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Introduction

1.1 Introduction to Geometric Rigidity

Our story begins with the Bieberbach theorems about the structure of compact

flat manifolds (i.e. compact Riemannian manifolds whose sectional curvatures

are everywhere 0, i.e. that are locally isometric to Rn). The universal cover of

such a manifold, M , is Euclidean space, and therefore its fundamental group π

is a discrete subgroup of Iso(Rn). There is a (split) exact sequence

1 → Rn → Iso(Rn) → O (n) → 1

so that π has a rotational part, and a translation subgroup. (Thus Iso(Rn)

is a semidirect product of the linear = orthogonal group, and the group of

translations, where the former acts on the latter in the obvious way.)

Bieberbach showed that the rotational part of π is always finite, so that π has

a subgroup of finite index that is pure translation, and simple considerations

then guarantee that this is rank n, i.e. that M is finitely covered by a torus, i.e.

by Rn/Λ for some lattice Λ � Zn.

We shall first assume that this is a 1-fold cover for simplicity:1 the structure

of the manifold M we started with is then understood as a structure on a torus,

and by an analysis of its isometries.

The space of tori, though, is very interesting and quite nontrivial already.

(Indeed the n = 2 case gives rise to the beautiful theory of modular forms (Serre,

(1973).) Let us normalize by demanding that vol (M) = 1, and furthermore let

us pick the isomorphism Λ→ Zn (which is tantamount to giving a homotopy

equivalence M → Tn). There is a unique linear map in GLn(R) takingΛ→ Zn.

Notice that the translation group is conjugate to the standard action (as a group

action of Zn) iff (if and only if) this matrix is orthogonal. Thus, the space of

1 Although this is but one of a superexponentially growing number of possibilities as n
increases.
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2 Introduction

“polarized flat tori of volume 1” is the same as SLn(R)/SO(n), a contractible

manifold – e.g. by the Gram–Schmidt process.2

At this point, we can pick up the theory for general flat manifolds if we want:

the finite holonomy group (the group of rotations we ignored before) acts on the

space of flat tori, and whose fixed point set is the space of flat structures on the

given manifold (with volume equal to 1/#holonomy). The fixed set of a compact

group acting on a complete simply connected non-positively curved manifold

is another such space, by a theorem of Hadamard provided it is nonempty and

connected. It is nonempty (in general, this is Cartan’s fixed-point theorem: a

fixed point can be given as the unique “median” of any orbit – the point which

makes the largest distance to any point of the orbit finite) in our case, because

we assumed there was a flat manifold, and connected, because a geodesic

connecting two fixed points to each other would be fixed and therefore lie in the

fixed set. Anyway, we then see that there is a unique such manifold as a smooth

manifold, and that any two are conjugate in the affine group.

Mostow (1968) showed in a celebrated paper that for constant negative

curvature manifolds, the rigidity is much stronger. Perhaps the first hint of this

comes from the Gauss–Bonnet theorem: In this case it says that:

Proposition 1.1 If M is a closed manifold3 of constant curvature −1, i.e. if

M is a closed hyperbolic manifold of even dimension, then

χ(M2n) = 2(−1)n vol (M)/ω2n,

where ω2n is the volume of the sphere (of radius 1).

To foreshadow other developments, we note that if vol (M) < ∞, then M has

finite topological type (i.e. is the interior of a compact manifold with boundary)

so that both sides of the equation make sense, and in fact the equation holds.

As a consequence of the Gauss–Bonnet theorem, we see that in the hyper-

bolic case, unlike the flat case, the fundamental group determines the volume.4

Perhaps even more straightforwardly, flat manifolds have a nonrigidity because

of homotheties, but hyperbolic manifolds have a scale because of their nonva-

nishing curvature.

Mostow’s theorem then gives what seems like the ultimate strengthening

2 In the spirit of later developments, we should say that SLn(R)/SO(n) is a complete simply
connected manifold of non-positive curvature – as is any semisimple Lie group modulo its
maximal compact subgroup – and is thus, by Hadamard’s theorem, diffeomorphic to Euclidean
space.

3 Recall that a closed manifold is a compact manifold without boundary.
4 At least in even dimensions. Mostow rigidity implies that this is true in all dimensions; a

cohomological explanation for this is provided by Gromov’s theory of bounded cohomology
(Gromov, 1982).
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1.1 Introduction to Geometric Rigidity 3

of this line of thought. The contractible manifold occurring in the flat case

degenerates (if the dimension is greater than >2) to a point!

Theorem 1.2 Suppose that M and M ′ are closed hyperbolic manifolds of

dimension d > 2, then any isomorphism h: π1(M) → π1(M
′) is induced by a

unique isometry between M and M ′.

