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Introduction

Let us begin with some motivation, followed by some general remarks about the structure

of this book and what can be found (and not found!) in it.

1.1 What Is Intersection Homology?

Perhaps the most significant result about the topology of manifolds is the Poincaré Duality

Theorem: If M is a closed connected oriented n-dimensional manifold and Γ ∈ Hn(M) � Z

is a generator, then the cap product ⌢ Γ : Hi (M) → Hn−i (M) is an isomorphism for all

i. There are more general versions with more bells and whistles, but, in any form, Poincaré

duality, and related invariants such as signatures and L-classes, is a fundamental tool in the

study and classification of manifolds.

Unfortunately, Poincaré duality fails in general for spaces that are not manifolds. In fact,

it is enough for a space to have just one point that is not locally Euclidean. For example, let

Sn∨Sn be the one-point union of two n-dimensional spheres, n > 0. Then H0(Sn∨Sn) � Z

but Hn(Sn ∨ Sn) � Z ⊕ Z. Or, as a slightly more substantive example, one where we

cannot simply pull the two pieces apart, consider the suspended torus ST2 (Figure 1.1).

This three-dimensional space has two “singular points,” each of which has a neighborhood

homeomorphic to the cone on the torus cT2, and the cone point of cT2 does not have a

neighborhood homeomorphic to R3. Perhaps the easiest way to show this also illustrates

the power of algebraic topology: If we let v be the cone point of cT2, then, as cones are

contractible, the long exact sequence of the pair and homotopy invariance of homology give

us

H2(cT2, cT2 − {v}) � H1(cT2 − {v}) � H1(T2) � Z ⊕ Z.

But if v has a neighborhood homeomorphic to R3, then by excision we would have

H2(cT2, cT2 − {v}) � H2(R3,R3 − {v}) � H1(R3 − {v}) � H1(S2) � Z.
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2 Introduction

So ST2 is not a manifold, and routine computations show that

H3(ST2) = Z, H3(ST2) = Z,

H2(ST2) = Z ⊕ Z, H2(ST2) = Z ⊕ Z,

H1(ST2) = 0, H1(ST2) = 0,

H0(ST2) = Z, H0(ST2) = Z.

So, for example, H2(ST2) � H1(ST2). Poincaré duality fails.

Figure 1.1 The suspended torus ST 2.

But spaces with singularities, points that do not have Euclidean neighborhoods, are both

important and not always all that pathological. Many of them, such as our suspension

example, possess dense open subsets that are manifolds. For example, if we remove the

two suspension points from ST2 we have (0,1) × T2, a manifold. Much more significant

classes of examples come by considering algebraic varieties and orbit spaces of manifolds

and varieties by group actions. In general such spaces may have singularities, and they will

not necessarily just be isolated points. But with some reasonable assumptions (for example,

assuming the group actions are nice enough or that the varieties are complex irreducible –

see Section 2.8), such spaces will contain dense open manifold subsets, and, in fact, they

will be filtered by closed subsets

X = Xn ⊃ Xn−1 ⊃ · · · ⊃ X0 ⊃ X−1
= ∅

in such a way that each Xk − Xk−1 will be a manifold or empty. Such filtrations of spaces

may be in some way intrinsic to the space (Figure 1.2), or they may be imposed by some

other consideration such as the desire to study a manifold together with embedded subspaces

(Figure 1.3).

The connected components of the Xk − Xk−1 are called strata. When k < n, we say

they are singular strata, even though, depending on the choice of stratification, they may

contain points with Euclidean neighborhoods. The subspace Xn−1, which is the union of

the singular strata, is also called the singular locus or singular set and denoted Σ. The

components of Xn − Xn−1
= X − Σ are called regular strata. It is usually too much to ask
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1.1 What Is Intersection Homology? 3

Figure 1.2 The twice suspended torus X = S(ST 2). This space has a natural filtration in which

X0 comprises the suspension points of the second suspension, X1
= X2

= X3 is the suspension

of the suspension points of the first suspension, and X4
= X. Note that X0 is a 0-manifold,

X1 − X0 is two open intervals, X2 − X1
= X3 − X2

= ∅, and X4 − X3
� (−1, 1) × (−1, 1) ×T 2.

