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Basic Equations

The flow of water in soil occurs through interconnected openings between the soil

particles. The flow of water through the soil is erratic, and its velocity changes

radically in space: the velocity is large in the small pores and small in the larger

ones.

We do not need to determine the path that the water particles follow in their

way through the soil for most engineering groundwater flow problems. It usually is

sufficient to determine average velocities, average flow paths, the discharge flowing

through a given area of soil, or the pressure distribution in the soil. We work,

throughout this text, with averages and ignore the actual paths of flow. We use

the term rectilinear flow, for example,when the average flow is in one direction.

The theory of groundwater flow is based on a law discovered by Henry Darcy

[1856]. After the introduction of the basic concepts, we discuss the experiment

performed by Darcy and present his law in its simplest form. We then present

the generalized form of Darcy’s law and the equation of continuity, and finish the

chapter by combining these two equations into one governing equation for steady

flow of a homogeneous fluid in a porous medium.

1.1 Basic Concepts

The basic quantities used to describe groundwater flow are velocity, discharge,

pressure, and head. We discuss these quantities next.

1.1.1 The Specific Discharge

We define specific discharge as the volume of water flowing through a unit area of

soil per unit time. The units of specific discharge are [L3/(L2T)], or [L/T], and thus

are the same as those of a velocity. Specific discharge sometimes is called discharge
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2 Basic Equations
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Figure 1.1 Schematic of Darcy’s experiment.

velocity, but we use the term specific discharge to avoid confusion with a velocity.

We represent the specific discharge by q.

The seepage velocity v is the average velocity at a point of the porous medium; it

is the specific discharge divided by the area of voids present in a unit area of porous

medium. If the porosity of the medium is n, then the area of voids per unit area is n

and therefore

v =
q

n
. (1.1)

Since n is always less than 1, v is always larger than q.

We illustrate the concepts of specific discharge and seepage velocity by con-

sidering water flowing through a cylindrical tube filled with sand, contained in

the space between the end caps 1 and 2, as shown in Figure 1.1. This experi-

mental setup is similar in principle to that used by Darcy to establish Darcy’s

law (Darcy [1856]). The cylinder is filled with water and is connected to two

reservoirs, I and II, with different water levels. The water flows through the cylin-

der as a result of the difference in water levels. The level of reservoir II is con-

trolled by overflow. We pour water into reservoir I in order to maintain its level.

By measuring the rate at which water is poured into reservoir I, we determine

the total amount, Q, of water flowing through the cylinder per unit time. The spe-

cific discharge is found by dividing Q by the cross-sectional area of the cylinder,

A, i.e.,

q =
Q

A
. (1.2)

We express the seepage velocity v with (1.1) as

v =
q

n
=

Q

nA
. (1.3)
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1.1 Basic Concepts 3

φ

Z

Figure 1.2 Definition of the head φ.

We obtain an expression for the time t for a water particle to travel through the

sample from the seepage velocity v and the distance traveled, L:

vt = L (1.4)

or

t =
L

v
=

LnA

Q
. (1.5)

See (1.3).

1.1.2 Pressure and Head

The hydraulic head at a certain point P in a soil body is defined as the level to

which the water rises in an open standpipe with its lower end at point P (see

Figure 1.2). The hydraulic head, also simply called head,1 is defined as a level and

is measured with respect to a reference level or datum. We represent the hydraulic

head by the letter φ. The units of φ are the units of length.

We find an expression for the pressure at point P from the weight of the water

column above P in the standpipe. If the elevation of P above the reference level is

Z [L], then the height of the water column above P is φ−Z. Denoting the pressure

as p [F/L2], the density of water as ρ [M/L3] and the acceleration of gravity as

g [L/T2], the pressure at P is

p = ρg(φ −Z). (1.6)

1 Other terms are in use as well, such as piezometric head and potentiometric head. We avoid using these terms;
the word piezometric suggests that pressure is involved, and potentiometric suggests that the head is a potential,
which it is not.
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4 Basic Equations

The elevation Z of point P above the reference level is known as the elevation

head of point P . The head, φ, can be expressed in terms of pressure, p, and

elevation head, Z, by the use of (1.6) as follows:

φ =
p

ρg
+Z (1.7)

The fraction p/(ρg), with the units of [(F/L2)/(F/L3)] = [L] is the pressure head. We

may express (1.7) as (hydraulic) head equals pressure head plus elevation head.

