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Independence and Lévy
Processes in Quantum
Probability

1.1 Introduction

Quantum probability is a generalization of both classical
probability theory and quantum mechanics that allows to describe
the probabilistic aspects of quantum mechanics. This
generalization is formulated in two steps. First, the theory is
reformulated in terms of algebras of functions on probability
spaces. Therefore, the notion of a probability space (Ω,F , P) is
replaced by the pair (L∞(Ω), E(·) =

∫
Ω ·dP) consisting of the

commutative von Neumann algebra of bounded random variables
and the expectation functional. Then, the commutativity condition
is dropped. In this way we arrive at the notion of a (von
Neumann) algebraic probability space (N, Φ) consisting of a von
Neumann algebra N and a normal (faithful tracial) state Φ. As we
have seen this includes classical probability spaces in the form
(L∞(Ω), E), it also includes quantum mechanical systems
modeled by a Hilbert space H and a pure state ψ ∈ H (or a mixed
state ρ ∈ S(H)), if we take N = B(H) and Φ the state defined by
Φ(X) = 〈ψ, Xψ〉 (or Φ(X) = tr(ρX)) for X ∈ B(H). Note that in
this course we shall relax the conditions on N and Φ and work
with involutive algebras and positive normalized functionals, that
is, ∗-algebraic probability spaces.

A striking feature of quantum probability (also called
noncommutative probability) is the existence of several notions of
independence. This is the starting point of this course, which
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2 Noncommutative Mathematics for Quantum Systems

intends to give an introduction to the theory of quantum stochastic
processes with independent increments.

However, before we come to these processes, we will give a
general introduction to quantum probability. In Section 1.2, we
recall the basic definitions of quantum probability and discuss
some fundamental differences between classical probability and
quantum probability. In Section 1.3 we address the question ‘Why
do we need Quantum Probability?’ We discuss the EPR
experiment and the Kochen–Specker Theorem, which show that
we cannot model quantum physics with classical probability
spaces because the values of observable quantities do not exist
unless we specify which measurement we will carry out and
which quantities we will determine. In this sense quantum physics
requires a more radical description of chance. As so far all
experiments have confirmed the sometimes counterintuitive
predictions of quantum physics, it follows that quantum
probability is necessary to describe the real world at the
microscopic level.

For the rest of the course we choose to focus on models that are
stationary and have certain independence properties.

In Section 1.4, we recall the basic theory of stochastic processes
with independent and stationary increments in classical
probability. The marginal distributions of such processes are
infinitely divisible, see Definition 1.4.1, and form convolution
semigroups, see Definition 1.4.2. We recall several classification
results for infinitely divisible distributions and convolution
semigroups.

In Section 1.5, we start with an important class of quantum
Lévy processes, that is, quantum stochastic processes with
independent and stationary increments, namely those defined on
involutive bialgebras. Involutive bialgebras are involutive
algebras equipped with an algebra homomorphism ∆ : B → B ⊗B
from the algebra into its tensor product satisfying several
conditions. This map allows to compose random variables and to
define a notion of increments. The notion of independence that is
used for this class of quantum Lévy processes is tensor
independence, which carries its name because it is based on the
tensor product of functionals and algebras. It generalizes the
notion of stochastic independence used in classical probability and
corresponds to the notion of independent observables in quantum
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Independence and Lévy Processes in Quantum Probability 3

physics. The basic theory of these processes is owing to
Schürmann, cf. [Sch93].

Recently a richer, more analytic theory of quantum Lévy
processes, defined on Woronowicz’ compact quantum groups
[Wor87a, Wor98], has been initiated, cf. [CFK14]. While usually
defined in the C∗-algebraic setting (see Definition 1.6.1), these
quantum groups can also be viewed as a special class of involutive
bialgebras, sometimes also called CQG algebras. CQG algebras are
involutive Hopf algebras canonically associated to Woronowicz’
compact quantum groups, cf. [Wor87a, Wor98]. They have a richer
structure, in particular, an antipode and a Haar state, which
satisfies a KMS property. This allows to formulate properties of a
Lévy process, which guarantee that the Markov semigroup can be
extended to a C∗- and a von Neumann algebra, and to the
associated noncommutative Lp spaces. Cipriani, Franz, and Kula
have used this additional structure to apply the theory of
noncommutative Markov processes and noncommutative
Dirichlet forms to Lévy processes on CQG algebras, see [CFK14].
In Section 1.6 we give an introduction to compact quantum groups
and show that Lévy processes on compact quantum groups are in
one-to-one correspondence with time- and space-homogeneous
Markov semigroups, see Theorem 1.6.6.