Figure 1.3 A manifold embedded in the ambient manifold S3 (not shown).

for something like a tubular neighborhood around a singular stratum, i.e. a neighborhood

homeomorphic to a fiber bundle, but, perhaps again with some additional conditions, the

“normal behavior” along singular strata will be locally uniform. A typical condition is that

a point x ∈ Xk − Xk−1 should have a neighborhood U of the form U � Rk × cL, where

L is a compact filtered space and such that the homeomorphism takes Rk × {v}, again

letting v be the cone point, to a neighborhood of x in Xk − Xk−1. For the remainder of this

introductory discussion, we will limit ourselves to discussing the class of stratified spaces

called (stratified) pseudomanifolds, defined formally in Section 2.4, which possess all of

these nice local properties and which is a broad enough class to encompass all irreducible

complex analytic varieties and all connected orbit spaces of smooth actions of compact Lie

groups on manifolds. For simplicity of discussion, we also assume through this introduction

that all spaces are compact, connected, and oriented.

Given all the manifold structure present and the other good behaviors of such spaces,
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4 Introduction

it is reasonable to ask whether there might be some way to recover some version of

Poincaré duality after all. This is precisely what Mark Goresky and Robert MacPherson

did in [105] by introducing intersection homology. Intersection homology is defined by

modifying the definition of the homology groups H∗(X) so that only chains satisfying

certain extra geometric conditions are allowed. These geometric conditions are governed by

a perversity parameter p̄, which assigns an integer to each singular stratum of the space. The

result is the perversity p̄ intersection chains I p̄C∗(X) and their homology groups I p̄H∗(X).

Furthermore, to each perversity p̄ there is a complementary dual perversity Dp̄, and Goresky

and MacPherson showed that, given certain assumptions on X and p̄, there are intersection

pairings

I p̄Hi (X) ⊗ IDp̄Hn−i (X) → Z

that become nonsingular over the rationals, i.e. after tensoring everything with Q.

Let us provide a rough sketch of the basic idea of how and why this all works. We will

be very loose about the specific details here, but more about this material and the original

construction of the Goresky–MacPherson intersection pairing can be found in Section 8.5

and, of course, in [105].

To get at the idea, we must first ask what it is that makes manifolds so special. One

consequence of their locally Euclidean nature is that it is possible to take advantage of

general position: If Mn is a smooth manifold and Pp and Qq are two smooth submanifolds,

then it is possible to perturb one of P or Q so that the intersection P ∩ Q will be a

manifold of dimension p + q − n. In particular, we can find a Euclidean neighborhood Ux

of any point x ∈ P ∩ Q so that the triple (U,P ∩ U,Q ∩ U) is homeomorphic to the triple

(Rn,Rp × {0}, {0} × Rq), with the intersection of the two subspaces having dimension

p+q−n and providing a Euclidean neighborhood of x in P∩Q; see e.g. [38, Section II.15].

Furthermore, if M , P, and Q are all oriented, it is possible to orient P∩Q by a construction

involving bases for these local vector spaces [38, Section VI.11.12]1 . These ideas can be

extended so that, if ξ and η are two chains in M (simplicial, piecewise linear, or singular)

that satisfy an appropriate notion of general position, then there is defined an intersection

ξ ⋔ η of degree deg(ξ)+deg(η)−n. This notion yields a partially-defined product on chains

⋔ : Ci (M) ⊗ Cj (M) → Ci+j−n(M). It is not fully defined because we cannot meaningfully

intersect chains that are not in general position, just as the intersection of two submanifolds

not in general position will not generally be a manifold. However, this intersection pairing

is well defined as a map ⋔ : Hi (M) ⊗ Hj (M) → Hi+j−n(M) because any two cycles can be

pushed into general position without changing their homology classes, and the homology

class of the resulting intersection does not depend on the choices. Of particular note are

the products ⋔ : Hi (M) ⊗ Hn−i (M) → H0(M) because composing with the augmentation

map a then yields a bilinear pairing ⋔ : Hi (M) ⊗ Hn−i (M) → H0(M)
a
−→ Z. As any

homomorphism to Z must take any element of finite order to 0, this intersection pairing

1 Technically, what we have described here is transversality, while general position is simply the requirement in
an n-manifold that a p-manifold and a q-manifold meet in a subspace of dimension ≤ p + q − n.
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1.1 What Is Intersection Homology? 5

descends to a map Hi (M)/Ti (M) ⊗ Hn−i (M)/Tn−i (M) → Z, where we let T∗(M) denote

the torsion subgroup of H∗(M).

