

Modeling of Atmospheric Chemistry

Mathematical modeling of atmospheric composition is a formidable scientific and computational challenge. This comprehensive presentation of the modeling methods used in atmospheric chemistry focuses on both theory and practice, from the fundamental principles behind models, through to their applications in interpreting observations. An encyclopedic coverage of methods used in atmospheric modeling, including their advantages and disadvantages, makes this a one-stop resource with a large scope. Particular emphasis is given to the mathematical formulation of chemical, radiative, and aerosol processes; advection and turbulent transport; emission and deposition processes; as well as major chapters on model evaluation and inverse modeling. The modeling of atmospheric chemistry is an intrinsically interdisciplinary endeavor, bringing together meteorology, radiative transfer, physical chemistry, and biogeochemistry. This book is therefore of value to a broad readership. Introductory chapters and a review of the relevant mathematics make the book instantly accessible to graduate students and researchers in the atmospheric sciences.

Guy P. Brasseur is a Senior Scientist and former Director at the Max Planck Institute for Meteorology in Hamburg, Germany, and a Distinguished Scholar at the National Center for Atmospheric Research in Boulder, USA. He received his doctor's degree at the University of Brussels and has conducted research in Belgium, the USA, and Germany. He was Professor at the Universities of Brussels and Hamburg. His scientific interests include questions related to atmospheric chemistry and air pollution, biogeochemical cycles, climate change, and upper atmosphere chemistry and dynamics. He has chaired several international research programs, and is associated with national academies in Hamburg, Germany, Brussels, Belgium, and Oslo, Norway.

Daniel J. Jacob is the Vasco McCoy Family Professor of Atmospheric Chemistry and Environmental Engineering at Harvard University. He received his PhD from Caltech in 1985 and joined the Harvard faculty in 1987. His research covers a wide range of topics in atmospheric composition, with focus on model development and applications to interpretation of observations. Among his professional honors are the NASA Distinguished Public Service Medal (2003), the AGU Macelwane Medal (1994), and the Packard Fellowship for Science and Engineering (1989). Jacob has published over 350 research papers and trained over 80 PhD students and postdocs in atmospheric chemistry modeling over the course of his career.

"This exceptional volume by two pioneers in the field covers every essential aspect of atmospheric modeling."

- John Seinfeld, California Institute of Technology

"An impressive and comprehensive description of the theoretical underpinning and practical application of atmospheric chemistry modeling. Soon to be a classic reference for graduate students and researchers in the field."

- Colette L. Heald, Massachusetts Institute of Technology

"Brasseur and Jacob, both world leaders in modeling atmospheric chemistry, have written a thoroughly engaging textbook. The breadth and depth of the material covered in the book is impressive, but a major strength of the book is the ability of the authors to present often complex information in an accessible way. I have no doubt that this book will help educate future generations of scientists and be a reference point for researchers worldwide. It will certainly become a well-thumbed volume on my bookshelf.

- Paul Palmer, University of Edinburgh

"This excellent book provides a comprehensive introduction and reference to modeling of atmospheric chemistry from two of the pioneering authorities in the field. From the historical motivations through to modern-day approaches, the atmospheric physical, chemical and radiative components of the model framework are described. What makes this book particularly relevant and timely is the discussion of the methods for integrating observations and models that are at the forefront of current scientific advancement."

- David P. Edwards, National Center for Atmospheric Research

Modeling of Atmospheric Chemistry

GUY P. BRASSEUR

Max Planck Institute for Meteorology and National Center for Atmospheric Research

DANIEL J. JACOB

Harvard University

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India
79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

 $www. cambridge.org \\ Information on this title: www.cambridge.org/9781107146969$

© Guy P. Brasseur and Daniel J. Jacob 2017

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2017

Printed in the United States of America by Sheridan Books, Inc.

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data Names: Brasseur, Guy. | Jacob, Daniel J., 1958–

Title: Modeling of atmospheric chemistry / Guy P. Brasseur, Max Planck Institute for Meteorology, Hamburg, Daniel J. Jacob, Harvard University.

Description: Cambridge : Cambridge University Press, 2017. | Includes bibliographical references and index.

Identifiers: LCCN 2016040128 | ISBN 9781107146969 (Hardback : alk. paper) Subjects: LCSH: Atmospheric chemistry—Mathematical models. | Atmospheric diffusion—Mathematical models.

Classification: LCC QC879 .B6974 2017 | DDC 551.51/1–dc23 LC record available at https://lccn.loc.gov/2016040128

ISBN 978-1-107-14696-9 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

Contents

P	Preface page xi			xiii	
List of Symbols				xvi	
1		oncept of Model		1	
		Introduction What is a Model?		1	
		Mathematical Models		2 4	
		Meteorological Models		6	
		Climate Models		9	
	1.6	Atmospheric Chemistry Models		11	
		Types of Atmospheric Chemistry Models		15	
	1.8	Models as Components of Observing Systems		17	
	1.9	High-Performance Computing		19	
2	Atmos	spheric Structure and Dynamics		21	
	2.1	Introduction		21	
	2.2	Global Energy Budget		22	
	2.3	1		24	
	2.4			27	
	2.5	1		28	
	2.6	Atmospheric Stability		31	
		2.6.1 The Hydrostatic Approximation		31	
	2.7	2.6.2 Adiabatic Lapse Rate and Stability		32	
		Geostrophic Balance		35	
	2.8			40	
		General Circulation of the Troposphere		41	
		Planetary Boundary Layer Middle Atmosphere Dynamics		47 49	
	2.11	Wildle Atmosphere Dynamics		43	
3	Chemi	ical Processes in the Atmosphere		54	
	3.1	Introduction		54	
	3.2	Oxygen Species and Stratospheric Ozone		55	
	3.3	Hydrogen Oxide Radicals		57	
	3.4	Nitrogen Oxide Radicals		62	
	3.5	Volatile Organic Compounds and Carbon Monoxide		64	
	3.6	Tropospheric Ozone		69	
	3.7	Halogen Radicals		72	
	3.8	Sulfur Species		74	