In noncommutative probability there exist new, truly non-
commutative notions of independence that have no counterpart in
classical probability. Schürmann [Sch95b] has shown that it is
possible to define quantum Lévy processes with increments that
are independent in the sense of these new notions of
independence, if one replaces the tensor product in the theory of
bialgebras by the free product of algebras. In the last three sections
of this course we will give an introduction to the quantum Lévy
processes obtained in this way.

In Section 1.7, we give a first introduction to these so-called
universal notions of independence. We define free, monotone, and
boolean independence for subalgebras of a quantum probability
space and study the convolutions associated to these
independences for probability measures on the real line, the
positive half-line, and the unit circle.

The universal independences are based on associative
universal products of algebraic probability spaces. In Section 1.8,
we study the independences from the point of view of products of
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4 Noncommutative Mathematics for Quantum Systems

algebraic probability spaces and review their classifications. The
results in this section are mostly owing to Ben Ghorbal and
Schürmann [BGS02], and to Muraki [Mur02, Mur03].

In Section 1.9, we introduce quantum Lévy processes for
universal independences. For this purpose we also introduce dual
semigroups and dual groups, which are the counterparts of
bialgebras and Hopf algebras. They can be obtained from
bialgebras and Hopf algebras if one replaces in their definitions
the tensor product by the free product of algebras, see also
[Voi87, Zha91].

In Section 1.10, we close this course with a list of interesting
research topics and open questions.

1.2 What is Quantum Probability?
Let us start with the most fundamental definition in quantum (or
noncommutative) probability.

Definition 1.2.1 A quantum probability space is a pair (A, ϕ)
consisting of a von Neumann algebra A and a normal state
ϕ : A→ C.

Remark 1.2.2 The conditions on the pair (A, ϕ) can be varied,
depending on the applications we have in mind. In the main part
of these lecture notes we will work with *-algebraic probability
spaces, which are pairs (A, ϕ) consisting of a unital ∗-algebra A
and a normalized positive functional ϕ : A→ C.

For a definition of a von Neumann algebra and normal
functionals, and some motivation for their appearance in this
context refer to Section 2.5.2 of the lecture of Adam Skalski in this
volume.

Before we try to motivate the definition of a quantum
probability space, let us recall the definition of a probability space
given in classical probability theory.

Definition 1.2.3 A ‘classical’ probability space is a triple (Ω,F , P),
where
• Ω is a set, the sample space, the set of all possible outcomes.
• F ⊆ P(Ω) is a σ-algebra, the set of events.
• P : F → [0, 1] is a probability measure, it assigns to each event

its probability.
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Independence and Lévy Processes in Quantum Probability 5

This description of randomness is based on the idea that
randomness is because of a lack of information. If we know which
ω ∈ Ω is realized, then there is no randomness, and we know
which outcome is realized for all possible experiments. However,
in general this is not the case and therefore we want to work with
all possible outcomes, and random variables which that are
functions of these possible outcomes.

The following example shows that — in a certain sense —
quantum probability contains classical probability as a special
case.

Example 1.2.4 (Classical ⊆ Quantum) To a classical probability
space (Ω,F , P) we can associate a quantum probability space
(A, ϕ), take

• A = L∞(Ω,F , P), the algebra of bounded measurable functions
f : Ω→ C, called the algebra of random variables or observables.

• ϕ : A 3 f 7→ E( f ) =
∫

Ω f dP, which assigns to each random
variable/observable its expected value.

Then A is commutative and (Ω,F , P) and (A, ϕ) are essentially
equivalent (by the spectral theorem).

However, quantum probability is more general than classical
probability. This additional generality is necessary to treat classical
probability theory and the probabilistic structure of quantum
mechanics in a common theory.

The following example is motivated by quantum mechanics.

Example 1.2.5 (Quantum mechanics) Let H be a Hilbert space,
with a unit vector ψ ∈ H (or a density matrix ρ ∈ B(H)). Then the
quantum probability space associated to (H, ψ) (or (H, ρ)) is given
by

• A = B(H), the algebra bounded linear operators X : H → H.
Self-adjoint (or normal) operators can be considered as quantum
random variables or observables.

