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1 Introduction

This introductory chapter overviews the fundamentals of collision phenomena in liquids

and solids. It begins with the physical estimates in Section 1.1, which ascertain the con-

ditions of the commonality of phenomena characteristic of liquid and solid collisions

and the historical and modern reasons for deep interest in them. Before embarking on a

discussion of the governing equations some basic dimensionless groups are introduced

in Section 1.2. Then, the reader encounters the basic laws of mechanics of liquids and

solids formulated as the mass and momentum balance equations in Section 1.3. The

distinction between liquids and solids can stem from rheological constitutive equations,

which are to be added to the basic laws. Two rheological models, of an inviscid and

Newtonian viscous liquid, are introduced in Section 1.4, which transforms the basic

laws to the Laplace equation for the kinematics of potential flows of inviscid fluids

accompanied by the Bernoulli integral of the momentum balance, as well as to the

Navier–Stokes equations describing general flows of viscous fluids, or in the limiting

case, to the Stokes equations for the creeping flows dominated by viscosity. A spe-

cial case of a strong short impact of solid onto any type of liquid reveals the potential

impulsive motions introduced in Section 1.5. On the other hand, high-speed flows of

low-viscosity liquids near a solid surface reveal traditional boundary layers, while near

free liquid surfaces the other, less frequently discussed, boundary layers arise. Both

types of the boundary layers and the corresponding equations are considered in Sec-

tion 1.6. Geometric peculiarities of flows in thin liquid layers on solid surfaces allow for

such simplifications as the quasi-one-dimensional and lubrication approximations dis-

cussed in Section 1.7. Special physical conditions exist at the moving contact line where

liquid surface is in contact with both the underlying solid surface and the surrounding

gas, which involves such issues as the Navier slip also covered in Section 1.7. The static

configurations of sessile and pendant liquid drops, in particular their contact angles with

solid surfaces, can be significantly affected by the surface texture and chemical compo-

sition – the group of questions elucidated in Section 1.8 and associated with wettability.

Rheological transition from traditional liquids to solids is gradual and spans Newtonian

viscous liquids, various non-Newtonian liquids including viscoelastic liquids, the elas-

tic Hookean solids, elastic-viscoplastic materials and then, paradoxically (at very high

impact velocities) the inviscid materials characterized by inertia only (Section 1.9). A

short exposition of some basic instabilities encountered in collision phenomena is given

in Section 1.10. Finally, in Section 1.11 the correct use of the energy balance approach

in the modeling of some hydrodynamic problems is discussed.
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2 Introduction

1.1 History and Outlook

Collision phenomena are common, spectacular and frequent in real life. People were
always fascinated with water drops impacting soil, stone, puddles or plants during rain.
Watching rain generates thoughts, some physical, some philosophical, or both:

The rain to the wind said,

‘You push and I’ll pelt.’

They so smote the garden bed

That the flowers actually knelt,

And lay lodged–though not dead.

I know how the flowers felt.

“Lodged” by Robert Frost (1874–1963)1

Drops impacting onto a liquid layer are so attractive to the general public that they are

regularly used in commercials aired on television, frequent on advertising billboards and

shown on postcards. They motivated the famous poetic words of Edgerton and Killian

(1954) in their book on ultra-high-speed photography: “In the land of splashes, what the

scientist knows as Inertia and Surface Tension are the sculptors in liquids, and fashion

from them delicate shapes none-the-less beautiful, because they are too ephemeral for

any eye but that of the high-speed camera.”

Drops impacting on liquid or solid surfaces can spread, or splash or even bounce

back, as the detailed observations initiated in a series of brilliant works of Worthing-

ton in the late nineteenth century and summarized in his book Worthington (1908).

To recognize the minute (actually, millisecond!) details of drop impact beyond those

visible to poets, Worthington used high-speed photography, while the illumination was

provided by a synchronized electric spark in air. The modern reincarnation of Worthing-

ton’s approach is the use of charge-coupled devices (CCD cameras) and light-emitting

diodes (LEDs) as light sources (Yarin 2006, Thoroddsen et al. 2008, Josserand and

Thoroddsen 2016).