۷

vi Contents

	3.9	Aeroso	l Particles	75
		3.9.1	Size Distribution	76
		3.9.2	Chemical Composition	78
			Mixing State, Hygroscopicity, and Activation	80
			Optical Properties	81
4	Model	Equation	ns and Numerical Approaches	84
	4.1	Introdu	action	84
	4.2	Contin	uity Equation for Chemical Species	85
		4.2.1	Eulerian and Lagrangian Formulations	85
		4.2.2	Advection	87
		4.2.3	Turbulent Mixing	87
		4.2.4	Convection	89
		4.2.5	Wet Scavenging	89
		4.2.6	Chemistry	90
			Surface Exchange	92
			Green Function for Lagrangian Transport	92
		4.2.9	Initial and Boundary Conditions	94
	4.3	Contin	uity Equation for Aerosols	95
	4.4	Atmos	pheric Lifetime and Characteristic Timescales	97
			Atmospheric Lifetime	97
		4.4.2	Relaxation Timescales in Response to a	
			Perturbation	100
	4.5	Conser	vation Equations for Atmospheric Dynamics	102
		4.5.1	Mass	103
			Momentum	104
			Energy	112
		4.5.4	Primitive and Non-Hydrostatic Equations	114
	4.6		1 Coordinates	116
		4.6.1	Pressure Coordinate System	117
		4.6.2	Log-Pressure Altitude Coordinate System	119
		4.6.3	Terrain-Following Coordinate Systems	120
		4.6.4	Isentropic Coordinate System	122
	4.7	Lower-	-Dimensional Models	124
		4.7.1	Two-Dimensional Models	124
		4.7.2	One-Dimensional Models	127
		4.7.3	Zero-Dimensional Models	128
	4.8	Numer	ical Frameworks for Eulerian Models	129
		4.8.1	Finite Difference (Grid Point) Methods	130
		4.8.2	,	141
		4.8.3	Model Grids	142
	4.9	-	al Methods	150
			Element Method	158
	4.11	_	gian Approaches	160
			Models for Single Trajectories	160
		4.11.2	Stochastic Models	162

vii Contents

		4.11.3	Global and Regional Three-Dimensional Lagrangian	
			Models	164
			Semi-Lagrangian Models	166
	4.12		pheric Plume Models	166
			Gaussian Plume Models	167
			Puff Models	170
	4.13		ical Models	171
			Multiple Linear Regression Models	171
			Artificial Neural Networks	173
			for Splitting	174
	4.15	Filterin	e	178
			Diffusive Filters	179
			Digital Spatial Filters	179
			Spectral Filters	183
			Time-Smoothing Filters	184
	4.16	•	plation and Remapping	184
			Global Polynomial Interpolation	185
			Piecewise Interpolation	189
			Distance-Weighted Interpolation	191
			Kriging	192
			Correction for Local Effects	195
		4.16.6	Conservative Remapping	196
5			of Radiative, Chemical, and Aerosol Rates	205
		Introdu		205
	5.2		ive Transfer	205
			Definitions	206
			Blackbody Radiation	211
		5.2.3	Extra-Terrestrial Solar Spectrum	213
		5.2.4	Penetration of Solar Radiation in the Atmosphere	215
		5.2.5	Emission and Absorption of Terrestrial Radiation	224
	5.3		nase Chemistry	227
		5.3.1	Photolysis	227
		5.3.2	3	229
	5.4	Chemi	cal Mechanisms	232
	5.5	Multip	hase and Heterogeneous Chemistry	235
		5.5.1	Gas-Particle Equilibrium	236
		5.5.2	Mass Transfer Limitations	239
		5.5.3	Reactive Uptake Probability	241
	5.6	Aeroso	ol Microphysics	243
		5.6.1	Formulation of Aerosol Processes	245
		5.6.2	Representation of the Size Distribution	247
6	Nume	rical Met	hods for Chemical Systems	253
	6.1	Introdu	action	253
	6.2	Genera	al Considerations	257

viii Contents

		6.2.1 Fully Explicit Equation	257
		6.2.2 Fully Implicit Equation	258
		6.2.3 Improving Accuracy	259
		6.2.4 Explicit Versus Implicit Solvers	262
	6.3	Explicit Solvers	263
		6.3.1 Exponential Approximation	263
		6.3.2 Quasi Steady-State Approximation	264
		6.3.3 Extrapolation Technique (ET)	264
		6.3.4 CHEMEQ Solver	265
		6.3.5 TWOSTEP method	266
	6.4	Implicit Solvers	268
		6.4.1 Backward Euler	268
		6.4.2 Rosenbrock Solvers	270
		6.4.3 Gear Solver	271
7	Nume	rical Methods for Advection	275
	7.1	Introduction	275
	7.2	The Advection Equation	277
	7.3	Elementary Finite Difference Methods	281
		7.3.1 Methods Using Centered Space Differences	283
		7.3.2 Methods Using Space-Uncentered Differences	293
		7.3.3 Multilevel Algorithms	295
		7.3.4 Performance of Elementary Finite Difference Algorithms	298
		7.3.5 Generalization to Variable Wind Speed and Grid Size	301
		7.3.6 Mass Conservation	302
		7.3.7 Multidimensional Cases	303
		7.3.8 Boundary Conditions	303
	7.4	Elementary Finite Volume Methods	305
		7.4.1 One-Dimensional Formulation	305
		7.4.2 Two-Dimensional Formulation	309
	7.5	Preserving Monotonicity: Flux-Corrected Transport	311
	7.6	Advanced Eulerian Methods	315
	7.7	Lagrangian Methods	325
	7.8	Semi-Lagrangian Methods	328
		7.8.1 Grid Point Based SLT Schemes	329
		7.8.2 Finite Volume Based SLT Schemes	332
	7.9	Spectral, Finite Element, and Spectral Element Methods	334
		Numerical Fixers and Filters	336
	7.11	Concluding Remarks	336
8		eterization of Subgrid-Scale Processes	342
	8.1	Introduction	342
	8.2	Reynolds Decomposition: Mean and Eddy Components	344
		Chemical Covariance	349
	8.4	Closure Relations	351
		8.4.1 First-Order Closure	351
		8.4.2 Higher-Order Closures	352