1.2 Darcy’s Law

Darcy’s law (Darcy [1856]) is an empirical relation for the specific discharge in

terms of the head. The original form of this law is applicable to rectilinear flow of a

homogeneous liquid only. A general form of Darcy’s law exists; we present it after

covering the case of rectilinear flow.

1.2.1 Rectilinear Flow

Darcy found that the amount of flow through a cylinder of sand of cross-sectional

area A increases linearly with the difference in head at the ends of the sample (see

Figure 1.3). The head at end cap 1 is φ1. We see this from Figure 1.3: the pipe or

hose connecting reservoir I to the sample can be viewed as a standpipe. Similarly,

the head at end cap 2 is φ2. Darcy’s law for the experiment of Figure 1.3 is

Q = kA
φ1 −φ2

L
, (1.8)
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Figure 1.3 Darcy’s experiment.
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1.2 Darcy’s Law 5

where Q is the discharge [L3/T], A is the cross-sectional area of the sample [L2],

and L is the length of the sample [L]. The proportionality constant k is known

as the hydraulic conductivity. It follows from (1.8) that the dimensions of k are

those of a velocity, [L/T]. We sometimes use the term resistance to flow, borrowing

this concept from electrokinetics. Resistance to flow is the inverse of hydraulic

conductivity (1/k).

We write (1.8) in terms of the specific discharge q, with q = Q/A,

q = k
φ1 −φ2

L
. (1.9)

If we measure the head at various points inside the sample of Figure 1.3, we find

that it varies linearly over the sample. Choosing a coordinate system with the x-axis

running along the axis of the sample with the origin at end cap 1, we obtain the

following expression for φ:

φ = φ1 +
φ2 −φ1

L
x. (1.10)

This equation represents the straight line from x = 0, φ = φ1, to x = L, φ = φ2 in

Figure 1.4, where the head is plotted as a function of position over the sample. It

follows from (1.10) that

dφ

dx
=

φ2 −φ1

L
, (1.11)

so that we may write (1.9) as

qx = −k
dφ

dx
. (1.12)

L

φ
1

φ
2

φ

x

Figure 1.4 Linear variation of φ.
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6 Basic Equations

The index x in qx is used to indicate that the specific discharge is in the x-direction.

The derivative dφ/dx is known as the hydraulic gradient for flow in the x-direction.

1.2.2 Intrinsic Permeability

The hydraulic conductivity is a material constant, which depends on the properties

of both the fluid and the soil. It is possible to define another constant, the (intrinsic)

permeability κ , which depends only on the soil properties and is related to the

hydraulic conductivity as

k =
κρg

µ
, (1.13)

where µ is the dynamic viscosity [FT/L2]. The dimension of κ is L2. The intrinsic

permeability is used primarily when the density or the viscosity of the fluid varies

with position. In this text, however, only fluids with homogeneous properties are

considered and therefore the classical hydraulic conductivity k is used. Values for

k and κ are listed in Table 1.1 for some natural soils. An alternative unit for per-

meability is the Darcy, named after Henry Darcy. One Darcy, equal to 1000 µD

(millidarcy), is equal to 0.9869233 µm2.

1.2.3 Range of Validity of Darcy’s Law

Darcy’s law is restricted to specific discharges less than a certain critical value. The

critical specific discharge depends on the grain size of the soil and the specific mass

and the viscosity of the fluid. The criterion for assessing the validity of Darcy’s

Table 1.1 Permeabilities for some natural soils

k [m/s] κ [m2]

Clays < 10−9 < 10−17

Sandy clays 10−9
−10−8 10−16

−10−15

Peat 10−9
−10−7 10−16

−10−14

Silt 10−8
−10−7 10−15

−10−14

Very fine sands 10−6
−10−5 10−13

−10−12

Fine sands 10−5
−10−4 10−12

−10−11

Coarse sands 10−4
−10−3 10−11

−10−10

Sand with gravel 10−3
−10−3 10−10

−10−9

Gravels > 10−2 > 10−9

(Source: A. Verruijt, Theory of Groundwater Flow, © 1970, p. 10.
Reprinted by permission of the author.)
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1.2 Darcy’s Law 7

law in a given case is expressed in terms of the Reynolds number Re, defined for

groundwater flow as follows:

Re =
Dρ

µ
q, (1.14)

where D is the average grain diameter [L]. The Reynolds number is dimensionless.