Drop spreading, splashing and bouncing imply an easy deformability characteris-

tic of liquids, which are normally experienced as soft materials. However, folk wis-

dom expressed in the proverb “drop by drop wears away the stone” implies drop

capabilities comparable to that of stones, for example, limestones located under leaky

and dripping gutters. The characteristic time of water drop deformation during an

impact, τde f , is mostly determined by the competition of the inertia (the driving mech-

anism) and the surface tension (the restraining mechanism), and thus is of the order of

τde f ∼ (ρD3/σ )1/2, where ρ and σ are the density and surface tension, and D is the

volume-equivalent drop diameter. For water drops, with ρ = 103 kg/m3, σ = 0.0072

kg/s2 and D ∼ 0.001 m, τde f ∼ 4 ms, which indeed, requires a CCD camera for detailed

observations. On the other hand, the impact time, τimp, is of the order of τimp ∼ D/V0,

where V0 is the impact velocity. Therefore, in the cases where the impact velocity is high

enough for the inequality τimp < τde f to hold, an impacting drop does not have enough

1 Courtesy of Henry Holt and Company, LLC; The Random House Group, Penguin Random House, UK
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1.1 History and Outlook 3

time to deform and can initially behave as an extremely rigid (very stiff) solid. This

determines the critical (lowest) limit of such solid-like behavior as V0,crit ≈ (σ/ρD)1/2,

which is about 0.27 m/s. It should be emphasized that drops falling from a leaking gut-

ter of a suburban home have velocities of the order of several meters per second, i.e.

V0 > V0,crit , and thus exhibit an initially solid-like behavior. To evaluate the pressure

they exert on an underlying surface, note that the information that the leading edge of

a drop has impacted on an obstacle spreads with the speed of sound in water c, which

is about 1497 m/s. During time �t the mass of liquid, which is affected by the deceler-

ation due to drop impact is thus m = ρc�tS, where S is the impact area. Accordingly,

the momentum balance reads mV0 = F�t, with F being the force exerted on the under-

lying surface. Thus, the pressure p experienced by the underlying surface during the

time τel ∼ D/c ∼ 10−6s before rarefaction proceeds from the trailing side of the drop

(τel ≪ τde f < τimp), is p = F/S = ρcV0, with V0 > V0,crit . For V0 = 4 m/s, this pressure

is about p ≈ 60 atm. For limestone, marble and granite the ultimate strength in compres-

sion can be as low as 20, 50 and 70 MPa (about 200, 500 and 700 atm), respectively,

which means that a prolonged dripping can definitely wear them away and drop impacts,

indeed, reveal some solid-like phenomena on the liquid side.

Cannon balls, bullets, projectiles and shaped-charge jets and their action on a target

(a fortification or armor) attracted human attention not less intense than that devoted

to rain, and especially their penetration capabilities were the focus of attention. In

such cases one deals with sub-ordnance, ordnance and ultra-ordnance velocity ranges

encompassing velocities from 25 to 3000 m/s (Backman and Goldsmith 1978). The

field of terminal ballistics dealing with such questions was established by the classical

works of Euler, Robins and Poncelet (Rosenberg and Dekel 2012), which were followed

much later by the seminal works of Munroe (1900), Birkhoff et al. (1948) and Lavren-

tiev (1957). The early pioneers in the eighteenth and nineteenth centuries processed

a wide variety of experimental data to establish the resistance experienced by cannon

balls and bullets penetrating into solid targets, as well as the corresponding penetra-

tion depth. Only much later it was realized that in many cases solid–solid penetration

reveals liquid-like properties of solids. For metals the yield stress Y and the ultimate

strength σ∗, which is typically of the order of Y , are much less than the pressure exerted

initially by a projectile, p = ρcV0 (exactly due to the same reason as for liquids), or

at a later stage when it reduces to the level of p = ρV 2
0 due to the rarefaction emanat-

ing from the rear edge. Indeed, taking for steel ρ = 7.8 × 103 kg/m3, Y = 690 MPa,

c ≈ 5900 m/s and V0=1000 m/s, one finds the following ratios Y/(ρcV0) = 0.015 and

Y/(ρV 2
0 ) = 0.088. Similarly, for tungsten when ρ = 19.25 × 103 kg/m3, Y = 550 MPa

and c ≈ 5220 m/s, one finds for the collision velocity of V0=1000 m/s, the following

ratios Y/(ρcV0) = 0.00547 and Y/(ρV 2
0 ) = 0.0286. Therefore, in cases of collision of

steel and tungsten with armor, the pressure in both projectile and target far exceeds their

plasticity limits, which means that metals will flow. Moreover, the above-mentioned low

values of the Y/p ratios reveal that plastic resistance to flow will be relatively small, and

the dominant forces will be inertial (the situation quite similar to that in flows of such

