Cloud Radio Access Networks
Principles, Technologies, and Applications

Understand the fundamental theory, current techniques, and potential applications of cloud radio access networks (C-RANs) with this unique text. Leading experts from academia and industry guide you through all of the key elements of C-RANs, including system architecture, performance analysis, technologies in both the physical and medium access control layers, self-organizing and green networking, standards development, and standardization perspectives. Recent developments in the field are covered, as well as open research challenges and possible future directions.

The first book to focus exclusively on cloud radio access networks, this is essential reading for engineers in academia and industry working on future wireless networks.

Tony Q. S. Quek is an Associate Professor in the Information Systems Technology and Design Pillar at the Singapore University of Technology and Design. He is a Senior Member of the IEEE and a co-editor of the book Small Cell Networks (Cambridge University Press, 2013).

Mugen Peng is a Professor in the School of Information and Communication Engineering at the Beijing University of Posts and Telecommunications. He is a Fellow of the IET and a recipient of the First Grade Award of Technological Invention from both the Ministry of Education of China and the Ministry of Industry and Information Technology of China.

Osvaldo Simeone is a Professor affiliated with the Center for Information Processing Research at the New Jersey Institute of Technology. He is a Fellow of the IEEE.

Wei Yu is a Professor and Canada Research Chair in Information Theory and Wireless Communications at the University of Toronto. He is a Fellow of the IEEE.
“This is the first book that covers the fundamental theory, current techniques, and applications of cloud radio access networks. The coverage is balanced and the topics are very timely... This book should be an essential reading for graduate students, engineers, and researchers who are interested in exploring this important field of wireless communication research.”

Zhi-Quan Luo, The Chinese University of Hong Kong, Shenzhen
Cloud Radio Access Networks
Principles, Technologies, and Applications

TONY Q. S. QUEK
Singapore University of Technology and Design

MUGEN PENG
Beijing University of Posts and Telecommunications

OSVALDO SIMEONE
New Jersey Institute of Technology

WEI YU
University of Toronto
Contents

Acknowledgments xi
Foreword xiii
Preface xv
List of Contributors xvi

Part I Architecture of C-RANs 1

1 Overview of C-RAN 3
1.1 Introduction 3
1.2 C-RAN Basic 4
1.3 Challenges 6
1.4 Evolved C-RAN with NGFI 7
1.5 Deployment Cases and Standardization Activities 9
References 11

Part II Physical-Layer Design in C-RANs 33

3 The Tradeoff of Computational Complexity and Achievable Rates in C-RANs 35
3.1 Introduction 35
3.2 Basics 36
3.3 Complexity Model and Metrics 38
3.4 Complexity Analysis Framework 42
3.5 Joint RAN and Cloud Scheduling 46
3.6 Summary 52
References 53
4 Cooperative Beamforming and Resource Optimization in C-RANs
 4.1 C-RAN Model 55
 4.2 Uplink C-RAN 60
 4.3 Downlink C-RAN 70
 4.4 Summary 79
 References 80

5 Training Design and Channel Estimation in C-RANs
 5.1 Background Overview 82
 5.2 Superimposed Training Scheme in C-RANs 85
 5.3 Segment Training Scheme in C-RANs 101
 5.4 Non-Training-Based Channel Estimation in C-RANs 112
 5.5 Channel Estimation in Fronthaul Constrained and Large-Scale C-RANs 113
 5.6 Summary 114
 References 115

6 Massive MIMO in C-RANs
 6.1 Introduction 117
 6.2 System Model 119
 6.3 Achievable Rate 121
 6.4 Energy Efficiency 128
 6.5 Joint User Scheduling and RAU Selection Algorithms 132
 6.6 Numerical Results 134
 6.7 Conclusion 142
 6.8 Appendix 142
 References 146

7 Large-Scale Convex Optimization for C-RANs
 7.1 Introduction 149
 7.2 Large-Scale Convex Optimization in Dense C-RANs 152
 7.3 Matrix Stuffing for Fast Cone-Programming Transformation 157
 7.4 Operator Splitting for Large-Scale Homogeneous Self-Dual Embedding 162
 7.5 Numerical Results 170
 7.6 Summary and Discussion 174
 References 175

8 Fronthaul Compression in C-RANs
 8.1 Introduction 179
 8.2 State of the Art: Point-to-Point Fronthaul Processing 181
 8.3 Network-Aware Fronthaul Processing: Uplink 184
 8.4 Network-Aware Fronthaul Processing: Downlink 191
 8.5 Network-Aware Fronthaul Processing: In-Network Processing 194
 8.6 Concluding Remarks 196
8.7 Acknowledgments
References