ix Contents

	8.5	Stocha	astic Representation of Turbulent Reacting Flows	355
	8.6	Nume	rical Solution of the Diffusion Equation	358
		8.6.1	Explicit Schemes for the 1-D Diffusion Equation	359
		8.6.2	Implicit Schemes for the 1-D Diffusion Equation	362
		8.6.3	Numerical Algorithms for the Multidimensional	
			Diffusion Equation	364
	8.7		ary Boundary Layer Processes	366
		8.7.1	Mean Atmospheric Wind Velocity and	
			Temperature	370
			Boundary Layer Turbulence Closure	371
			Surface Layer	374
	8.8	Deep	Convection	378
	8.9		Deposition	383
			Scavenging in Convective Updrafts	383
		8.9.2	Rainout and Washout	384
	8.10	Lightr	ning and NO _x Production	386
			ty Waves	388
		-	mical Barriers	389
	8.13	Free 7	Tropospheric Plumes	390
9	Surfac	e Fluxes		399
-		Introd		399
		Emiss		400
			Terrestrial Biogenic Emissions	402
			Open Fires	408
			Volcanoes	410
			Anthropogenic Emissions	412
			Mechanical Emissions: Sea Salt and Dust	412
	9.3	One-V	Vay Dry Deposition	416
			Dry Deposition Velocity	416
			Momentum Deposition to a Flat Rough	
			Surface	417
		9.3.3	Big-Leaf Model for Dry Deposition	418
			Aerodynamic Resistance	420
		9.3.5	Quasi-Laminar Boundary Layer Resistance	421
			Surface Resistance	422
		9.3.7	Factors Controlling the Dry Deposition Velocity	424
			Gravitational Settling	425
	9.4	Two-V	Way Surface Flux	428
10	Δtmos	nheric (Observations and Model Evaluation	436
		Introd		436
			spheric Observations	438
	10.2		In-Situ Observations of Gases	439
			In-Situ Observations of Aerosols	442
			Remote Sensing	444
			Measurement of Surface Fluxes	448
		10.2.T	1.12dodfellielli 01 Daliace 1 lanes	1 10

x Contents

		10.2.5 Observation Platforms	450
	10.3	Characterization of Errors	454
		10.3.1 Errors in Observations	454
		10.3.2 Errors in Models	454
	10.4	General Considerations for Model Evaluation	458
		10.4.1 Selection of Observations	458
		10.4.2 Use of Satellite Observations	459
		10.4.3 Preliminary Evaluation and Temporal Scales	460
		10.4.4 Aerosol Metrics	463
		10.4.5 Scatterplots	464
	10.5	Measures of Model Skill	467
		10.5.1 Basic Metrics	468
		10.5.2 The Taylor Diagram	475
		10.5.3 The Target Diagram	477
		Significance in the Difference Between Two Data Sets	478
	10.7	Using Models to Interpret Observations	480
1	Inverse	Modeling for Atmospheric Chemistry	487
	11.1	Introduction	487
	11.2	Bayes' Theorem	490
	11.3	A Simple Scalar Example	491
	11.4	Vector-Matrix Tools	496
		11.4.1 Error Covariance Matrix	497
		11.4.2 Gaussian Probability Density Function for Vectors	501
		11.4.3 Jacobian Matrix	501
		11.4.4 Adjoint	502
	11.5	Analytical Inversion	509
		11.5.1 Optimal Estimate	510
		11.5.2 Averaging Kernel Matrix	511
		11.5.3 Degrees of Freedom for Signal	512
		11.5.4 Evaluation of the Inverse Solution	515
		11.5.5 Limitations on State Vector Dimension: Aggregation	
		Error	516
	11.6	Adjoint-Based Inversion	520
	11.7	Markov Chain Monte Carlo (MCMC) Methods	525
	11.8	Other Optimization Methods	526
	11.9	Positivity of the Solution	528
	11.10	Data Assimilation	529
		11.10.1 3DVAR Data Assimilation and the Kalman Filter	531
		11.10.2 4DVAR Data Assimilation	533
	11.11	Observing System Simulation Experiments	533
Α	ppendi	x A Physical Constants and Other Data	538
	A.1	General and Universal Constants	538
	A.2	Earth	538

xi Contents

A.3	Dry Air	539
A.4	Water	539
Appendix	B Units, Multiplying Prefixes, and Conversion Factors	540
B.1	International System of Units	540
B.2	Multiplying Prefixes	540
B.3	Conversion Factors	541
B.4	Commonly Used Units for Atmospheric Concentrations	541
Appendix	C International Reference Atmosphere	542
Appendix	D Chemical Mechanism	544
D.1	Chemical Species and Definitions of Symbols	544
D.2	Photolysis	547
D.3	Gas-Phase Reactions	551
D.4	Heterogeneous Reactions	559
Appendix	E Brief Mathematical Review	561
E.1	Mathematical Functions	561
E.2	Scalars and Vectors	564
E.3	Matrices	566
E.4	Vector Operators	570
E.5	Differential Equations	574
E.6	Transforms	576
E.7	Probability and Statistics	578
Further 1	Reading	589
Index		593

Preface

Modern science dealing with complex dynamical systems increasingly makes use of mathematical models to formalize the description of interactive processes and predict responses to perturbations. Models have become fundamental tools in many disciplines of natural sciences, engineering, and social sciences. They describe the essential aspects of a system using mathematical concepts and languages and they can in this manner provide powerful approximations of reality. They are used to analyze observations, understand relationships, test hypotheses, and project future evolution. Disagreements between models and observations often lead to important advances in theoretical understanding. Models also play a critical role in the development of policy options and in decision-making.

In atmospheric science, mathematical models have long been central tools for weather prediction and climate research. They are now also used extensively to describe the chemistry of the atmosphere. The corresponding model equations describe the factors controlling atmospheric concentrations of chemical species as a function of emissions, transport, chemistry, and deposition. Chemical species are often coupled through intricate mechanisms, and the corresponding differential equations are then also coupled. Simulation of aerosol particles needs to account in addition for microphysical processes governing particle size and composition, as well as interactions with the hydrological cycle through cloud formation. The difficulty of modeling atmospheric composition is compounded by the need to resolve a continuum of temporal and spatial scales stretching over many orders of magnitude from microseconds to many years, from local to global, and involving coupling of transport and chemistry on all scales.

Mathematical modeling of atmospheric chemistry is thus a formidable scientific and computational challenge. It integrates elements of meteorology, radiative transfer, physical chemistry, and biogeochemistry. Solving the large systems of coupled nonlinear partial differential equations that characterize the atmospheric evolution of chemical species requires advanced numerical algorithms and pushes the limits of supercomputing resources.