“inviscid” liquids as water, especially after sufficiently fast drop impacts).
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4 Introduction

Neither the general public, nor the majority of the scientific community, realize that

such spectacular phenomena as comet and asteroid collisions with planets, or projectile

penetration into armor, can be “close relatives” of tiny drop impacts on the other end of

the scale bar; however in fact, they are! The elucidation of this fact is the main motiva-

tion of the authors to write this book, since their personal research experiences spanned

liquid–solid, liquid–liquid, solid–liquid and solid–solid impacts. Collision phenomena

one encounters in real life, technology and nature span the entire spectrum from tiny

drops to asteroids; to name a few:

� Ink-jet printing
� Spray cooling of hot surfaces
� Spray coating, spray painting
� Annealing, quenching of metal alloys
� Fire suppression
� Fuel injection
� Touchless cleaning with sprays
� Spray inhalation (impacts and deposition in the lungs)
� Encapsulation
� Domestic applications (e.g. hair spray)
� Near-net shape manufacturing
� Erosion of (steam) turbine blades
� Ice accretion on turbine components, power lines, aircraft
� Dilution of lubricating films due to fuel droplet impingement
� Spreading of plant diseases by rain
� Spore spreading by rain
� Criminal forensics
� Crop spraying
� Aeration of surface layers of lakes, seas and oceans
� Soil erosion
� Transport of granular materials
� Seaplane landing
� Shaped-charge jet penetration
� Ballistic penetration
� Military applications
� Explosion welding
� Solid material testing

Such a wide variety of fascinating and practically important situations typically

involve a hidden common denominator dictated by “inviscid”-like flow and geomet-

rical similarity of collision and impact phenomena. As the above-mentioned historical

introduction shows, to a large part, the topics covered in this book have developed quite

independently from one another in the sense that different communities were involved

in the different collision phenomena: liquid–solid, liquid–liquid, solid–liquid and solid–

solid. This book is an attempt to provide a unique vision of the underlying similarities
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1.2 Dimensionless Groups 5

existing in collision phenomena, which greatly facilitate their understanding and model-

ing and which are still not fully recognized due to the scatter of these phenomena among

different disciplines.

The fact that each of these disciplines dealing with collision phenomena has under-

gone rapid development over the past years is indisputable. This can be attributed to a

multitude of factors; however, there is no doubt that in the interest of improving numer-

ous industrial processes (including those of modern high-tech industries), understand-

ing the underlying physics, as opposed to relying on simple engineering correlations, is

becoming a necessity and is increasingly being sought by industry. An in-depth under-

standing of various natural collision phenomena is also required to facilitate solid foun-

dations of ecology, geology and other branches of science. It should be emphasized

that joint consideration of fluid and solid mechanics including fracture mechanics is not

uncommon for textbooks, as in the recent one of Barenblatt (2014), which shows that

such an approach can be fruitful.

Collision phenomena are becoming recognized as one of the fundamental events on

which an entire production or natural process may depend. This is most easily illustrated

by the above-mentioned examples – both in engineering and in nature – in which impact

and collision phenomena play a vital role.

Another factor contributing to the current interest in collision phenomena is undoubt-

edly the remarkable development in high-speed imaging over the past decade. This

allows collision phenomena to be studied at unprecedented precision and resolution,

revealing physics which were heretofore often only the subject of speculation or empir-

ical modeling. Accordingly, new mathematical models of the phenomena can now be

developed and validated to a much higher degree of certainty. Therefore, understand-

ing and modeling of collision phenomena also form a challenging new domain in the

fields of applied physics and mathematics, stimulating novel and classical experimental,

theoretical and numerical approaches.

Whereas the book underlines similarities among different collision phenomena, there

are some restrictions in scales. At very large length scales, for instance the collision of

galaxies, or at very high velocity scales (hyper-ordnance or cosmic) phase transition,

nuclear physics, gravity and relativity affect the collision phenomena, going beyond the

scope of this book. Therefore, we can say that the book is restricted to mesoscales and

ordnance and ultra-ordnance velocities, although attention is definitely paid to the effect

of nano-texture on solid surfaces on drop impact, i.e. phenomena at nano-scales.

