

A Primer on Fourier Analysis for the Geosciences

Time-series analysis is used to identify and quantify periodic features in datasets and has many applications across the geosciences, from analysing weather data, to solid-Earth geophysical modelling. This intuitive introduction provides a practical 'how-to' guide to basic Fourier theory, with a particular focus on Earth system applications. The book starts with a discussion of statistical correlation, before introducing Fourier series and building to the Fast Fourier Transform (FFT) and related periodogram techniques. The theory is illustrated with numerous worked examples using R datasets, from Milankovitch orbital-forcing cycles to tidal harmonics and exoplanet orbital periods. These examples highlight the key concepts and encourage readers to investigate more advanced time-series techniques. It concludes with a consideration of statistical effect-size and significance. This useful book is ideal for graduate students and researchers in the Earth system sciences who are looking for an accessible introduction to time-series analysis.

DR ROBIN CROCKETT is Reader in Data Analysis in the Faculty of Arts, Science and Technology at the University of Northampton, UK. He is a member of the IMA and the IOP and holds Chartered Scientist Status. He specialises in investigating periodic, recurrent and anomalous features in data, and has led a highly successful short course on Fourier analysis at the European Geosciences Union General Assembly for many years.

A Primer on Fourier Analysis for the Geosciences

ROBIN CROCKETT University of Northampton

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India
79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107142886
DOI: 10.1017/9781316543818

© Robin Crockett 2019

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2019

Printed and bound in Great Britain by Clays Ltd, Elcograf S.p.A.

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data Names: Crockett, R. G. M. (Robin G. M.), author.

Title: A primer on Fourier analysis for the geosciences / Robin Crockett (University of Northampton).

Description: Cambridge: Cambridge University Press, [2019] | Includes bibliographical references and index.

Identifiers: LCCN 2018040454 | ISBN 9781107142886 (hardback) |

ISBN 9781316600245 (pbk.) Subjects: LCSH: Fourier analysis. | Earth sciences–Mathematics.

Classification: LCC QA403.5 .C76 2019 | DDC 515/.24330155–dc23 LC record available at https://lccn.loc.gov/2018040454

ISBN 978-1-107-14288-6 Hardback ISBN 978-1-316-60024-5 Paperback

Additional resources for this publication at www.cambridge.org/fourier

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

For The Elf, The Moth and The Beagle.

Contents

	Preface	page xiii	
	Acknowledgements	xiv	
1	What Is Fourier Analysis?	1	
1.1	What Does This Book Set Out to Do?	2	
1.2	Choice of Software	4	
1.3	Structure of the Book		
	1.3.1 Examples and Exercises	6	
1.4	What Previous Mathematics Do You Need?	6	
2	Covariance-Based Approaches	9	
2.1	Covariance and Correlation	9	
	2.1.1 Interpreting the Correlation Coefficient	10	
	2.1.2 Limitations	13	
2.2	Lagged Correlation		
	2.2.1 Same-Sense Cross-Correlation	15	
	2.2.2 Opposite-Sense Cross-Correlation	18	
2.3	Autocorrelation	20	
2.4	Simple Linear Regression	23	
2.5	Periodic Features: Correlation and Regression with Sinusoids	24	
2.6	What Correlation and Regression 'See'	27	
2.7	Summary	29	
3	Fourier Series	31	
3.1	What Are Fourier Series?	32	
3.2	Orthogonality		
	3.2.1 Clarification of Orthogonality	33	
	3.2.2 Alternative Justification of Fourier Series	33	
3.3	Fourier Series for General Time Function	34	