• ϕ : B(H) 3 X 7→ ϕ(X) = 〈ψ, Xψ〉, where ψ ∈ H is a unit vector,
or, more generally, ϕ(X) = tr(ρX), where ρ is a density matrix.

Note that in this book inner products are always linear on the right
side.
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6 Noncommutative Mathematics for Quantum Systems

States of the form ϕ(X) = 〈ψ, Xψ〉 are called pure states or vector
states. Note that unit vectors ψ ∈ H and ψ′ = eiφψ that differ only by
a phase and the orthogonal projection Pψ = |ψ〉〈ψ| : u 7→ 〈ψ, u〉ψ
onto the subspace Cψ spanned by those vectors all define the same
state. States of the form ϕ(X) = tr(ρX) are called mixed states, if ρ
is not a rank-one projection.

Is ‘quantum randomness’ different from ‘classical randomness’?
To discuss this question let us briefly recall how the quantum
probability space presented above is used to model experiments in
quantum mechanics.

For simplicity let us suppose that H is a finite dimensional
complex Hilbert space.

Theorem 1.2.6 (Spectral theorem) If X ∈ B(H) is an observable (that
is, a self-adjoint operator = hermitian matrix), then it can be written as

X = ∑
λ∈σ(X)

λEλ

where σ(X) denotes the spectrum of X (= set of eigenvalues) and Eλ the
orthogonal projection onto the eigenspace of X associated to the
eigenvalue λ.

Physicists associate to the observables of a quantum mechanical
system, like the position or momentum of a particle, the spin of an
electron, or the polarization of a photon, a self-adjoint operator on
some Hilbert space H. The state of the quantum mechanical system
is described by a state on the algebra B(H). This state is often given
in the form of a density matrix, that is, a positive operator ρ ∈ B(H)
with trace equal to one. The special case where ρ is the orthogonal
projection ρ = |ψ〉〈ψ| onto a unit vector ψ ∈ H corresponds to
a pure state and we call ψ its state vector. Note that we will freely
switch between the various mathematical descriptions, that is, state
vectors, density matrices, and states (in the sense of unital positive
linear functionals) for the state of a quantum system.

Von Neumann’s ‘Collapse’ Postulate:
A measurement of an observable X with spectral decomposition

X = ∑
λ∈σ(X)

λEλ
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Independence and Lévy Processes in Quantum Probability 7

on a quantum system in the state ρ can only yield values that belong
to the spectrum of X. A value λ ∈ σ(X) occurs with probability

pλ = tr(ρEλ)

where tr denotes the trace. If the observed value is λ, then the state
‘collapses’ to

ρ̃λ =
EλρEλ

tr(ρEλ)
,

that is, the state of the quantum system after the measurement is
described by the density matrix ρ̃λ.

As each λ ∈ σ(X) occurs with probability

ρ
λ
= Pρ(X = λ) = tr(ρEλ),

we get

Eρ(X) = ∑
λ∈σ(X)

λpλ = tr(ρX)

for the expectation and

Varρ(X) = Eρ

(
(X− Eρ(X))2) = tr(ρX2)−

(
tr(ρX)

)2

for the variance of the observable X in the state ρ.
The simplest experiments in quantum mechanics can produce

only two possible outcomes, like the measurement of the spin of
a fermion (like, for example the electron) in a fixed direction in a
Stern-Gerlach-type experiment, or sending a single photon through
a polarization filter. Such experiments are described by the two-
dimensional Hilbert space C2.

Example 1.2.7 (Spin of a spin-1
2 particle or polarization of a

photon) Consider H = C2. As vectors that differ only by a phase
define the same state, we can assume that the first component of a
state vector in C2 is not negative. Therefore, the most general state
vector is of the form

u(θ, φ) = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 =

(
cos θ

2

eiφ sin θ
2

)
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8 Noncommutative Mathematics for Quantum Systems

with θ ∈ [0, π], φ ∈ [0, 2π), and |0〉 = |↑〉, |1〉 = |↓〉 form an
orthonormal basis for C2 (for example, corresponding to the states
‘spin up’ and ‘spin down’).