The range of validity of Darcy’s law is defined by a relation obtained experimen-

tally,

Re ≤ 1. (1.15)

If the Reynolds number is larger than 1, Darcy’s law is not valid, and other, more

complex, equations of motion must be used.

Darcy’s law is valid for most cases of flow through soils. This is seen by sub-

stituting some average values for q, D, ρ, and µ in (1.14). The dynamic viscosity,

µ, of water at a temperature of 10◦ C is about 1.3 ∗ 10−3 N s/m2 and ρ is about

103 kg/m3. The average particle size of coarse sand is about 0.4∗10−3 m in diame-

ter. Substitution of these values in (1.14) yields

Re = (0.3∗103)q. (1.16)

This number is smaller than 1 if

q < 3.3∗10−3 m/s = 3.3 mm/s. (1.17)

This is a large value for the flow of groundwater. The hydraulic conductivity ranges

from less than 10−9 m/s for clays to about 10−3 m/s for coarse sands. Furthermore,

k is equal to the specific discharge occurring when the hydraulic gradient is 1, a

large value. The specific discharge is the product of the hydraulic gradient and k,

and is usually less than 10−3 m; Darcy’s law indeed appears to be valid for most

cases of flow through soils.

1.2.4 General Form of Darcy’s Law

The flow is rarely rectilinear in practice, and neither the direction of flow nor the

magnitude of the hydraulic gradient is known. The simple form (1.12) of Darcy’s

law, is not suitable for solving problems in practice; it is necessary to use a gener-

alized form of Darcy’s law, which gives a relation between the specific discharge

vector and the hydraulic gradient. The direction of the specific discharge vector

usually varies with position. The magnitude of this vector represents the amount

of water flowing per unit time through a plane of unit area normal to the direction

of flow. In three dimensions, the specific discharge vector has three components.

With reference to a Cartesian coordinate system x,y,z, the three components of the
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8 Basic Equations

specific discharge vector are represented as qx, qy, and qz. The form of Darcy’s law

for three-dimensional flow through an isotropic porous medium is

qx = −k
∂φ

∂x

qy = −k
∂φ

∂y
(1.18)

qz = −k
∂φ

∂z
.

Because the three components of the specific discharge vector are proportional to

minus the three components of the hydraulic gradient, with k as the proportionality

factor, the specific discharge vector points in the direction opposite to the hydraulic

gradient; groundwater flow occurs in the direction of decreasing head, hence the

minus sign in Darcy’s law. We sometimes represent the specific discharge vector

with components (qx,qy,qz) briefly as qi. The index i then stands for x, y, or z.

The partial derivatives ∂φ/∂x, ∂φ/∂y, and ∂φ/∂z represent the three components

of the hydraulic gradient. We may write the components of this vector as ∂xφ,∂yφ,

and ∂zφ, where the ∂ with the index stands for differentiation with respect to the

coordinate represented by the index. The hydraulic gradient can then be written as

∂iφ =

[

∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

]

. (1.19)

The notation with indices is known as the indicial notation or tensor notation, and

has the advantage of compactness. The three equations (1.18), for example, can be

written as one,

qi = −k∂iφ. (1.20)

Darcy’s law (1.18) may be written in terms of pressure by the use of (1.6),

qx = −
k

ρg

∂p

∂x

qy = −
k

ρg

∂p

∂y
(1.21)

qz = −k −
k

ρg

∂p

∂z
,

where the z-coordinate points vertically upward, so that ∂Z/∂z = 1 (see Figure 1.2).