The purpose of this book is to provide insight into the methods used in models of atmospheric chemistry. The book is designed for graduate students and professionals in atmospheric chemistry, but also more broadly for researchers interested in atmospheric models, numerical methods, and optimization theory.

The book is divided into three parts. The first part presents background material. Chapter 1 introduces the reader to the concept of model and provides a historical perspective on the development of atmospheric and climate models, leading to the development of atmospheric chemistry models. It reviews the

xiii

xiv Preface

different types of atmospheric chemistry models and highlights their role as components of observing systems.

Fundamentals of atmospheric dynamics and chemistry are presented in Chapters 2 and 3. Chapter 2 describes the vertical structure of the atmosphere, defines key parameters that characterize the dry and the wet atmosphere, and introduces the concept of static stability and geostrophic balance. It goes on to describe the general circulation of the atmosphere. Chapter 3 provides a summary survey of the chemical processes relevant to the atmosphere as well as the microphysical processes controlling the evolution of aerosol particles. Chapter 4 presents the fundamental mathematical equations on which atmospheric models are based and gives an introduction to the numerical methods used to solve these equations.

The second part of this book focuses on the formulation of model processes and reviews the numerical algorithms used to solve the model equations. Chapter 5 covers the formulation of radiative transfer, chemical kinetics, and aerosol microphysics. Chapter 6 reviews numerical methods to solve the stiff systems of nonlinear ordinary differential equations that describe atmospheric chemistry mechanisms. Chapter 7 presents numerical algorithms used to solve the advection equation describing transport by resolved winds. The formulation of small-scale (parameterized) transport processes including turbulent mixing, organized convection, plumes, and boundary layer dynamics is addressed in Chapter 8. Chapter 9 reviews formulations of emissions to the atmosphere, deposition to the surface, and two-way coupling between the atmosphere and surface reservoirs.

The third part of this book deals with the role of models as components of the atmospheric observing system. Chapter 10 focuses on model evaluation and presents different metrics for this purpose. It illustrates the importance of models for the interpretation of observational data. Chapter 11 covers fundamental concepts of inverse modeling and data assimilation. It shows how chemical transport models can be integrated with atmospheric observations through optimization theory to provide best estimates of the chemical state of the system and of the driving variables.

At the end of the volume, the reader will find several appendices with numerical values of physical constants and other quantities, unit conversions, and a list of important chemical reactions with corresponding rate constants. Some basic mathematical definitions and relations are also provided.

Over the years, both of us have benefited from numerous discussions with our colleagues, students, and postdoctoral fellows. Several of them have contributed to this book by reviewing chapters, making suggestions, and providing scientific material. We are deeply indebted to them. We would like to thank in particular Helen Amos, Alexander Archibald, Jerome Barre, Mary Barth, Cathy Clerbaux, Jim Crawford, Louisa Emmons, Rolando Garcia, Paul Ginoux, Claire Granier, Alex Guenther, Colette Heald, Jan Kazil, Patrick Kim, Douglas Kinnison, Monika Kopacz, Jean-François Lamarque, Peter Lauritzen, Sasha Madronich, Daniel Marsh, Iain Murray, Vincent-Henri Peuch, Philip Rasch, Brian Ridley, Anne Smith, Piotr Smolarkiewicz, Alex Turner, Xuexi Tie, Stacy Walters, Kevin Wecht, Christine Wiedinmyer, Lin Zhang, and Peter Zoogman. We would like also to acknowledge Sebastian Eastham, Emilie Ehretsmann, Natasha Goss, Lu Hu, Rajesh Kumar, Eloise

xv Preface

Marais, Jost Müsse, Elke Lord, Barbara Petruzzi, Jianxiong Sheng, and Natalia Sudarchikova for their technical assistance during the preparation of the manuscript. A substantial fraction of this volume was written by one of us (G. P. B) at the National Center for Atmospheric Research, which is sponsored by the US National Science Foundation.

Symbols

The symbols used in the different chapters of this book are listed below with their corresponding units in the MKSA system. When no units are given, the quantity is either dimensionless or has no intrinsic dimensions. Appendix B gives further information on units, prefixes, and conversion factors. In some cases, when no confusion exists, the same symbols are used to characterize different variables. Scalars are represented as italics (alphabet letters) or as regular font (Greek and other symbols). Vectors and matrices are represented by lowercase and uppercase bold fonts, respectively.

```
A
             Earth's radius [m]
a
             Surface area density of atmospheric particles [m<sup>2</sup> m<sup>-3</sup>]
A
             Averaging kernel matrix
A
В
В
             Blackbody radiative emission flux [W m<sup>-2</sup>]
             Spectral density of blackbody emission flux (Planck function) [W m<sup>-2</sup> nm<sup>-1</sup>]
B_{\lambda}
\mathbf{C}
             One-dimensional constant flow velocity [m s<sup>-1</sup>]
             Speed of light in vacuum [m s<sup>-1</sup>]
c^*
             Phase velocity of a wave [m s<sup>-1</sup>]
c_g^*
             Group velocity of a wave [m s<sup>-1</sup>]
             Specific heat at constant pressure [J K<sup>-1</sup> kg<sup>-1</sup>]
c_p
             Specific heat at constant volume [J K<sup>-1</sup> kg<sup>-1</sup>]
c_v
C_c
             Slip correction factor
C_D
             Drag coefficient
             Mole fraction or molar mixing ratio of species i
C_i
CRMSE
            Centered root-mean-square-error
D
d
            Displacement height [m]
D
            Divergence of the flow [s<sup>-1</sup>]
            Damköhler number
Da
            Detrainment rate associated with downdrafts in convective systems
D_d
            [\text{kg m}^{-3} \text{ s}^{-1}]
            Molecular diffusion coefficient for species i \text{ [m}^2 \text{ s}^{-1}]
D_i
            Particle diameter [m]
D_p
```