1.2 Dimensionless Groups

Dimensional analysis is a powerful tool for generalization of experimental data and

uncovering hidden scalings and self-similarities in seemingly complicated hydrody-

namic situations. The general ideas and multiple examples of the applications of dimen-

sional analysis are discussed in several superb monographs, which an interested reader

can easily find: Bridgman (1931), Barenblatt (1987, 2000), Sedov (1993) and Yarin

(2012). Therefore, in the present section we briefly list the main dimensionless groups
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6 Introduction

relevant in this book. The dimensionless groups governing drop impact onto a solid

surface or a liquid layer are

We =
ρDV 2

0

σ
, Re =

ρDV0

μ
, Oh =

μ

(ρσD)1/2
=

We1/2

Re
(1.1)

K = We · Oh−2/5, St =
MV0

6πμa2
, H =

h0

D
, R =

ρg

ρ
, Vi =

μg

μ
(1.2)

where ρ, μ and σ denote liquid density, viscosity and surface tension, D and V0 the

drop diameter and impact velocity, h0 thickness of the liquid film, ρg and μg are the

surrounding gas density and viscosity. We, Re and Oh denote the Weber, Reynolds and

Ohnesorge numbers, and H dimensionless film thickness; K is an important composite

group. St is the Stokes number, where M is the mass of a spherical particle of radius

a = D/2 impacting onto a thin viscous layer of viscosity μ at the wall. In addition, R and

Vi denote the density and viscosity ratios. Also, gravity-related effects are characterized

by the Bond number Bo = ρgD2/σ , i.e. the ratio of D2 to the square of the capillary

length

λc =

(

σ

ρg

)1/2

(1.3)

(g being gravity acceleration), or by the Froude number

Fr =
V 2

0

gD
=

We

Bo
. (1.4)

Further dimensionless parameters characterizing roughness and wettability effects will

be relevant to drop impact on solid dry surfaces, as well as the equilibrium contact angle.

Among them the capillary number

Ca =
μV0

σ
=

We

Re
. (1.5)

The capillary number is important if the dynamic contact angle influences significantly

the considered flow. In this case the velocity of propagation of the contact line U is used

in the expression (1.5) instead of V0.

Non-spherical drop aspect ratio and the Strouhal number characterizing transient phe-

nomena can also appear.

In relation to the discussion of the electrohydrodynamic aspects of drop impacts, the

dimensionless charge relaxation time α, and the electric Bond number BoE naturally

arise, with

α =
τCV0

D
, BoE =

DE2
∞

σ
(1.6)

where τC is the charge relaxation time, and E∞ is the applied electric field strength, or

alternatively, UE/D, where voltage UE is given.

Moreover, and this is very important for understanding of the organization of Parts I

to V of the book, the dimensionless groups related to the rheological behavior of collid-

ing materials can be introduced. Namely, the Deborah number De and the dimensionless
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1.3 Mass and Momentum Balance Equations 7

stiffness S and plasticity P groups (or, alternatively, the modified Bingham number, Bn)

can be introduced as

De =
θV0

D
(1.7)

S =
E

ρV 2
0

, P or Bn =
Y

ρV 2
0

, (1.8)

where θ is the viscoelastic relaxation time, E is Young’s modulus and Y is the yield

stress.

In addition, at the early stages of impact or collision when the compressibility effects

are important, instead of Eqs. (1.8), the dimensionless groups S, P or Bn should involve

the speed of sound in solid material c, i.e.

S =
E

ρcV0

, P or Bn =
Y

ρcV0

. (1.9)

Also, the expressions for the groups P and Bn can involve the ultimate strength σ∗ rather

than the yield stress Y , as in Eqs. (1.8) and (1.9).

The dimensionless groups (1.1)–(1.7) will determine the discussion in Parts I–IV of

the book. In particular, the effects of Re, We, R, Vi and especially K groups on drop

deposition, splashing and bouncing will be introduced in the ordered manner. It should

be emphasized that the density and viscosity ratios would only be important in very

specific situations, not all that common. The dimensionless groups (1.8) and (1.9) are

relevant for the discussion in Part V.

Note also, that the significant number of dimensionless groups listed above (even

not including such dimensionless groups as the Stefan number (Ste) related to thermal

effects in Section 4.2 in Chapter 4, or the Mach number (Ma) related to the gas com-

pressibility in Section 4.8 of Chapter 4), does not allow one to strictly order the material

according to only Re and We, but makes much more reasonable the present organization

of material in the book, which ascends from the liquid-only to the solid-only phenom-

ena, with the secondary details (and the corresponding dimensionless groups) discussed

in the framework of this structure.