viii Contents

	3.3.1	Alternative Justification Revisited	35
	3.3.2	Angular Frequency	36
3.4	Symmetry		
	3.4.1	Pure Odd- and Even-Symmetry	37
	3.4.2	General Mixed Symmetry	39
	3.4.3	Symmetry and Phase	41
3.5	Genera	al Properties of Fourier Series	41
	3.5.1	Symmetry and Harmonic Composition	41
	3.5.2	Linearity	41
3.6	Comp	lex Fourier Series	42
	3.6.1	Negative Frequencies	43
	3.6.2	Real Data and Frequency Components	43
	3.6.3	Complex Data	44
3.7	Summ	ary	45
4	Fouri	er Transforms	46
4.1	Freque	ency Functions	46
4.2	The Fo	ourier Transform	47
	4.2.1	Fourier Transform Notation	48
	4.2.2	Angular Frequency	49
	4.2.3	Integrability	49
4.3	Genera	al Properties of the Fourier Transform	50
	4.3.1	Symmetry	50
	4.3.2	Linearity	50
4.4	Fourie	r Transforms of Sinusoids	51
	4.4.1	The Dirac δ-Function	51
	4.4.2	Fourier Transforms of Sines and Cosines	53
	4.4.3	Fourier Transform of a General Sinusoid	53
	4.4.4	From Continuous to Discrete Functions	55
4.5	The D	iscrete Fourier Transform	56
	4.5.1	Derivation of the DFT from Fourier Series	56
4.6	The D	FT as a Linear Transformation	59
	4.6.1	The DFT Matrix and the Fast Fourier Transform	59
	4.6.2	The Inverse DFT	61
	4.6.3	Linearity of the DFT	61
4.7	The D	FT Frequency Spectrum	62
4.8	Nyqui	st–Shannon Sampling Theorem	64
	4.8.1	Resolving the Nyquist Frequency	65
4.9	Summ	ary	66

	Contents	ix
5	Using the FFT to Identify Periodic Features in Time-Series	69
5.1	The Standard FFT	69
3.1	5.1.1 Other Implementations of the FFT	70
5.2	Time-Series with Few Frequencies	70
3.2	5.2.1 Preliminary Investigation	70
	5.2.2 Frequency Spectrum, FFT	71
	5.2.3 Amplitude Spectrum	73
	5.2.4 Power Spectrum	76
	5.2.5 Further Comments	70 77
5.3	Time-Series with Many Frequencies	78
5.5	5.3.1 Initial Investigation	78 78
	5.3.2 Power Spectrum	79
	5.3.3 Further Comments	82
5.4	Time-Series with Trends	83
3.4	5.4.1 Initial Investigation	83
	5.4.1 Initial investigation 5.4.2 Detrending the Data	85
5.5	•	87
5.5	Time-Series with Noisy Spectra 5.5.1 Power Spectrum	87
5.6	*	89
3.0	Summary	09
6	Constraints on the FFT	92
6.1	Minimum Resolvable Frequency and Low-Frequency Features	92
	6.1.1 Illustration: Low and Zero Frequency Features	92
	6.1.2 Windowing (Tapering)	94
6.2	Maximum Resolvable Frequency and Above-Nyquist Features	96
	6.2.1 Aliasing	97
	6.2.2 Illustration: Aliased Frequency	98
6.3	Resolving Intermediate Non-Harmonic Frequencies	99
	6.3.1 Linear Dependence of Intermediate Frequencies	100
	6.3.2 Illustration: Tidal Harmonics	101
	6.3.3 Sinusoidal Dummy Data	102
6.4	Re-Windowing Data, Padding	105
	6.4.1 Illustration: Tidal Harmonics	105
6.5	Resolving Adjacent Frequencies	107
	6.5.1 Illustration: Tidal Harmonics	108
6.6	Missing Data	
6.7	Summary	