What does this have to do with Poincaré duality? If M is a closed oriented n-manifold,

then Poincaré duality and the Universal Coefficient Theorem together yield isomorphisms

Hi (M) � Hn−i (M) � Hom(Hn−i (M),Z) ⊕ Ext(Hn−i−1(M),Z).

Some elementary homological algebra then allows us to derive from this an isomorphism

Hi (M)/Ti (M) � Hom(Hn−i (M)/Tn−i (M),Z).

Some slightly more elaborate homological algebra also leads to an isomorphism

Ti (M) � Hom(Tn−i−1(M),Q/Z).

Applying the adjunction relation, these two isomorphisms can be interpreted as nonsingular

bilinear pairings

Hi (M)/Ti (M) ⊗ Hn−i (M)/Tn−i (M) → Z,

Ti (M) ⊗ Tn−i−1(M) → Q/Z.

The first of these turns out to be precisely the intersection pairing! And the second is the

closely related torsion linking pairing. If ξ ∈ Ci (M) is a cycle with kξ = ∂ζ for some k ∈ Z,

k � 0, then the linking pairing of ξ ∈ Ti (M) with η ∈ Tn−i−1(M) can be computed as 1/k

times the intersection number of ζ with η, assuming the chains are all in general position.

This number is well defined in Q/Z.

Prior to the invention of the modern version of cohomology, Poincaré duality was formu-

lated in these terms. These days, most readers will be more familiar with the nonsingular

cup product pairing Hi (M)/T i (M) ⊗ Hn−i (M)/Tn−i (M)
⌣
−−→ Z, which turns out to be iso-

morphic to the intersection pairing via the Poincaré duality isomorphisms. In general, cup

products are simpler to define than intersection products; they are defined at the cochain

level Ci (M) ⊗ C j (M)
⌣
−−→ Ci+j (M), and, perhaps most importantly, the cup product can

be defined on any space, though in general we do not obtain a nonsingular pairing. The

only downside to the cup product is that it obfuscates this beautiful geometric interpretation

of Poincaré duality, an interpretation that will allow us to see clearly what goes wrong for

spaces that are not manifolds.

So, let us return to spaces with singularities. As a simple example, consider X = M1∨M2,

the wedge of two n-manifolds, n > 2. In a manifold of dimension n > 2, any two curves

can be perturbed to be disjoint as 1 + 1 − n < 0. But in X = M1 ∨ M2, any two curves that

pass through the wedge point v cannot be separated (unless one only intersects {v} at an

endpoint). Furthermore, even if n = 2 and ξ and η are two 1-chains that have an isolated

intersection at v, the lack of a local Euclidean neighborhood makes it unclear how to orient

the intersection point, which is a necessary step in defining an intersection product (Figure

1.4). So we see that singularities are not compatible with having well-defined intersection

products.
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6 Introduction

Figure 1.4 A failure of general position. What’s the intersection number of the two curves

depicted?

Or are they? The fundamental insight of Goresky and MacPherson was that if chains

don’t intersect well at singularities, perhaps they shouldn’t be allowed to interact with the

singularities too much. In fact, roughly stated, the allowability condition that a chain ξ must

satisfy to be a perversity p̄ intersection chain says that, if S is any singular stratum of an

n-dimensional space X and if S has dimension k and ξ is an i-chain with support |ξ |, then

dim( |ξ | ∩ S) ≤ i + k − n + p̄(S), (1.1)

and a similar condition must hold for ∂ξ. There is a way to make this precise with singular

chains, but for now the reader will be safe imagining simplicial chains to make better

sense of these dimension requirements. Without the p̄(S) summand, inequality (1.1) would

be precisely the requirement that |ξ | and S be in general position if X were a manifold.

The p̄(S) term allows for some deviation from the strict general position formula; hence

perversity. The complex of chains satisfying these conditions is the perversity p̄ intersection

chain complex I p̄C∗(X), and the resulting homology groups I p̄H∗(X) are the perversity p̄

intersection homology groups.