9 Adaptive Compression in C-RANs
9.1 Introduction
9.2 System Model
9.3 Block Error Rate Analysis
9.4 Adaptive Compression under QoS Constraint
9.5 Simulation Results
9.6 Conclusions
References

Part III Resource Allocation and Networking in C-RANs

10 Resource Management of Heterogeneous C-RANs
10.1 Introduction
10.2 Future Network Architectures
10.3 Practical Challenges in C-RAN and H-CRAN
10.4 Cognitive Radio Resource Management and Software-Defined Design
10.5 Feedbackless Radio Access
10.6 Information-Bridged Resource Optimization and Social Data Cache-Based Routing
10.7 Conclusion
References

11 Coordinated Scheduling in C-RANs
11.1 Introduction
11.2 Coordinated Scheduling in a Single Cloud-RAN
11.3 Hybrid Scheduling in a Multicloud-RAN
11.4 General Framework and Future Applications
11.5 Conclusion
References

12 Delay-Aware Radio Resource Allocation Optimization in Heterogeneous C-RANs
12.1 Introduction
12.2 General Model and Methodology
12.3 Delay-Aware Radio-Resource-Optimization Algorithms
12.4 Concluding Remarks
References

13 C-RAN Using Wireless Fronthaul: Fast Admission Control and Large System Analysis
13.1 Introduction
13.2 System Model and Problem Formulation
13.3 Analysis and Algorithm Design for Finite Systems
Contents

13.4 Asymptotic Analysis and Algorithm Design for Large Systems 328
13.5 Simulation Results 334
13.6 Conclusions and Future Work 342
13.7 Appendix 343
References 343

14 Toward Green Deployment and Operation for C-RANs 347
14.1 Introduction 347
14.2 On the Size of VBS Pools in C-RANs 349
14.3 Energy–Delay Tradeoffs of VBSs in C-RAN 366
14.4 Conclusions and Outlook 373
References 374

15 Optimal Repeated Spectrum Sharing by Delay-Sensitive Users 377
15.1 Introduction 377
15.2 A General Model of Spectrum Sharing in C-RANs 378
15.3 The Optimal Spectrum-Sharing Policy is Non-Stationary 382
15.4 New Design Methodology for Spectrum-Sharing Policies 385
15.5 Applications to Realistic C-RAN Deployment Scenarios 387
15.6 Performance Gains 389
15.7 Related Work 390
15.8 Conclusion 392
References 392

Part IV Networking in C-RANs 395

16 Mobility Management for C-RANs 397
16.1 Introduction 397
16.2 HCSNet Architecture 398
16.3 Handover Management in HCSNet 399
16.4 Conclusion 405
References 405

17 Caching in C-RAN 407
17.1 Introduction 407
17.2 Generalities on C-RANs 408
17.3 General Idea of Distributed Caching 412
17.4 Cooperative Caching in C-RAN 413
17.5 Game Theory for Distributed Caching in C-RAN 418
17.6 Conclusion 428
References 429

18 A Cloud Service Model and Architecture for Small-Cell RANs 431
18.1 A Cloud Service Model for Radio Access Networks 431
Contents ix

18.2 Joint Channel and Power Allocation in Dense Small-Cell RANs 434
18.3 A QoS-Based User Scheduling in Dense Small-Cell RANs 436
18.4 The MAC Protocol for Joint Resource Sharing in the CoC-RAN 439
18.5 A Cloud Service Model for the CNs and RANs of Dense Small-Cell Networks 440
18.6 Cloud Operating Systems for Core and Radio Access Networks 442
18.7 A Cloud Service Model for SDN-Based Mobility Management 445
18.8 CoC-RAN Prototype and Emulation Results 448
18.9 Conclusions 450
References 450

19 Field Trials and Testbed Design for C-RAN 451
19.1 Introduction 451
19.2 Field-Trial Verification of FH Solutions 451
19.3 CoMP Demonstration in C-RANs 456
19.4 COTS and Accelerator-Based Virtualized C-RAN System 461
19.5 Conclusions 470
19.6 Acknowledgments 471
References 471