x Contents

7	Statio	narity and Spectrograms	112
7.1	Stationarity		
	7.1.1	Strong (Strict) Stationarity	112
	7.1.2	Weak Stationarity	113
7.2		Time Fourier Transform	113
	7.2.1	Time and Frequency Resolutions of the STFT	114
	7.2.2	Uncertainty Principle	114
7.3	Spectr	rograms	115
	7.3.1	Overlapping Sections and Time-Frequency Resolution	115
	7.3.2	Spectrogram: Stationary Data	116
	7.3.3	Spectrogram: Non-Stationary Data	118
7.4	Summ	ary	121
8	Noise	in Time-Series	123
8.1	Noise	Colour	123
	8.1.1	White Noise	124
	8.1.2	Red, Brownian and Pink Noise	124
	8.1.3	Blue and Violet Noise	125
8.2		ical Characterisations	125
		Autocorrelation and Autoregression	125
	8.2.2	Autoregressive Noise Models	126
8.3		-Law Relationships	129
8.4	Real I	Data with Red-Noise	132
	8.4.1	Autoregression and Autocorrelation	132
	8.4.2	Power Law	134
8.5	Summ	ary	135
9		dograms and Significance	137
9.1	The So	chuster, or Classical, Periodogram	138
	9.1.1	Vector Summation	141
	9.1.2	Probability and Significance	141
	9.1.3	Comparing the Schuster Periodogram to the DFT	143
9.2	Lomb-Scargle Periodogram		144
	9.2.1	Probability and Significance	145
	9.2.2	• 1 • •	146
	9.2.3	1 1	147
	9.2.4	Further Comments	150
9.3	FFT Spectra and Significance		150
	9.3.1	Power, Energy and Variance	151
	9.3.2	Proportion of Variance Explained	152

		Contents	xi
	0.2.2	61.016.000	154
	9.3.3	Significance, <i>p</i> -value	154
	9.3.4	Real Distinct-Frequency Data	156
9.4	Summ	ary	157
App	Appendix A DFT Matrices and Symmetries		159
Appendix B		Simple Spectrogram Code	164
Further Reading and Online Resources References Index			170
			172
			174

Preface

This book evolved from the Fast Fourier Transform (FFT) and time-series short-courses I have given at the European Geosciences Union (EGU) General Assemblies over several years. Those short-courses were, in turn, an evolution from *ad hoc* sets of postgraduate tutorial materials to something more organised and integrated, *i.e.* from one-to-one response-to-questions delivery to one-to-many questions-anticipated delivery.

I did not know what to expect when I gave the first EGU short-course in 2009 – would anyone even turn up? Well, many more people attended than the allocated room could sensibly accommodate – and, needless to say, I did not anticipate all the questions. However, its success led to an invitation to give a similar short-course the following year – which again more than filled the bigger room allocated. Since then the course has rolled forward from year to year, each version maintaining the core FFT coverage but with varying details in response to suggestions and feedback from the previous year.

This book is a primer and so, by definition, cannot cover everything. It cannot even cover every type of geoscience time-series but it aims to give early-stage researchers, including research students, in the geosciences – and other sciences – a basic but robust grasp of the essential properties of the FFT in the context of time-series analysis. It focuses on that one specific task and, noting that it is intended for non-specialists to fill in the details that more advanced books on Fourier theory tend to pass over, endeavours to do this by presenting intuitive and illustrative theory and explanations rather than more abstract ones. As well as presenting core theory and practice for those wishing to use the FFT for time-series analysis, it goes a little deeper into the theory to give early-stage researchers sufficient depth and awareness of the limitations in order to critically evaluate other people's application and interpretation of the FFT.

I hope you find it useful both of itself and as a pointer and introduction to more advanced texts.

xiii

Acknowledgements

I am grateful to Emma Kiddle, Susan Francis and Laura Clark – my editors at Cambridge University Press – who picked-up on my European Geosciences Union short-courses and invited me to propose an extended book version thereof. I am also grateful to Zoë Pruce, Sarah Lambert and Cassi Roberts at Cambridge University Press to whom it fell to keep me focused when the consequences of sports injuries I acquired as a younger man meant I had to pretty much suspend the preparation for the better part of a year.

Going further back, I would like to thank Bruce Malamud who first invited me to give a short-course at the 2009 European Geosciences Union General Assembly. I would also like to thank Phil Picton and Frédéric Perrier who said 'just do it' and gave me valuable support and encouragement throughout. And ... everyone who has developed and disseminated Fourier theory before me.