1.3 Mass and Momentum Balance Equations

Here we restrict ourselves to the incompressible case mostly relevant to problems related

to flows of liquids associated with drop impact. The mass balance equation for an

incompressible liquid reduces in hydrodynamics to the so-called continuity equation

in the following invariant form

∇ · v = 0. (1.10)

This scalar equation is insufficient alone to describe fluid flows, since it incorporates

two or three velocity components. Furthermore, not every arbitrary velocity vector will

satisfy this equation and only those velocity fields which do not contradict Eq. (1.10)
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8 Introduction

are kinematically admissible and thus can be realized, in principle. Those velocity fields

which do not satisfy Eq. (1.10) are forbidden, since they lead to hole or fold formation in

the flow field, i.e. to discontinuities, which are not permitted by the continuity equation

(1.10).

The momentum balance equation in hydrodynamics is nothing but the second law of

Newton for an infinitesimally small material element (Lamb 1959, Loitsyanskii 1966,

Landau and Lifshitz 1987, Batchelor 2002)

ρ
Dv

Dt
= ∇ · σ + ρa, (1.11)

where the incompressibility is assumed. The material time derivative is denoted as

D(•)/Dt, ρ is the density, σ is the stress tensor (related to the surface forces) and a

is the acceleration associated with a body force. If the body force is restricted to be the

gravity force, then a = g, with g being acceleration due to gravity.

The fluid particle acceleration expressed by the material time derivative Dv/Dt can

be split into the temporal and convective parts, namely

Dv

Dt
=

∂v

∂t
+ (v · ∇)v. (1.12)

This expression shows that even if the velocity field is stationary and ∂v/∂t = 0, a

material particle will still experience an acceleration when it is entrained by flow to a

location with a different local velocity, which is expressed by the second term on the

right-hand side of Eq. (1.12).

In mechanics of incompressible fluids the stress tensor σ is traditionally split into two

parts: an isotropic one associated with pressure p, and an additional, deviatoric tensor τ

σ = −pI + τ , (1.13)

where I denotes the unit tensor.

Substituting Eq. (1.13) into Eq. (1.11), and using Eq. (1.12), one arrives at the fol-

lowing form of the momentum balance equation

ρ

[

∂v

∂t
+ (v · ∇)v

]

= −∇p + ∇ · τ + ρa, (1.14)

which is known as the Cauchy momentum equation.

The mass and momentum balance Eqs. (1.10) and (1.11) form a system of fundamen-

tal equations required to describe fluid flow. However, these equations are insufficient,

since a statement about material behavior is required to relate the stress tensor σ with

flow kinematics. It should be emphasized that Eqs. (1.10) and (1.11) apply equally to

such different continua as incompressible elastic solids and incompressible fluids. There

is therefore a need to distinguish different types of material behavior, which requires

an additional rheological constitutive equation, which relates to flow kinematics. Some-

times (but very infrequently, e.g. for polymeric liquids; see Doi and Edwards 1986, Bird

et al. 1987) such an equation can be derived from a micromechanical model of mate-

rial of a certain type using methods of statistical physics. Alternatively (and much more

frequently; cf. Loitsyanskii 1966, Landau and Lifshitz 1987, Larson 1988, Batchelor

www.cambridge.org/9781107147904
www.cambridge.org


Cambridge University Press
978-1-107-14790-4 — Collision Phenomena in Liquids and Solids
Alexander L. Yarin , Ilia V. Roisman , Cameron Tropea 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.4 Inviscid and Viscous Newtonian Fluids 9

2002) such an equation is postulated phenomenologically to mimic and generalize cer-

tain experimental observations of material behavior in some simplifying limiting cases.

In Section 1.9 a detailed account of the phenomenological approach to the formula-

tion of rheological constitutive equations of rheologically complex liquids and solids is

given, whereas in the following section the two most important and simplest cases of

the inviscid and viscous Newtonian fluids are covered.

1.4 Inviscid and Viscous Newtonian Fluids: The Incompressible Euler and
Navier–Stokes Equations

Historically the first phenomenological tensorial rheological constitutive equation was

introduced by Euler. He assumed that the deviatoric stresses (already understood at that

time as viscous stresses after Newton’s experiments) are negligibly small and thus the

stress tensor is always isotropic, as in hydrostatics, even though the fluid is in motion

τ = 0, σ = −pI. (1.15)

Bearing in mind Eq. (1.15), the momentum balance (1.14) reduces to

ρ

[

∂v

∂t
+ (v · ∇)v

]

= −∇p + ρa, (1.16)

which is known as the (incompressible) Euler equation.