As a minor point, strictly speaking, an induced map on fundamental groups

requires the map to preserve base points, but the isometry will almost surely

not (as it’s unique, it either does or does not). Consequently, we should actually

assume that one has a conjugacy class of homomorphisms of the fundamental

group, or use groupoids, or some similar device.

We note that this is not true in dimension 2; for a surface of genus g, the

space of marked5 hyperbolic structures is called Teichmuller space, and is

topologically R6g−6.

Mostow’s theorem is a beautiful and perhaps initially surprising result. How-

ever, it can feel a bit sterile if one doesn’t know examples of hyperbolic mani-

folds and indeed it is not so easy to construct hyperbolic manifolds in dimension

>2 (in dimension 2 they can be built easily using tessellations of the hyper-

bolic plane). Even after knowing some constructions, how are you going to

find two not obviously isometric hyperbolic manifolds that have isomorphic

fundamental groups?

However, the uniqueness statement in Mostow’s theorem gives us quite non-

trivial information even when M = M ′. Any self-isomorphism of π must be

realized by a self-isometry, giving the following conclusion:

Corollary 1.3 If π is the fundamental group of a compact hyperbolic manifold

M , then Iso(M) � Out(π), where Iso(M) is the isometry group of M , and Out(π)

is the group of outer automorphisms of π: it is the quotient of the automorphisms

Aut(π) by Inn(π), the normal subgroup of inner automorphisms of π.

Out(π) is the set of components of the self-homotopy equivalences of M

to itself: it is not Aut(π) because we do not insist that maps and homotopies

preserve base points.

The isometry group of a compact manifold is always a compact Lie group

(Myers–Steenrod), so we learn that, in the hyperbolic case, this group is always

finite. Then we then deduce the purely algebraic fact that Out(π) must be finite

– if the dimension of the hyperbolic manifold >2.

In dimension 2, the first conclusion holds (as we will discuss later), but the

second does not. Out(π) is the celebrated mapping class group, an object of

5 That is, ones where we are given an identification of the fundamental group or, equivalently, a
homotopy class of a map to a standard surface.
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4 Introduction

fundamental importance in low-dimensional topology and in algebraic geome-

try. Elements of infinite order in Out(π) can never be realized by isometries of

a compact Riemannian manifold.

The conclusions of Mostow’s theorem can be greatly generalized. First of

all, hyperbolic space can be generalized to be any locally symmetric manifold

with no Euclidean factors and no hyperbolic plane factors: in other words, as

Mostow showed in subsequent work, it applies to G/K , if G is a semisimple

Lie group (i.e. a Lie group with no connected normal solvable subgroups) and

K its maximal compact subgroup. We will discuss these in much greater length

in Chapter 2.

In addition, according to Prasad (1973), all of these rigidity theorems hold

for noncompact finite volume hyperbolic manifolds (and locally symmetric

manifolds).

Amazingly enough, there are many additional extensions of these theorems,

not thought of as uniqueness theorems per se. We will discuss some of the

important work of Margulis on (the aptly called) superrigidity in Chapter 2.

1.2 The Borel Conjecture

The striking results of §1.1 show that for various “geometric structures” (let’s

say that this means a given choice of a local model for germ neighborhoods of

points), the space of given marked structured manifolds is either a point, or the

algebraic topologist’s “point”: a contractible space.6

Although a contractible space isn’t as good as a point, for some purposes it’s

quite good. For example, that it is connected is already a type of uniqueness

statement. In the situation where one has a structure on this space with non-

positive curvature, one can geometrically make conclusions that are stronger

than follow from the algebraic topology alone. For instance, the non-positive

curvature on the space of flat tori enables one to prove Bieberbach’s theorem that

any torsion-free group that is virtually free abelian (of rank k) is the fundamental

group of a compact aspherical manifold (of dimension k). (Exercise or see the

footnotes.)

Borel suggested that the topological conclusion that the hyperbolic manifolds

were homeomorphic7 could be traced to a purely topological hypothesis:

6 There should be a kind of mathematician for whom a point is a non-positively curved space –
someone informed by both algebraic and geometric intuitions.

7 Borel actually made his conjecture on the basis of an earlier result of Mostow (1954) on
solvmanifolds, where the conclusion was “isomorphic,” i.e. diffeomorphic. Borel expressed
relief that he hadn’t conjectured diffeomorphic in light of this result.
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1.2 The Borel Conjecture 5

Conjecture 1.4 If h : M ′ → M is a homotopy equivalence between closed

aspherical manifolds, then h is homotopic to a homeomorphism.