Now suppose ξ is a p̄-allowable i-chain, i.e. ξ ∈ I p̄Ci (X), and that η is a q̄-allowable

j-chain. We will also suppose that there is a perversity r̄ such that for each singular

stratum S we have p̄(S) + q̄(S) ≤ r̄ (S) ≤ t̄(S), where t̄ is the top perversity defined by

t̄(S) = codim(S) − 2 = dim(X) − dim(S) − 2. Lastly, we suppose that our space X is a

stratified pseudomanifold and that ξ and η are in stratified general position, which means

that they should satisfy the general position inequality within each singular stratum:

dim(S ∩ |ξ | ∩ |η |) ≤ dim(S ∩ |ξ |) + dim(S ∩ |η |) − dim(S).

With these assumptions, it is possible to define an intersection ξ ⋔ η that is an r̄-allowable

i + j − n chain! Furthermore, work of Clint McCrory [170, 171] shows that it is possible

to push any p̄-allowable cycle ξ and q̄-allowable cycle η into stratified general position

and in such a way that the resulting homologies between cycles also satisfy the respective

allowability conditions. We therefore arrive at a map

⋔ : I p̄Hi (X) ⊗ I q̄Hj (X) → I r̄Hi+j−n(X),

generalizing the intersection product for manifolds. If q̄ is the complementary perversity

Dp̄, which is defined so that p̄(S) +Dp̄(S) = t̄(S) = codim(S) − 2, then by composing with
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1.1 What Is Intersection Homology? 7

an augmentation map we get a pairing

I p̄Hi (X) ⊗ IDp̄Hn−i (X)
⋔
−→ I t̄H0(X)

a
−→ Z.

The intersection homology Poincaré Duality Theorem of [105] says that this pairing becomes

nonsingular when tensored withQ. If M is a manifold (unstratified), the perversity conditions

become vacuous, and this pairing reduces to the intersection pairing over Z, which is

nonsingular when tensored with Q.

To give an idea about why this pairing works after having argued that intersection pairings

are not so compatible with singularities, notice that if ξ ⋔ η is a t̄-allowable 0-chain then

its intersection with the singular stratum S must satisfy

dim(|ξ ⋔ η | ∩ S) ≤ 0 − codim(S) + t̄(S) = −2.

So, in other words, |ξ ⋔ η | must be contained in the dense manifold part of X . In fact,

with a bit more work, the allowability and stratified general position conditions imply that

|ξ | ∩ |η | ⊂ X − Σ, the dense submanifold of X . So the bad behavior discussed previously

cannot happen because the intersection of chains of complementary dimension and comple-

mentary perversity is forced to happen in the nice manifold portion of the space, not at the

singularities. If ξ and η do not have complementary dimensions, it is possible that |ξ | ∩ |η |

might have a nontrivial intersection with Σ, but the r̄-allowability of ξ ⋔ η shows that such

intersections within the singular locus are carefully controlled by the perversity data.

Here is another important motivating example that provides some idea of why intersection

homology Poincaré duality might work out. Let M be a compact oriented n-dimensional

manifold with boundary ∂M � ∅. Let X = M/∂M . So we can think of X as M with its

boundary collapsed to a point or, up to homeomorphism, it is M with the closed cone c̄(∂M)

adjoined, X � M ∪∂M c̄(∂M). If we let v be the cone point, then v will not in general have

a Euclidean neighborhood unless, for example, ∂M � Sn−1. So it is natural to stratify X by

{v} ⊂ X , and any perversity on X is determined by the single value p := p̄({v}). Without

working carefully through the details here, the basic idea is that if i is small compared

to a value depending on p, then the allowability condition (1.1) will prevent i-chains in

I p̄Ci (X) from intersecting v. So the low-dimensional chains behave as though the cone

point is not there, and we get I p̄Hi (X) � Hi (X − {v}) � Hi (M). On the other hand, if i

is large enough then the allowability condition will be satisfied for any i-chain, noting that

dim( |ξ | ∩ {v}) ≤ 0 because v is a point, and so all i-chains can be utilized. Therefore,

I p̄Hi (X) � Hi (X), and so I p̄Hi (X) � Hi (M, ∂M) if i > 0. It turns out that there is only

one middle dimension in which there is a transition between these behaviors, and in that

dimension we get I p̄Hi (X) � im(Hi (M) → Hi (M, ∂M)). Altogether, the precise statement

works out as follows, assuming p < n − 1:

I p̄Hi (X) �




Hi (M, ∂M), i > n − p − 1,

im(Hi (M) → Hi (M, ∂M)), i = n − p − 1,

Hi (M), i < n − p − 1.
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8 Introduction