Index 472
Acknowledgments

First, we would like to express our sincere gratitude to all our contributors, without whom this book would never have been produced. Indeed, it was a great pleasure for us to have such high-quality contributions from prominent researchers in the field of wireless networks. Our contributors, as they appear in the book, are as follows: Tony Q. S. Quek, Mugen Peng, Osvaldo Simeone, Wei Yu (editors), Chih-Lin I, Jinri Huang, Ran Duan, Sadayuki Abeta, Wuri A Hapsari, Kazuaki Takeda, Peter Rost, Matthew C. Valenti, Salvatore Talarico, Andreas Mäder, Pratik Patil, Binbin Dai, Yuhan Zhou, Zhen-dong Mao, Yourrong Ban, Di Chen, Shi Jin, Jun Zhang, Kai-Kit Wong, Hongbo Zhu, Yuanning Shi, Jun Zhang, Khaled B. Letaief, Bo Bai, and Wei Chen, Seok-Hwan Park, Onur Sahin, Shlomo Shamai Shitz, Thang X. Vu, Hieu D. Nguyen, Shao-Yu Lien, Shao-Chou Hung, Chih-Hsiu Zeng, Hsiang Hsu, Qimei Cui, Kwang-Cheng Chen, Ahmed Douik, Hayssam Dahrouj, Oussama Dhi fallah, Tareq Y. Al-Naffouri, Mohamed-Slim Alouini, Jian Li, Hongyu Xiang, Yuling Yu, Jian Zhao, Zhongding Lei, Sheng Zhou, Jingchu Liu, Tao Zhao, Zhisheng Niu, Yuanzhang Xiao, Mihaela van der Schaar, Haijun Zhang, Julian Cheng, Victor C. M. Leung, Kenza Hamidouche, Walid Saad, Merouane Debbah, Sau-Hsuan Wu, Hsi-Lu Chao, Hsin-Li Chiu, Chun-Hsien Ko, Yun-Ting Li, Ting-Wei Chang, Tong-Lun Tsai, Che Chen, Min Yan, Xiaogen Jiang. We would like to thank Cambridge University Press staff and in particular Julie Lancashire and Heather Brolly for their continuous encouragement and support during the course of this project.

Tony Q. S. Quek would like to thank his family and colleagues at the Singapore University of Technology and Design (SUTD) for their encouragement and support. He would also like to acknowledge funding support from the MOE ARF Tier 2 under grant MOE2014-T2-2-0 the MOE ARF Tier 2 under grant MOE2015-T2-2-10 and the SUTD-ZJ4 Research Collaboration under grant SUTD-ZJ4/RES/01/2014.

Mugen Peng would like to thank his family and to acknowledge fund support from the National Natural Science Foundation of China (Grant No. 61222103), the National High Technology Research and Development Program of China (Grant No. 2014AA01A701), and the National Basic Research Program of China (973 Program) (Grant No. 2013CB336600).

Osvaldo Simeone would like to acknowledge support from the US NSF under grant CCF-1525629.

Wei Yu wishes to acknowledge the support of the Natural Sciences and Engineering Research Council (NSERC) of Canada through a Collaborative Research...
Acknowledgments

and Development grant, an E.W.R. Steacie Memorial Fellowship, and the Canada Research Chairs program. Wei Yu also wishes to acknowledge the support of Huawei Technologies Canada Co. Ltd.

Last, but not least, we would also like to sincerely thank Professor Vincent Poor for writing the foreword to the book.
Foreword

Wireless networking is one of the most advanced and rapidly advancing technologies of our time. The modern wireless era has produced an array of technologies of tremendous economic and social value and almost ubiquitous market penetration. A major contemporary focus of the community of researchers and engineers working on the development of new wireless technologies is the specification and design of the fifth generation (5G) of mobile communications. Among the envisioned features of 5G are an extremely large and heterogeneous population of connected devices communicating with humans or machines (or both) and having highly varied quality of service requirements in terms of latency, data rates, etc., leading to the so-called Internet of Things. To deal with this scale, density, and variety of use, new network architectures are being proposed for 5G. One of the most promising of these is the Cloud Radio Access Network (C-RAN), in which radio connectivity to end-users is provided via densely deployed low-complexity radio heads, and most signal processing tasks are performed in the cloud. This architecture enables the provision of much greater capacity, by allowing both the densification of radio resources and the implementation of sophisticated signal processing algorithms at scale, and doing so at substantially lower capital and energy costs than conventional base-station-centric cellular architectures would require. Edited by four leaders in the field, *Cloud Radio Access Networks: Principles, Technologies, and Applications* provides a comprehensive treatment of C-RANs, describing in the depth the overall C-RAN architecture, and the many physical layer, resource allocation, and networking challenges that arise in this important and innovative concept, together with potential solutions to these challenges. These advances are described in chapters written by leading contributors to their development, thus providing a clear and up-to-date exposition of the state of the art in C-RANs. As such, this volume should be of considerable interest to researchers and engineers looking to develop the next generation of mobile networking technologies.