Recall that a space is aspherical if its universal cover is contractible. It is

a K(π,1) in the language of the algebraic topologists, meaning its homotopy

groups πi vanish for i > 1. This can be tested by checking whether the universal

cover has vanishing reduced integral homology (by the Hurewicz isomorphism

theorem). A homotopy (class of) equivalence(s) between aspherical spaces is

essentially the same thing as a (conjugacy class of) isomorphisms between their

fundamental groups.

If M is non-positively curved or of the form K\G/Γ (where G is a real Lie

group and K its maximal compact), then it satisfies the hypothesis of the Borel

conjecture. In these cases, the conjecture is an astounding theorem of Farrell

and Jones.8

One can also try to reverse this mode of thought, and ask whether the moduli

space of non-positively curved structures on a closed topological aspherical

manifold is contractible (if it is nonempty!). Farrell and Jones have shown that

the answer to this is negative as well: the space isn’t even connected. But, I am

running ahead of the story.

Borel is suggesting here that aspherical is the topological analogue of “locally

symmetric of noncompact type” or of “non-positively curved.” In Chapter 2 we

will discuss various constructions of aspherical manifolds – although in Borel’s

time there were no examples that were very far away from the lattice setting.

Of course, in the topological setting, one cannot expect the homeomorphism

to be unique. However, it might seem reasonable to believe that the space of

homeomorphisms is contractible, i.e. the analogue of a point. Unfortunately,

this is not true and we will later discuss the reason for this; it is an indirect

consequence of the conjecture that there is a type of uniqueness: uniqueness up

to pseudo-isotopy.

Definition 1.5 Two homeomorphisms f ,g : M → N are pseudo-isotopic if

there is a homeomorphism M × [0,1] → N × [0,1] that restricts to f∪ g on the

boundary M × {0,1} → N × {0,1}.

For high-dimensional closed manifolds, one knows due to the work of Cerf

and of Hatcher and Wagoner (see Hatcher and Wagoner, 1973) that pseudo-

isotopies between homeomorphisms are isotopic to isotopies iff the manifolds

are simply connected. This work shows that always there’s typically an infinite

number of isotopy classes of homeomorphisms in the given homotopy class.

8 The important point being that M′ is not assumed to be a space of this sort (for then, the
relevant result is part of differential geometric rigidity). We will explain some of the ideas of
this result in Chapter 8.
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6 Introduction

The reasonable optimist might therefore choose to append “unique up to

pseudo-isotopy” to the statement of the Borel conjecture. As we will discuss in

Chapter 3, this both follows from the Borel conjecture in general, and is part of

the “correct” natural extension to manifolds with boundary.

Uniqueness up to pseudo-isotopy is not as strong as uniqueness, and it will

need some study. If one had uniqueness in families, one could immediately

learn things about bundles. The weaker type of uniqueness has implication for

“block bundles”9 and has more relevance to the topological category than the

bundle result would have (in other words, this is a feature, not a bug).

As we noted in the geometric setting, uniqueness would also immediately

have implications regarding the symmetries of aspherical manifolds. Borel

himself proved some of these, and we will discuss them in Chapter 7. For

example, if M is an aspherical manifold whose fundamental group has trivial

center, then the only connected compact Lie group that can act continuously

on it is trivial.10 We saw that it implied that any finite subgroup of Out(π) was

realized by a group action – at least when π is centerless;11 this statement is

called the Nielsen realization problem.12

It also would imply certain uniqueness statements about group actions – or

if you like, it would imply “equivariant Borel conjectures.” We will see, by

contrast (in Chapter 6), that these conjectures are false – for several different

reasons.

Another variant of the Borel conjecture goes like this: Given a group π, the

Borel conjecture asserts the uniqueness of the aspherical topological manifold

whose fundamental group is π. Shouldn’t there be an existence theorem to

go with such a uniqueness one? Wall (1979) has conjectured that the correct

condition is that π should satisfy Poincaré duality.13 We will discuss some of

the evidence for Wall’s conjecture – most comes from the Borel conjecture –

9 And even more to “approximate fibrations,” which it would surely be taking us far afield to
introduce at this point. Let us leave it as saying that if one tried to extend the Borel philosophy
to some singular settings, and took seriously the idea that one is looking for topologically
invariant notions rather than modeling closely the topological analogue of the smooth
category, then one would be led to “pseudo”s.

It is worth noting that Mostow’s work on hyperbolic manifolds is based on extending the
map of universal covers to certain ideal ∂s. These extensions, as is critical to Mostow’s work,
are naturally continuous and not smooth. These ideas of Mostow from the late 1960s are
fundamental to almost all of the work on the Borel conjecture since the early 1980s.