χvi

xvii Symbols

D_u $DOFS$	Detrainment rate associated with updrafts in convective systems [kg $\rm m^{-3}~s^{-1}]$ Degrees of freedom for signal
\mathbf{E} e e_s \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} $E(k)$ E_a E_d	Water vapor partial pressure [Pa] Saturation water vapor pressure [Pa] Eigenvector Emission flux [kg m ⁻² s ⁻¹] Eliassen–Palm Flux [components E_{ϕ} and E_z in kg s ⁻²] Matrix of eigenvectors arranged by columns Spectral distribution of turbulent energy for a given wavenumber k [m ³ s ⁻²] Activation energy [J mol ⁻¹] Entrainment rate associated with downdraft in convective systems [kg m ⁻³ s ⁻¹] Entrainment rate associated with updraft in convective systems [kg m ⁻³ s ⁻¹]
\mathbf{F} f f_A $f_{A,I}$ $f_{i,I}$ F F \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} $F_{D,i}$ F_{λ}	Coriolis factor [s ⁻¹] Fractional area of a model grid cell experiencing precipitation Fractional area of land suitable for saltation Fraction of soluble compound i partitioned in ice water Fraction of soluble compound i partitioned in liquid water Mass flux [kg m ⁻² s ⁻¹] Radiative flux [W m ⁻²] Air mass factor Force vector with its three components F_x , F_y , and F_z [N] Forward model Deposition flux of species i [kg m ⁻² s ⁻¹] Spectral density of the radiative flux [W m ⁻² nm ⁻¹]
G g g g g g g G G G	Vector of gravitational acceleration [m s $^{-2}$] Amplitude of gravitational acceleration [m s $^{-2}$] Amplification function in numerical methods Asymmetry factor Gain factor Green function Gravity wave drag [m s $^{-2}$] Gain matrix Grade of model m
H h H \mathcal{H} H_i	Mixing depth [m] Atmospheric scale height [m] Effective (constant) scale height [m] Dimensionless Henry's law constant for species i

xviii Symbols

I i I I I I I I I I I I I I I I I I I I	Unit vector in the zonal (x) direction Light intensity [W m ⁻²] Identity matrix Segregation ratio for chemical compounds A and B Condensation growth rate of species i [m ³ s ⁻¹]
$ \mathbf{J} $ $ \mathbf{j} $ $ J $ $ J $ $ J $ $ \mathbf{J} $ $ J $ $ J $ $ J $ $ J $ $ J $	Unit vector in the meridional (y) direction Radiative source term $[Wm^{-2} sr^{-1} nm^{-1} m^{-1}]$ Radiative source function $[Wm^{-2} sr^{-1} nm^{-1}]$ Photodissociation (photolysis) frequency $[s^{-1}]$ Cost function Jacobian matrix Coagulation rate between particles i and j $[m^{-3} s^{-1}]$ Nucleation rate $[m^{-3} s^{-1}]$
$egin{array}{c} \mathbf{K} \\ \mathbf{k} \\ k \\ K$	Unit vector in the vertical (z) direction Wavenumber [m ⁻¹] Boltzmann's constant (1.38 \times 10 ⁻²³ J K ⁻¹) von Karman's constant (0.35) Chemical rate constant [first order: s ⁻¹ ; second order: cm ³ s ⁻¹ ; third order cm ⁶ s ⁻²] Mass extinction cross-section [m ² kg ⁻¹] Conductance for vertical transfer of species <i>i</i> in the gas phase [m s ⁻¹] Conductance for vertical transfer of species <i>i</i> in the water phase [m s ⁻¹] Eddy diffusion coefficient [m ² s ⁻¹] Equilibrium constant Henry's law constant [M atm ⁻¹] Effective Henry's law constant [M atm ⁻¹] Eddy diffusion tensor Jacobian matrix (Chapter 11) Acid dissociation constant Eddy viscosity coefficient [m ² s ⁻¹] Knudsen number Air–sea exchange velocity for species <i>i</i> [m s ⁻¹] Eddy diffusivity of heat [m ² s ⁻¹]
L <i>l l L L L L</i>	Mixing length [m] Loss rate constant or loss coefficient of species i [s ⁻¹] Characteristic length [m] Liquid water content [kg water/kg air] Monin–Obukhov length [m]