H. Vincent Poor
Princeton, New Jersey
Preface

Cloud radio access networks (C-RANs) refer to a wireless cellular architecture in which all network functionalities of conventional base stations, apart from radio frequency operations and possibly analog–digital conversions, are carried out at a central cloud processor. The idea was relegated for many years to the realm of information-and communication-theoretic studies, which promised gains in terms of spectral efficiency thanks to the possibility of implementing joint baseband processing at the central processor. The main obstacles to the deployment of C-RAN-type systems were thought to be the high complexity of the necessary cloud processor as well as the limited availability of high-speed backhaul links connecting edge and cloud.

In recent years, advances in cloud computing and a more pervasive deployment of fiber optic cables and high-frequency wireless backhaul links towards the network edge have spurred the reconsideration, and eventually the implementation, of cloud-based radio access systems. In fact, as argued in the seminal white paper by China Mobile, not only can the C-RAN architecture reap the spectral efficiency gains promised by academic studies, it can also crucially reduce capital and operating expenses. This is a consequence of the centralization of network resources in the cloud: the complexity and cost of edge nodes can be drastically reduced with respect to conventional base stations, and updates and maintenance can be performed solely at the cloud.

As C-RAN moves from paper to the real world, industry and academia are working towards the definition of protocols and algorithms at all layers of the communication protocol stack, so as to enable cost-effective and high-performance cloud-based systems to be widely adopted as a leading solution for 5G networks.

This book is intended to provide a broad overview of the current research activity in the industry and academia on the subject of C-RANs. While this is an active field of study, involving theoreticians and practitioners, the editors believe that the current state of the art is sufficiently mature to warrant a monographic treatment. The book covers the architecture, physical-layer design, resource allocation, and networking of C-RAN systems, in separate parts each consisting of various chapters authored by leading researchers in both industry and academia.

It is our hope that this book will serve as a useful reference for engineers and students and that it will motivate more researchers to undertake the numerous open problems highlighted in the following pages.

Tony Quek, Mugen Peng, Osvaldo Simeone, and Wei Yu
List of Contributors

Sadayuki Abeta
NTT DoCoMo, Kanagawa, Japan

Tareq Y. Al-Naffouri
King Abdullah University of Science and Technology, Thuwal, Saudi Arabia, and also
King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

Mohamed-Slim Alouini
Division of Computer, Electrical and Mathematical Sciences and Engineering, King
Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Bo Bai
Department of Electronic Engineering, Tsinghua University, Beijing, China

Yourrong Ban
Beijing University of Posts and Telecommunications, Beijing, China

Hsi-Lu Chao
Institute of Network Engineering, National Chiao Tung University, Taiwan

Ting-Wei Chang
Institute of Network Engineering, National Chiao Tung University, Taiwan

Che Chen
Institute of Network Engineering, National Chiao Tung University, Taiwan

Di Chen
Beijing University of Posts and Telecommunications, Beijing, China

Kwang-Cheng Chen
Graduate Institute of Communication Engineering, National Taiwan University, Taiwan
List of Contributors

Julian Cheng
Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada

Wei Chen
Department of Electronic Engineering, Tsinghua University, Beijing, China

Hsin-Li Chiu
Institute of Communications Engineering, National Chiao Tung University, Taiwan

Qimei Cui
Beijing University of Post and Telecommunications, Beijing, China

Hayssam Dahrouj
Department of Electrical and Computer Engineering, Effat University, Jeddah, Saudi Arabia

Binbin Dai
Electrical and Computer Engineering Department, University of Toronto, Toronto, Canada

Merouane Debbah
Large Networks and Systems Group (LANEAS), CentraleSupélec, Gif-sur-Yvette, France

Oussama Dhifallah
Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Ahmed Douik
Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA

Ran Duan
Green Communication Technology Research Center, China Mobile Research Institute, Beijing, China

Kenza Hamidouche
Large Networks and Systems Group (LANEAS), CentraleSupélec, Gif-sur-Yvette, France

Wuri A. Hapsari
NTT DoCoMo, Kanagawa, Japan
List of Contributors

Jinri Huang
Green Communication Technology Research Center, China Mobile Research Institute, Beijing, China

Ran Huang
Green Communication Technology Research Center, China Mobile Research Institute, Beijing, China.