Equations (1.18) and (1.21) are equivalent only if the density of the fluid is constant.

Equation (1.18) is wrong in case ρ varies, as we demonstrate, following Verruijt

[1970], by considering the case of groundwater of variable density at rest, so that
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1.2 Darcy’s Law 9

qx = qy = qz = 0. We integrate (1.18) and use (1.7) to express φ in terms of the

pressure,

φ = constant =
p

ρg
+Z. (1.22)

Integration of (1.21) yields for this case

p = −

Z
∫

Z0

ρgdz, (1.23)

where Z0 is a reference level. Since (1.22) is not applicable to water of variable

density at rest, and is obtained from (1.18), it follows that the latter equation cannot

be used for cases of variable density, at least not with the definition (1.6) for φ.

Equation (1.23), however, is correct and (1.21) is indeed valid for variable density.

Cases where variable density must be considered are not covered in this text, and

we use Darcy’s law in the form (1.18), with φ defined by (1.7).

1.2.5 Anisotropy

We assumed thus far that the hydraulic conductivity k is the same in all directions.

In practice the soil often is layered; the hydraulic conductivity has different values

in the directions parallel and normal to the layers. We call hydraulic conductivity

anisotropic if its value depends on orientation. This is illustrated in Figure 1.5(a),

where layers of sand are sandwiched between thin layers of clay. We consider the

case in which there is no flow normal to the plane of drawing, the (x, y)-plane. We

introduce Cartesian coordinates x∗ and y∗ such that the x∗-axis is parallel to the

layers. It follows from Figure 1.5(b) that

o

α αx
x

x∗ x∗

yy∗ y∗ y

y∗
cos α

x∗
sin α

y∗
sin α

x∗
cos α

(a) (b)

Figure 1.5 Anisotropic hydraulic conductivity.

www.cambridge.org/9781107148833
www.cambridge.org


Cambridge University Press
978-1-107-14883-3 — Analytical Groundwater Mechanics
Otto D. L. Strack 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

10 Basic Equations

x = x∗ cosα − y∗ sinα

y = x∗ sinα + y∗ cosα.
(1.24)

We write Darcy’s law in terms of the x∗, y∗-coordinate system, denoting the com-

ponents of the specific discharge vector in the x∗ and y∗ directions as q∗

x and q∗

y :

q∗

x = −k1

∂φ

∂x∗

q∗

y = −k2

∂φ

∂y∗
,

(1.25)

where k1 and k2 represent the values of the hydraulic conductivity in the directions

parallel and normal to the layers, respectively. These directions are called the prin-

cipal directions, and k1 and k2 the principal values of the hydraulic conductivity.

We write Darcy’s law in terms of vector components in the x- and y-directions.

The expressions for qx and qy in terms of q∗

x and q∗

y are similar to (1.24):

qx = q∗

x cosα −q∗

y sinα

qy = q∗

x sinα +q∗

y cosα.
(1.26)

We obtain from (1.25)

qx = −k1

∂φ

∂x∗
cosα + k2

∂φ

∂y∗
sinα

qy = −k1

∂φ

∂x∗
sinα − k2

∂φ

∂y∗
cosα.

(1.27)

By application of the chain rule we find

∂φ

∂x∗
=

∂φ

∂x

∂x

∂x∗
+

∂φ

∂y

∂y

∂x∗
= +

∂φ

∂x
cosα +

∂φ

∂y
sinα

∂φ

∂y∗
=

∂φ

∂x

∂x

∂y∗
+

∂φ

∂y

∂y

∂y∗
= −

∂φ

∂x
sinα +

∂φ

∂y
cosα,

(1.28)

where the partial derivatives ∂x/∂x∗, ∂y/∂x∗, ∂x/∂y∗, and ∂y/∂y∗ are obtained by

differentiating (1.24). Combining (1.27) and (1.28) we obtain Darcy’s law for aniso-

tropic hydraulic conductivity:

qx = −kxx

∂φ

∂x
− kxy

∂φ

∂y

qy = −kyx

∂φ

∂x
− kyy

∂φ

∂y
,

(1.29)
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