xix Symbols

T	Lagrange function
L_i	Loss rate of species $i \text{ [m}^{-3} \text{ s}^{-1}]$
L_{vap}	Latent heat of vaporization of liquid water [J kg ⁻¹] Spectral density of the radiance at wavelength λ [W m ⁻² sr ⁻¹ nm ⁻¹]
L_{λ}	spectral density of the radiance at wavelength κ [w iii si liiii]
M	
m	Mean molecular mass of air $(4.81 \times 10^{-26} \text{ kg})$
m	Refraction index
m	Wavenumber
M_a	Molar mass of air $(28.97 \times 10^{-3} \text{ kg mol}^{-1})$
M_d	Mean vertical downdraft convective flux of air [kg m ⁻² s ⁻¹]
M_e	Mean subsidence flux compensating for convective fluxes [kg m ⁻² s ⁻¹]
M_i	Molar mass of species i [kg mol ⁻¹]
M_k	Moment of order k for a given aerosol distribution
M_u	Mean vertical updraft convective flux of air [kg m ⁻² s ⁻¹]
M_w	Molar mass of water $(18.01 \times 10^{-3} \text{ kg mol}^{-1})$
MAD	Mean absolute deviation
MAE	Mean absolute error
MFB	Mean fractional bias
MFE	Mean fractional error
MNAE	Mean normalized absolute error
MNB	Mean normalized bias
N.T.	
N	
N n	Unit outward vector normal to a surface
n	Unit outward vector normal to a surface Number density for air [m ⁻³]
	Number density for air [m ⁻³]
n n_a	
n n_a n_i	Number density for air $[m^{-3}]$ Number density for species i $[m^{-3}]$
$egin{aligned} \mathbf{n} & & & & & \\ n_a & & & & & \\ n_i & & & & & \\ n_N & & & & & \end{aligned}$	Number density for air $[m^{-3}]$ Number density for species i $[m^{-3}]$ Particle number size distribution function $[m^{-4}]$
$egin{aligned} \mathbf{n} & & & & & & & & & & & & & & & & & & &$	Number density for air $[m^{-3}]$ Number density for species i $[m^{-3}]$ Particle number size distribution function $[m^{-4}]$ Particle surface distribution function $[m^2 m^{-4}]$
$egin{aligned} \mathbf{n} & & & & & & & & & & & & & & & & & & &$	Number density for air $[m^{-3}]$ Number density for species i $[m^{-3}]$ Particle number size distribution function $[m^{-4}]$ Particle surface distribution function $[m^2 m^{-4}]$ Particle volume distribution function $[m^3 m^{-4}]$
$egin{aligned} \mathbf{n} & & & & & & & & & & & & & & & & & & &$	Number density for air $[m^{-3}]$ Number density for species i $[m^{-3}]$ Particle number size distribution function $[m^{-4}]$ Particle surface distribution function $[m^2 m^{-4}]$ Particle volume distribution function $[m^3 m^{-4}]$ Avogadro number $(6.022 \times 10^{23} \text{ molecules per mole})$
$egin{aligned} \mathbf{n} & & & & & & & & & & & & & & & & & & &$	Number density for air $[m^{-3}]$ Number density for species i $[m^{-3}]$ Particle number size distribution function $[m^{-4}]$ Particle surface distribution function $[m^2 m^{-4}]$ Particle volume distribution function $[m^3 m^{-4}]$ Avogadro number $(6.022 \times 10^{23} \text{ molecules per mole})$ Normalized mean bias
$egin{aligned} \mathbf{n} & & & & & & & & & & & \\ & n_a & & & & & & & & & & \\ & n_i & & & & & & & & & & \\ & n_N & & & & & & & & & \\ & n_V & & & & & & & & & \\ & NMB & & & & & & & & \\ & \mathbf{P} & & & & & & & & \\ & p & & & & & & & \\ \end{array}$	Number density for air $[m^{-3}]$ Number density for species i $[m^{-3}]$ Particle number size distribution function $[m^{-4}]$ Particle surface distribution function $[m^2 m^{-4}]$ Particle volume distribution function $[m^3 m^{-4}]$ Avogadro number $(6.022 \times 10^{23} \text{ molecules per mole})$ Normalized mean bias
$egin{aligned} \mathbf{n} & & & & & & & & & \\ & & & & & & & & & $	Number density for air $[m^{-3}]$ Number density for species i $[m^{-3}]$ Particle number size distribution function $[m^{-4}]$ Particle surface distribution function $[m^2 m^{-4}]$ Particle volume distribution function $[m^3 m^{-4}]$ Avogadro number $(6.022 \times 10^{23} \text{ molecules per mole})$ Normalized mean bias
$egin{aligned} \mathbf{n} & & & & & & & & & \\ & & & & & & & & & $	Number density for air $[m^{-3}]$ Number density for species i $[m^{-3}]$ Particle number size distribution function $[m^{-4}]$ Particle surface distribution function $[m^2 m^{-4}]$ Particle volume distribution function $[m^3 m^{-4}]$ Avogadro number $(6.022 \times 10^{23} \text{ molecules per mole})$ Normalized mean bias Pressure $[Pa]$ Production rate of species i $[kg m^{-3} s^{-1}]$
$egin{array}{lll} \mathbf{n} & & & & & & \\ & n_a & & & & & \\ & n_i & & & & & \\ & n_N & & & & & \\ & n_V & & & & & \\ & \mathcal{N}_A & & & & & \\ & \mathcal{N}MB & & & & \\ & \mathbf{P} & & & & & \\ & \mathbf{P} & & & & & \\ & p & & & & \\ & p_i & & & & \\ & p_s & & & & \\ & \end{array}$	Number density for air $[m^{-3}]$ Number density for species i $[m^{-3}]$ Particle number size distribution function $[m^{-4}]$ Particle surface distribution function $[m^2 m^{-4}]$ Particle volume distribution function $[m^3 m^{-4}]$ Avogadro number $(6.022 \times 10^{23} \text{ molecules per mole})$ Normalized mean bias Pressure $[Pa]$ Production rate of species i $[kg m^{-3} s^{-1}]$ Surface pressure $[Pa]$
$egin{aligned} \mathbf{n} & & & & & & & & & & \\ & & & & & & & & $	Number density for air $[m^{-3}]$ Number density for species i $[m^{-3}]$ Particle number size distribution function $[m^{-4}]$ Particle surface distribution function $[m^2 m^{-4}]$ Particle volume distribution function $[m^3 m^{-4}]$ Avogadro number $(6.022 \times 10^{23} \text{ molecules per mole})$ Normalized mean bias Pressure $[Pa]$ Production rate of species i $[kg m^{-3} s^{-1}]$ Surface pressure $[Pa]$ Phase function for scattered radiation
$egin{aligned} \mathbf{n} & & & & & & & & & & & \\ & & & & & & & $	Number density for air $[m^{-3}]$ Number density for species i $[m^{-3}]$ Particle number size distribution function $[m^{-4}]$ Particle surface distribution function $[m^{2} m^{-4}]$ Particle volume distribution function $[m^{3} m^{-4}]$ Avogadro number $(6.022 \times 10^{23} \text{ molecules per mole})$ Normalized mean bias Pressure $[Pa]$ Production rate of species i $[kg m^{-3} s^{-1}]$ Surface pressure $[Pa]$ Phase function for scattered radiation Ertel potential vorticity $[m^{2} s^{-2} \text{ K kg}^{-1}]$
$\begin{array}{c} \mathbf{n} \\ n_a \\ n_i \\ n_N \\ n_S \\ n_V \\ \mathcal{N}_A \\ NMB \\ \end{array}$ $\begin{array}{c} \mathbf{P} \\ p \\ p_d \\ p_i \\ p_s \\ P \\ P \\ P \end{array}$	Number density for air $[m^{-3}]$ Number density for species i $[m^{-3}]$ Particle number size distribution function $[m^{-4}]$ Particle surface distribution function $[m^2 m^{-4}]$ Particle volume distribution function $[m^3 m^{-4}]$ Avogadro number $(6.022 \times 10^{23} \text{ molecules per mole})$ Normalized mean bias Pressure $[Pa]$ Pressure of dry air $[Pa]$ Production rate of species i $[kg m^{-3} s^{-1}]$ Surface pressure $[Pa]$ Phase function for scattered radiation Ertel potential vorticity $[m^2 s^{-2} K kg^{-1}]$ Probability density function
$egin{aligned} \mathbf{n} & & & & & & & & & & \\ & & & & & & & & $	Number density for air $[m^{-3}]$ Number density for species i $[m^{-3}]$ Particle number size distribution function $[m^{-4}]$ Particle surface distribution function $[m^2 m^{-4}]$ Particle volume distribution function $[m^3 m^{-4}]$ Avogadro number $(6.022 \times 10^{23} \text{ molecules per mole})$ Normalized mean bias Pressure $[Pa]$ Production rate of species i $[kg m^{-3} s^{-1}]$ Surface pressure $[Pa]$ Phase function for scattered radiation Ertel potential vorticity $[m^2 s^{-2} K kg^{-1}]$ Probability density function Steric factor
$\begin{array}{c} \mathbf{n} \\ n_a \\ n_i \\ n_N \\ n_S \\ n_V \\ \mathcal{N}_A \\ NMB \\ \end{array}$ $\begin{array}{c} \mathbf{P} \\ p \\ p_d \\ p_i \\ p_s \\ P \\ P \\ P \end{array}$	Number density for air $[m^{-3}]$ Number density for species i $[m^{-3}]$ Particle number size distribution function $[m^{-4}]$ Particle surface distribution function $[m^2 m^{-4}]$ Particle volume distribution function $[m^3 m^{-4}]$ Avogadro number $(6.022 \times 10^{23} \text{ molecules per mole})$ Normalized mean bias Pressure $[Pa]$ Pressure of dry air $[Pa]$ Production rate of species i $[kg m^{-3} s^{-1}]$ Surface pressure $[Pa]$ Phase function for scattered radiation Ertel potential vorticity $[m^2 s^{-2} K kg^{-1}]$ Probability density function