Note that we used here the bra-ket notation, which is standard in
quantum mechanics and also frequently used in related fields such
as quantum probability and quantum information. Hilbert space
vectors are denoted by so-called ‘ket’s’ |label〉, linear functionals
on the Hilbert space by ‘bra’s’ 〈label|, and rank one operators by
|label 1〉〈label 2|, cf. [wiki bra-ket]. This notation owes its name to
the ‘bracket’ notation 〈label 1|label 2〉 for inner products, consisting
of a left part, 〈label 1| called the ‘bra,’ and a right part, |label 2〉,
called the ‘ket.’

We will use this notation to name functionals and rank one
operators built from vectors. That is, if u, v ∈ H, then 〈u| denotes
the linear functional 〈u| : H 3 x 7→ 〈u, x〉 ∈ C and |u〉〈v| the
operator |u〉〈v| : H 3 x 7→ 〈v, x〉u ∈ H.

The vector u(θ, φ) can be visualized as the point (θ, φ) on the unit
sphere (Bloch sphere) in R3, that is, the vector cos φ sin θ

sin φ sin θ

cos θ

 .

Density matrices are of the form

ρ(x, y, z) =
I + xσx + yσy + zσz

2

with x, y, z ∈ R, x2 + y2 + z2 ≤ 1, where

I =
(

1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,

are the Pauli matrices.
Note that the density matrix associated with to a vector state

u(θ, φ) is simply

|u(θ, φ)〉〈u(θ, φ)| = 1
2

(
1 + cos θ e−iφ sin θ

eiφ sin θ 1− cos θ

)
= ρ

cos φ sin θ

sin φ sin θ

cos θ

.
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Independence and Lévy Processes in Quantum Probability 9

The state ϕρ : B(H) → C2 associated with to a density matrix ρ is
the linear functional defined by

ϕρ(X) = tr(ρX)

for X ∈ B(H). If ρ = |ψ〉〈ψ| is pure state, that is, of the form ρ =
|ψ〉〈ψ| for some vector |ψ〉, then this becomes

ϕ|ψ〉〈ψ| = 〈ψ, Xψ〉.

Observables (self-adjoint operators) are of the form

X = a|u〉〈u|+ b|u⊥〉〈u⊥|,

with a, b ∈ R, u a unit vector, u⊥ orthogonal to u (unique up to a
phase). In any experiment, X takes values a and b, with
probabilities

P(X = a) = ϕ
(
|u〉〈u|

)
and P(X = b) = ϕ

(
|u⊥〉〈u⊥|

)
,

if ϕ is the state of the quantum system before the measurement.
After the experiment the state will be |u〉〈u|, if the value a was

observed, and |u⊥〉〈u⊥|, if the value b was observed.
Suppose that

u(θ, φ) =

(
cos θ

2

eiφ sin θ
2

)

is the state vector labeled by the point cos φ sin θ

sin φ sin θ

cos θ


on the Bloch sphere, with θ ∈ [0, π], φ ∈ [0, 2π). Then we can take

u⊥(θ, φ) =

(
sin θ

2

−eiφ cos θ
2

)
= u(π − θ, φ + π)

for the vector orthogonal to u(θ, φ). Note that u⊥(θ, φ) corresponds
to the opposite point on the Bloch sphere.
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10 Noncommutative Mathematics for Quantum Systems

Let us define

S(θ, φ) = |u〉〈u| − |u⊥〉〈u⊥|

=

(
cos θ e−iφ sin θ

eiφ sin θ − cos θ

)

= xσx + yσy + zσz

where x
y
z

 =

 cos φ sin θ

sin φ sin θ

cos θ

 .

is a point on the unit sphere in R3.
If we measure the observable X = S(θ, φ) on a particle whose

state is given by the state vector u(θ′, φ′), we get

P(X = +1) =
∣∣〈u(θ, φ), u(θ′, φ′)〉|2 =

1 + cos ϑ

2

P(X = −1) =
1− cos ϑ

2
(1.2.1)

where ϑ is the angle between the points on the Bloch sphere that
correspond to u(θ, φ) and u(θ′, φ′).

We can interprete the observable S(θ, φ) as the measurement of
the spin of an electron in the direction determined by θ and φ. The
only two possible outcomes of this experiment are ‘+1’ and ‘−1’,
which means that the spin points in the direction of the vector x

y
z

 =

 cos φ sin θ

sin φ sin θ

cos θ


or that it points in the opposite direction, respectively.

To each observable X in a quantum probability space we can
associate a classical probability space, with Ω = σ(X) and P({λ})
= tr(ρEλ), if X = ∑λ∈σ(X) λEλ is the spectral decomposition of X.
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