Hsiang Hsu
Graduate Institute of Communication Engineering, National Taiwan University, Taiwan

Shao-Chou Hung
Graduate Institute of Communication Engineering, National Taiwan University, Taiwan

Chih-Lin I
Green Communication Technology Research Center, China Mobile Research Institute, Beijing, China

Xiaogen Jiang
Alcatel-Lucent Shanghai Bell Co., China

Shi Jin
National Mobile Communications Research Laboratory, Southeast University, Nanjing, China

Chun-Hsien Ko
Institute of Communications Engineering, National Chiao Tung University, Taiwan

Zhongding Lei
Huawei Technologies, Singapore

Khaled B. Letaief
Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong

Victor C. M. Leung
Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada

Jian Li
Beijing University of Posts and Telecommunications, Beijing, China

Yun-Ting Li
Institute of Network Engineering, National Chiao Tung University, Taiwan
List of Contributors

Juigchu Liu
Tsinghua University, Beijing

Shao-Yu Lien
National Formosa University, Taiwan

Andreas Mäeder
Nokia Networks, Technology and Innovation, Radio Systems Research, Munich, Germany

Zhendong Mao
Beijing University of Posts and Telecommunications, Beijing, China

Hieu D. Nguyen
Swiss Re, Singapore

Zhisheng Niu
Tsinghua University, Beijing

Seok-Hwan Park
Chonbuk National University, Jeonju, Korea

Pratik Patil
Electrical and Computer Engineering Department, University of Toronto, Toronto, Canada

Mugen Peng
Beijing University of Posts and Telecommunications, Beijing, China

Tony Q. S. Quek
Singapore University of Technology and Design, Information Systems Technology and Design Pillar, Singapore

Peter Rost
Nokia Networks, Technology and Innovation, Radio Systems Research, Munich, Germany

Walid Saad
Wireless@VT, Bradley Department of Electrical and Computer Engineering, Virginia Tech, USA

Onur Sahin
Interdigital, NY, USA
List of Contributors

Mihaela van der Schaar
Department of Electrical Engineering, University of California, Los Angeles, CA, USA

Shlomo Shamai (Shitz)
Technion, Haifa, Israel

Yuanming Shi
School of Information Science and Technology, ShanghaiTech University, Shanghai, China

Osvaldo Simeone
New Jersey Institute of Technology, NJ, USA

Salvatore Talarico
Huawei Technologies, CA, USA

Kazuaki Takeda
NTT DoCoMo, Kanagawa, Japan

Tong-Lun Tsai
Institute of Communications Engineering, National Chiao Tung University, Taiwan

Matthew C. Valenti
West Virginia University, Morgantown, WV, USA

Thang X. Vu
Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg

Kai-Kit Wong
Department of Electronic and Electrical Engineering, University College London, London, United Kingdom

Sau-Hsuan Wu
Institute of Communications Engineering, National Chiao Tung University, Taiwan

Hongyu Xiang
Beijing University of Posts and Telecommunications, Beijing, China

Yuanzhang Xiao
Department of Electrical Engineering, University of California, Los Angeles, CA, USA
List of Contributors

Min Yan
Green Communication Technology Research Center, China Mobile Research Institute, Beijing, China

Wei Yu
Electrical and Computer Engineering Department, University of Toronto, Toronto, Canada

Yuling Yu
Beijing University of Posts and Telecommunications, Beijing, China

Chih-Hsiu Zeng
Graduate Institute of Communication Engineering, National Taiwan University, Taiwan

Haijun Zhang
Engineering and Technology Research Center for Convergence Networks, University of Science and Technology, Beijing, China

Jun Zhang
Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong

Jun Zhang
Jiangsu Key Laboratory of Wireless Communications, Nanjing University of Posts and Telecommunications, Nanjing, China

Jian Zhao
Department of Electronic Science and Engineering, Nanjing University, Nanjing, China

Tao Zhao
Tsinghua University, Beijing

Sheng Zhou
Tsinghua University, Beijing, China

Yuhan Zhou
Electrical and Computer Engineering Department, University of Toronto, Toronto, Canada

Hongbo Zhu
Jiangsu Key Laboratory of Wireless Communications, Nanjing University of Posts and Telecommunications, Nanjing, China