Pr

Prandtl number

xx Symbols

Q	
q	Specific humidity [kg water vapor/kg of air]
q	Diabatic heating expressed in K day ⁻¹
q	Actinic flux [photons m ⁻² s ⁻¹]
q_k	Water concentration in hydrometeor of type k
q_λ	Photon flux density [photons m ⁻² s ⁻¹ nm ⁻¹]
Q	Diabatic heating rate [J kg ⁻¹ s ⁻¹ or W m ⁻³]
Q_{abs}	Absorption efficiency
Q_{ext}	Extinction efficiency
Q_s	Saltation flux [kg m ⁻¹ s ⁻¹]
Q_{scat}	Scattering efficiency
R	
r	Geometric distance from the center of the Earth
r	Position vector
r	Particle radius [m]
r_w	Mass mixing ratio of water vapor [kg kg ⁻¹]
r	Pearson correlation coefficient
R	Gas constant for air [J K ⁻¹ kg ⁻¹]
$\mathcal R$	Universal gas constant (8.3143 J K ⁻¹ mol ⁻¹)
R^2	Coefficient of determination
R_A	Aerodynamic resistance [s m ⁻¹]
$R_{B,i}$	Boundary resistance for species i [s m ⁻¹]
$R_{C,i}$	Surface resistance for species i [s m ⁻¹]
R_d	Gas constant for dry air (287 J K ⁻¹ kg ⁻¹)
Re	Reynolds number
RH	Relative humidity [percent]
Ri	Richardson number
R_i	Total resistance to dry deposition of species i [s m ⁻¹]
RMSE	Root mean square error
R_w	Gas constant for water vapor (461.5 J $K^{-1} kg^{-1}$)
S	
S_i	Source rate of species i (in mass) [kg m ⁻³ s ⁻¹]
S	Solar energy flux [W m ⁻²] or solar constant (approx. 1368 W m ⁻²)
S	Error covariance matrix
S'	Error correlation matrix
S_a	Aggregation error covariance matrix
S_A	Prior error covariance matrix
S_{I}	Instrument error covariance matrix
$S_{\mathbf{M}}$	Forward model error covariance matrix
$S_{\mathbf{o}}$	Observational error covariance matrix
$\hat{\mathbf{S}}_{\mathbf{R}}$	Representation error covariance matrix
Ŝ	Posterior error covariance matrix
Sc_i	Schmidt number for species <i>i</i>

xxi Symbols

Time [s]
Student's variable for the <i>t</i> -test
Transmission of radiation
Absolute temperature [K]
Effective temperature of the Earth [K]
Turbulent kinetic energy [m ² s ⁻¹]
Effective temperature of the Sun
Virtual temperature [K]
Zonal component of wind velocity [m s ⁻¹]
Path length [kg m ⁻²]
Friction velocity [m s ⁻¹]
Residual zonal wind velocity [m s ⁻¹]
Anti-diffusion velocity [m s ⁻¹]
Zonal component of the geostrophic wind [m s ⁻¹]
Wind velocity 10 m above the surface [m s ⁻¹]
, t
Meridional component of wind velocity [m s ⁻¹]
Residual meridional wind velocity [m s ⁻¹]
Wind velocity vector in Earth's rotating frame [m s ⁻¹]
Meridional component of the geostrophic wind [m s ⁻¹]
Mean thermal velocity [m s ⁻¹]
Molar volume [m ³ mol ⁻¹]
Aerosol volume density [m ³ m ⁻³]
Wind velocity in inertial frame [m s ⁻¹]
Translational Earth's rotation velocity [m s ⁻¹]
Translational Earth's Totation Velocity [iii s]
Vertical component of wind velocity [m s ⁻¹]
Residual vertical wind velocity [m s ⁻¹]
Convective velocity scale [m s ⁻¹]
Surface deposition velocity of species $i \text{ [m s}^{-1}]$
Terminal settling velocity [m s ⁻¹]
Geometric distance in the zonal direction [m]
State vector (often refers to the true value)
Optimal estimate of state vector
Prior estimate of state vector
Geometric distance in the meridional direction [m]
Observation vector