It should be emphasized that this nonlinear equation for an inviscid fluid can be ana-

lytically integrated if the body forces are conservative, i.e. possess a potential (which is

true, for example, for the gravity force), irrespective of the fluid being incompressible

or compressible [albeit barotropic, i.e. ρ = ρ(p)]. The integral is called the Bernoulli

equation. For incompressible potential flows v = ∇φ (which is equivalent to irrota-

tional flows with ∇ × v = 0), where φ is the hydrodynamic potential, the continuity

equation (1.10) reduces to the Laplace equation for φ

∇
2φ = 0, (1.17)

whereas the Bernoulli integral reads

∂φ

∂t
+

p

ρ
+

(∇φ)2

2
+ gz = f (t ), (1.18)

with g being the magnitude of the gravity acceleration (i.e. a = g), z being the vertical

coordinate and f (t ) being a function of time which can be established from the boundary

conditions. In such cases the kinematics of any fluid mechanical problem is generated

by the corresponding solutions of the Laplace equation (1.17), whereas the dynamics,

i.e. the corresponding pressure, are immediately recovered from the algebraic Bernoulli

equation (1.18).

This simplifying approach, known as potential flow theory or ideal fluid flows, still

may be rather involved when complicated free surface configurations are present and

their evolution must be established. Such situations may require numerical solutions or
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10 Introduction

further simplifications discussed below (see Section 1.5). For the numerical simulations

of drop impact onto liquid surfaces (Weiss and Yarin 1999) it is convenient to use the

integral equivalent of the Laplace equation (Lamb 1959, Tikhonov and Samarskii 1990),

which allows one to find the normal velocity component at the free surface vn = ∂φ/∂n

using the knowledge of the distribution of the potential φ at the free surface. Since the

tangential velocity components can be found by differentiation of the known distribu-

tion of φ over the free surface, the entire velocity vector at the surface can be found

using the information on φ only at the free surface. This forms the foundation of the

Boundary Integral Method (or discretized, numerical equivalent, the Boundary Element

Method, BEM). It is emphasized that the effect of the boundary associated with a solid

wall underneath the liquid layer can be accounted for using the method of images (Weiss

and Yarin 1999). Then, only the free liquid surface is left to be tackled. The time march-

ing required to update the positions of the individual fluid elements at the free surface

involves the kinematic condition there

Dr

Dt
= ∇φ, (1.19)

with r being the position vector, and the equation required to update the potential dis-

tribution at the free surface, which follows from the Bernoulli equation (1.18)

Dφ

Dt
=

(∇φ)2

2
−

σκ

ρ
− gz. (1.20)

In this equation the pressure at the free surface is obtained invoking the Young–

Laplace equation p = σκ , with κ being the mean curvature of the free surface, σ the

surface tension and f (t ) = 0, when a droplet is already connected to a liquid layer,

which extends to infinity. Note that for potential flows, the material time derivative

Dφ

Dt
=

∂φ

∂t
+ u

∂φ

∂x
+ v

∂φ

∂y
+ w

∂φ

∂z
=

∂φ

∂t
+ (∇φ)2 (1.21)

where x, y and z are the Cartesian coordinates, and u, v and w are the corresponding

velocity components.

Potential flow, which is identically irrotational, is rooted in the simplified rheolog-

ical constitutive equation (1.15). Indeed, an initially potential/irrotational flow stays a

potential/irrotational flow at any time under the conditions of Kelvin’s circulation theo-

rem [zero viscosity, as in Eq. (1.15), conservative body forces, and fluid is barotropic]

(Kochin et al. 1964, Batchelor 2002). Intuitively it is approximately valid for low-

viscosity liquids (e.g. those like water), albeit, as was established much later in 1904

by Prandtl, only at some distance away from the solid boundaries (see Section 1.6 in the

present chapter). For sufficiently viscous fluids and/or in cases where the flow develop-

ment sufficiently close to a wall is studied, Eq. (1.15) is insufficient and hydrodynam-

ics according to potential flow theory collapses. An alternative rheological constitutive

equation is needed. This is the Newton–Stokes constitutive equation, which assumes

a linear dependence between the deviatoric stress tensor τ and the rate-of-strain ten-

sor D = (∇v + ∇v
T)/2, with ∇v being the tensor gradient of velocity. Namely, for
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