But now recall that the Lefschetz Duality Theorem for manifolds with boundary provides a

duality isomorphism⌢ Γ : Hi (M) → Hn−i (M, ∂M), and, modulo torsion, this can also be

partially interpreted in terms of a nonsingular intersection pairing Hi (M)⊗Hn−i (M, ∂M) →

H0(M) → Z, with the geometric intersections occurring in the interior of M . Lefschetz

duality also implies a nondegenerate intersection pairing among the groups im(Hi (M) →

Hi (M, ∂M)); see Section 8.4.5 for more details. As we vary the perversity, intersection

homology of X provides all of these groups! And the duality between the perversity p̄ and

its dual Dp̄ positions the behavioral transitions in complementary dimensions: Notice that

the dual Dp̄ takes the value Dp̄({v}) = n−2−p, so indeed (n−p−1)+(n−(n−2−p)−1) = n.

So the intersection homology pairings generate the Lefschetz duality pairings as special

cases!

One seeming deficiency in the intersection homology groups is that the intersection

pairing I p̄Hi (X) ⊗ IDp̄Hn−i (X) → Z is not just between complementary dimensions but

between complementary perversities. So even when n = 2k, we do not necessarily have a

middle-dimensional pairing of a group with itself. In manifold theory, if n = 2k then such

self-pairings Hk (M) ⊗ Hk (M) → Z are symmetric for k even and antisymmetric for k odd,

and such pairings possess their own algebraic invariants, such as the signature for k even, that

play a key role in manifold classification. Given a version of Poincaré duality for stratified

spaces, such invariants are the desired consequence. In general, however, there is no self-

complementary perversity such that p̄ = Dp̄. However, there are two dual perversities, m̄ and

n̄ = Dm̄, called the lower and upper middle perversities, and these are as close as possible.

If the pseudomanifold X satisfies certain local intersection homology vanishing conditions,

then Im̄H∗(X) and I n̄H∗(X) will be isomorphic and we do get a self-pairing. Already in

[105], Goresky and MacPherson observed that this is the case for spaces stratifiable by

strata only of even codimension, and this includes complex varieties. Important broader

classes of such spaces were introduced later, including Witt spaces by Paul Siegel [218]

and IP spaces(intersection homology Poincaré spaces) by William Pardon [187]. As is the

signature for manifolds, the intersection homology signature (and, in fact, a more refined

invariant – the class of the intersection pairing in the Witt group) is a bordism invariant

of such spaces, and this has ramifications toward the geometric representation of certain

generalized homology theories, including ko-homology and L-homology, by bordisms of

stratified spaces. This fact can also be used to construct for such spaces a version of the

characteristic L-classes in ordinary homology. We provide an exploration of these topics in

our culminating chapter, Chapter 9.

Another seeming shortcoming of intersection homology duality is that the intersection

pairing is in general only nonsingular after tensoring with Q. Over Z, the map I p̄Hi (X) →

Hom(IDp̄Hn−i (X),Z) adjoint to the intersection pairing is injective, making the pairing

nondegenerate, but it is not necessarily an isomorphism and so the pairing is not necessarily

nonsingular. But, in fact, this must be the most we can hope for in general, as the intersection

pairing on the groups im(Hi (M) → Hi (M, ∂M)) for a manifold only need be nondegenerate,

not necessarily nonsingular, and we have already seen that this occurs as a special case of
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1.2 Simplicial vs. PL vs. Singular 9

intersection homology duality2 . Yet there are local “torsion-free” conditions due to Goresky

and Siegel [111] that can be imposed on a space to imply nonsingularity of the pairing over

Z, as well as the existence of nonsingular torsion linking pairings analogous to those for

manifolds. More recent work on such spaces has developed intersection cohomology and

cup and cap products, so that now intersection Poincaré duality can also be expressed as an

isomorphism of the form⌢ Γ : Ip̄Hi (X) → IDp̄Hn−i (X). This formulation was introduced

with field coefficients in [100], for which the torsion-free conditions are automatic, and is

developed here in Chapters 7 and 8 over more general rings, including Z.