10 Equivalently, every continuous circle action on M is trivial.
11 When π is not centerless, the isometries tend not to be unique, and the realization is false for

certain nilmanifolds, an example of Raymond and Scott (1977).
12 The original Nielsen problem was for surfaces and was proven true first by Kerckhoff (1983)

using geometrical properties of Teichmuller space. By now, there are a number of proofs.
13 For a group to satisfy Poincaré duality it means that its K(π, 1) satisfies Poincaré duality. In

Wall’s conjecture, one means Poincaré duality with arbitrary coefficient systems, to the same
extent that one has such Poincaré duality for manifolds. This is equivalent to there being a
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1.2 The Borel Conjecture 7

and we’ll also discuss variants of Wall’s conjecture where one weakens the type

of Poincaré duality the group satisfies.

Yet another way of thinking about Borel’s philosophy is the following. If

knowing the group means knowing the manifold, then every topological prop-

erty of manifolds has to be reflected in its fundamental group. Thus one can

conjecture that an aspherical manifold is a nontrivial product iff its fundamental

group is.14 Similarly one can hope that a manifold “fibers” over another if there

is a suitable exact sequence of groups. We will discuss these kinds of problems

later.

If one were a wild optimist,15 one could easily go very far and conjecture

that many properties of the model manifolds hold for all aspherical manifolds,

such as that their universal covers are Euclidean space or that their fundamental

groups have solvable word problems. We will see in Chapter 2 that these are

false.

It is not known whether their Euler characteristic has the same sign as the

symmetric spaces of the same dimension have, i.e. whether (−1)n χ(M2n) ≥ 0,

for closed aspherical manifolds. (This is sometimes called the Hopf conjecture,

although Hopf only asked it for negatively curved manifolds.16)

Finally, the Borel conjecture begets many others in the following indirect

way: It implies that any method one would try to disprove it must fail. Thus

any invariant of manifolds, defined by any method at all, no matter how clever

or indirect, should be a homotopy invariant for aspherical manifolds. This

means that the fundamental group must somehow catch lots of subtle geometry.

Examples of this include the tangent bundle and various types of spectral

invariants, but, in principle, one can consider any topological invariant at all.17

When studying this in detail, one is often led to problems that seemingly

have nothing to do with aspherical manifolds. In Chapter 4 we will follow this

road towards the Novikov conjecture, which in its analytic form has strong

differential geometric implications – well beyond aspherical manifolds. In this

form, the conjecture also develops analogues in quadratic form theory and in

algebraic K-theory.

chain homotopy equivalence (with the usual dimensional shift) between the Zπ chain
complexes of singular chains on the universal cover and its dual.

14 This can be compared with a theorem of Lawson and Yau (1972) for non-positively curved
manifolds.

15 Something that one would not ordinarily say of Borel.
16 Recently, Avramidi (2014) gave some very striking evidence for the failure of this conjecture.
17 An example of this includes simplicial volume à la Gromov (1982), which provides a

homological explanation for the volume of certain locally symmetric manifolds. I mention this
here because, unfortunately, it does not play a large role in what follows.
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1.3 Notes

A good grounding in differential geometry is very helpful. For our purposes,

Cheeger and Ebin (2008) is probably the best source. Milnor (1963), which is

a rapid course in Riemannian geometry in Morse Theory, is adequate for most

purposes in this book.

There are now a lot of approaches to Mostow rigidity and it has many

extensions and generalizations. The original sources are Mostow (1968, 1973).

I highly recommend the survey of Gromov and Lawson (1991). Probably the

“easiest” proof (although one that is rather atypical) is Gromov’s based on the

ideas of “bounded cohomology.” An excellent exposition of this can be found

in Munkholm (1979). Zimmer (1984) gives a clear treatment of Margulis’s

superrigidity theorem.

The discussion here of the Borel conjecture is not the most direct or efficient.

However, the equivalent statement that “the structure set of an aspherical man-

ifold vanishes” reduces all of one’s study to proving that some group is 0. This

seems (to me) rather depressing. We prefer the point of view that the subject

deals with actual examples and contains surprises. It makes it feel like one is

actually studying something (Figure 1.1).

Figure 1.1 Six cartoon. © Sidney Harris, reproduced with permission.
(http://sciencecartoonsplus.com/).
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1.3 Notes 9

More seriously, the variants we consider shed light on some subtleties and

possible approaches to the conjecture, and are, I think, natural questions that

one would want to address for the same reason as one would want to know the

truth of the Borel conjecture.18

And, finally, I hope that when the problem is ultimately solved, the spirit of

the problem – as expanded on here – will continue to inspire future generations

of mathematicians.

18 So we prefer a Comedy of Errors to Much Ado About Nothing.
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