xi \bullet \eta$ or $\xi \cdot \eta$. We prefer to utilize \Uparrow as the intersection pairing and to state transversality in words.

Miscellaneous conventions

Signs

- 1. We utilize throughout the Koszul sign conventions, so that interchange of elements of degrees *i* and *j* usually results in a sign $(-1)^{ij}$. See the Appendix A.1 for details.
- 2. The standard exception to the Koszul rule, necessary for evaluation to be a chain map, is that the sign occurring in the coboundary map of the chain complex $E^* = \text{Hom}^*(C_*, D_*)$ has the form

$$(d_E^* f)(c) = \partial_{D_*}(f(c)) - (-1)^{|f|} f(\partial_{C_*}(c))$$

for $c \in C_*$ and $f \in \text{Hom}^*(C_*, D_*)$. In particular, if $\alpha \in \text{Hom}^i(C_*, R) = \text{Hom}(C_i, R)$, then $df = (-1)^{i+1} f \partial$.

3. The connecting morphisms of long exact homology sequences have degree -1 and so can generate signs upon interchanges.

Cambridge University Press 978-1-107-15074-4 — Singular Intersection Homology Greg Friedman Frontmatter <u>More Information</u>

Notations and Conventions

xxiii

Identity map

The expression id is used for the identity function. It can be either a topological or algebraic identity. Context will usually make clear which identity function is meant, though we can make it precise with subscripts such as $id_X : X \to X$ or $id_{C_*} : C_* \to C_*$.

Parentheses

- 1. When a function f acts on an element x of a set, group, etc., we generally write f(x). The standard exception will be boundary maps ∂ acting on a chain ξ , which we will usually write as $\partial \xi$.
- 2. To avoid the ambiguity inherent in writing expressions such as $\partial \xi \otimes \eta$, we will write either $\partial(\xi \otimes \eta)$ or $(\partial \xi) \otimes \eta$, as appropriate. We also use $\xi \otimes \partial \eta$, as there is no ambiguity here.
- 3. When parentheses are omitted, expressions compile from the right. For example, if $f: X \to Y$ and $g: Y \to Z$, then, as usual, gf(x) means g(f(x)). As a more complex example, $\Phi(id \otimes \beta)\partial(\xi \otimes \eta)$ means $\Phi((id \otimes \beta)(\partial(\xi \otimes \eta)))$.
- 4. We will use an obnoxious number of parentheses to describe spaces as clearly as possible. As noted in "Spaces" notation, item 8 above, one place where we will sometimes avoid this is when considering complements.