1.2 Simplicial vs. PL vs. Singular

As the reader should be aware from an introductory algebraic topology course, there are

several ways to define homology groups on a space, and, assuming the space is nice enough,

those definitions that the space admits will yield isomorphic homology groups. Each such

definition has its own advantages and disadvantages: homology via CW complexes is

difficult to set up technically but then often allows for the simplest computations; simplicial

homology is defined combinatorially and very amenable to computations by computer but

enforces a somewhat rigid structure on spaces that can make it difficult to prove theorems

or work with subspaces; singular homology is defined on arbitrary spaces and is often the

best setting to prove theorems but it is usually hopeless for direct computation from the

definitions. We encounter the same trade-offs in intersection homology. CW homology is

not really available at all, and so we have simplicial and singular homology, each of which

will be treated in this book.

There is yet another species of homology we will utilize that occupies something of a mid-

dle ground between simplicial and singular homology: piecewise linear (or PL) homology.

The basic idea is that PL chains are linear combinations of geometric simplices, just like in

simplicial homology, but the simplices are not required to all come from the same triangu-

lation. Technically, a PL chain lives in the direct limit of simplicial chain complexes, with

the limit being taken over all suitably compatible triangulations of the space and with the

maps in the direct system being induced by geometric subdivision of triangulations. We will

see in Theorem 3.3.20 that for any PL filtered space the PL intersection homology groups

(and hence ordinary PL homology groups on any PL space) are isomorphic to the simplicial

groups with respect to any triangulation satisfying a mild hypothesis (that the triangulation

be full). With some other mild assumptions, we will show that these simplicial and PL

intersection homology groups are isomorphic to the singular intersection homology groups

in Theorem 5.4.2. As we do not have an acyclic carrier theorem available in intersection

homology, it would be much more difficult to establish an isomorphism between simplicial

and singular intersection homology without using the PL theory as an intermediary.

2 It’s not a bug, it’s a feature!
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10 Introduction

One of the advantages that PL homology has over simplicial homology is that it behaves

much better with respect to the consideration of open subsets. An open subset of a trian-

gulated space needs to be given its own triangulation in order to speak of its simplicial

chains; but as PL homology already considers all triangulations, a PL chain in X that is

supported in an open subset U is already a PL chain in U without worrying about the

specific triangulation. Consequently, we obtain excision and Mayer–Vietoris theorems for

PL homology that mirror the singular homology theorems and so are more general than

what one sees for simplicial homology. Another technical advantage, which we shall only

touch upon lightly in Section 8.5, is that PL chains provide a good setting for defining in-

tersection pairings, which Goresky and MacPherson used to demonstrate Poincaré duality

for intersection homology when they introduced it in [105].

As we progress to the later stages of the book, however, the technical advantages of

the PL approach will begin to lessen as the technical difficulties begin to escalate. For

example, as the cup and cap products in intersection homology cannot be defined using

an Alexander–Whitney-type formula (as far as we know), the simplicial approach does not

provide any utility toward computing these products. At the same time, the direct limit that

arises in the definition of PL chains dualizes to an inverse limit for PL cochains, and these

can be difficult to work with. Consequently, when we reach intersection cohomology, we

will discuss briefly the PL intersection cohomology groups, but we will limit our discussion

of products and duality to the singular chain setting.

1.3 A Note about Sheaves and Their Scarcity

As documented by Steven Kleiman in his somewhat controversial historical survey of the

early development of intersection homology [141], after first developing PL intersection

homology Goresky and MacPherson soon discovered that their work dovetailed with re-

search in algebraic geometry that Pierre Deligne was undertaking from the point of view

of sheaf theory3 . Goresky and MacPherson quickly recognized the power of the tools

available working in the derived category of complexes of sheaves on a space, especially a

sheaf-theoretic duality theorem called Verdier duality, and intersection homology was refor-

mulated in these terms in [106]. Using Verdier duality, they provided a proof of intersection

homology duality on topological pseudomanifolds, extending their duality results beyond

the piecewise linear pseudomanifolds of [105]. Furthermore, sheaf theory provides a good

axiomatic framework, which enabled them in [106] to prove that, with certain restrictions

on p̄, the groups I p̄H∗(X) are topological invariants; in other words they do not depend on

the choice of stratification.

From here, the sheaf-theoretic perspective on intersection homology largely took over,

and it has been the venue of many of the most significant applications of intersection

3 At the same time, Jeff Cheeger was developing a similar theory from the analytic point of view using
L2-cohomology [59, 61].
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