xxii Symbols

L	
Z	Geometric altitude [m]
$z_{0,m}$	Aerodynamic roughness length [m]
$Z^{'}$	Log pressure altitude [m]
Z	Potential vorticity [s ⁻¹ m ⁻¹]
Z_{AB}	Collision frequency for molecules A and B [s ⁻¹]
α	
α	Albedo
α	Aerosol particle size parameter
α	Mass accommodation coefficient
α	Courant number
α_T	Thermal diffusion factor
β	
β	Fourier number
β_{ext}	Aerosol extinction coefficient [m ⁻¹]
β_{abs}	Aerosol absorption coefficient [m ⁻¹]
β_{scat}	Aerosol scattering coefficient [m ⁻¹]
$\beta_{i,j}$	Coagulation coefficient for particles i and j [m ³ s ⁻¹]
γ	
γ	Reactive uptake coefficient for heterogeneous chemical process
γ	Regularization factor
γ_c	Coefficient for non-local turbulent transfer
Γ	Actual atmospheric lapse rate [K m ⁻¹]
Γ	Mean age of air [s]
Γ_d	Dry adiabatic lapse rate [K m ⁻¹]
Γ_w	Wet adiabatic lapse rate [K m ⁻¹]
Γ_{ϖ}	Aggregation matrix
δ	
δ	Dirac function
ΔH	Enthalpy of dissolution [J mol ⁻¹]
3	
ε_A	Quantum efficiency (or yield) for the photolysis of molecule A
o_3	Observational error vector
$\epsilon_{\rm a}$	Aggregation error vector
$\epsilon_{\mathbf{A}}$	Prior estimate error vector
$\epsilon_{\rm I}$	Instrument error vector
$\epsilon_{\mathbf{M}}$	Forward model error vector
$\epsilon_{ m R}$	Representation error vector
ζ	
ζ	Relative vorticity of the flow [s ⁻¹]

xxiii Symbols

```
η
       Step mountain coordinate (eta coordinate)
η
θ
θ
        Zenithal direction [radians]
θ
        Potential temperature [K]
\theta_{\nu}
        Virtual potential temperature [K]
λ
       Longitude [radians]
λ
λ
        Wavelength [m]
       Mean free path of air molecules [m]
λ
       Lyapunov exponent [s<sup>-1</sup>]
λ
       Eigenvalue associated with eigenvector \mathbf{e}_i
\lambda_i
        Leaf area index (LAI) [m<sup>2</sup> m<sup>-2</sup>]
Λ
μ
       Cosine of zenithal direction (\theta)
μ
       Molecular dynamic viscosity coefficient [Pa s or kg m<sup>-1</sup> s<sup>-1</sup>]
μ
        Mass mixing ratio of species i [kg kg<sup>-1</sup>]
\mu_i
        Mass mixing ratio of water vapor [kg kg<sup>-1</sup>]
\mu_w
       Kinematic viscosity [m<sup>2</sup> s<sup>-1</sup>]
        Asselin-filter parameter
ν
       Frequency [Hz]
       Ion-neutral collision frequency [s<sup>-1</sup>]
v_{ion}
\pi
       3.14159
π
ρ
       Mass density of air [kg m<sup>-3</sup>]
\rho_a
       Mass density of dry air [kg m<sup>-3</sup>]
\rho_d
       Mass density of species i [kg m<sup>-3</sup>]
\rho_i
       Mass density of particles or drops [kg m<sup>-3</sup>]
\rho_p
       Mass density of water vapor [kg m<sup>-3</sup>]
\rho_w
       Stefan-Boltzmann constant (5.67 \times 10<sup>-8</sup> W m<sup>-2</sup> K<sup>-4</sup>)
σ
       Standard deviation
σ
       Normalized pressure coordinate (sigma coordinate)
σ
       Pseudo density in isentropic coordinates
\tilde{\sigma}
       Absorption cross-section for molecule A [m<sup>2</sup>]
\sigma_A
```


xxiv Symbols

-	
τ τ	Optical depth
τ	Lifetime [s]
τ	Stress tensor
$\tau_{i,j}$	Element of the stress tensor
1,5	
φ	
φ	Latitude [radians]
φ	Azimuthal direction
ϕ	Radial basis function
Φ	Geopotential [m ² s ⁻²]
Φ_{∞}	Solar flux at the top of the atmosphere [W m ⁻²]
Φ_k	Basis function in the spectral element method
Φ_{λ}	Spectral density of solar flux [W m ⁻² nm ⁻¹]
χ	
χ	Solar zenith angle
	Solar zenith angle Velocity potential
χ	•
χ χ Ψ	Velocity potential
χ χ Ψ	Velocity potential Generic mathematical function or variable
χ χ Ψ Ψ	Velocity potential Generic mathematical function or variable Streamfunction of the flow
χ χ Ψ	Velocity potential Generic mathematical function or variable
χ χ Ψ Ψ Ψ	Velocity potential Generic mathematical function or variable Streamfunction of the flow
χ χ Ψ Ψ Ψ	Velocity potential Generic mathematical function or variable Streamfunction of the flow Montgomery function (isentropic coordinate system) [J kg ⁻¹ or m ² s ⁻²]
χ χ Ψ Ψ Ψ ω	Velocity potential $ \begin{tabular}{ll} \hline \end{tabular} \begin{tabular}{ll} Generic mathematical function or variable \\ Streamfunction of the flow \\ Montgomery function (isentropic coordinate system) [J kg^{-1} or m^2 s^{-2}] \\ \hline \begin{tabular}{ll} ``Vertical'' velocity in the pressure coordinate system [Pa s^{-1}] \\ \hline \end{tabular} $
χ γ Ψ Ψ Ψ ω ω	Velocity potential Generic mathematical function or variable Streamfunction of the flow Montgomery function (isentropic coordinate system) [J kg ⁻¹ or m ² s ⁻²] "Vertical" velocity in the pressure coordinate system [Pa s ⁻¹] Single scattering albedo
χ Ψ Ψ Ψ ω ω ω	Velocity potential $ \begin{tabular}{ll} Generic mathematical function or variable \\ Streamfunction of the flow \\ Montgomery function (isentropic coordinate system) [J kg^{-1} or m^2 s^{-2}] \\ \begin{tabular}{ll} ``Vertical'' velocity in the pressure coordinate system [Pa s^{-1}] \\ Single scattering albedo \\ Angular Earth rotation period (7.292 \times~10^{-5}~{\rm rad~s^{-1}}) \\ \end{tabular} $
χ γ Ψ Ψ Ψ ω ω	Velocity potential Generic mathematical function or variable Streamfunction of the flow Montgomery function (isentropic coordinate system) [J kg ⁻¹ or m ² s ⁻²] "Vertical" velocity in the pressure coordinate system [Pa s ⁻¹] Single scattering albedo