Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface to the Second Edition</td>
<td>xvii</td>
</tr>
<tr>
<td>Preface to the First Edition</td>
<td>xix</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>xxi</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>xxv</td>
</tr>
<tr>
<td>Figure Acknowledgements</td>
<td>xxix</td>
</tr>
</tbody>
</table>

1 **Introduction**
- History | 1
- Powering: Overall Concept | 3
- Improvements in Efficiency | 3
- REFERENCES (CHAPTER 1) | 5

2 **Propulsive Power**
- Components of Propulsive Power | 7
 - 2.1 Components of Propulsive Power | 7
 - 2.2 Propulsion Systems | 7
 - 2.3 Definitions | 9
 - 2.4 Components of the Ship Power Estimate | 10

3 **Components of Hull Resistance**
- Physical Components of Main Hull Resistance | 12
 - 3.1 Physical Components | 12
 - 3.1.1 Physical Components | 12
 - 3.1.2 Momentum Analysis of Flow Around Hull | 18
 - 3.1.3 Systems of Coefficients Used in Ship Powering | 21
 - 3.1.4 Measurement of Model Total Resistance | 23
 - 3.1.5 Transverse Wave Interference | 29
 - 3.1.6 Dimensional Analysis and Scaling | 33
- Other Drag Components | 37
 - 3.2.1 Appendage Drag | 37
 - 3.2.2 Air Resistance of Hull and Superstructure | 46
 - 3.2.3 Roughness and Fouling | 52
 - 3.2.4 Wind and Waves | 57
 - 3.2.5 Service Power Margins | 64
- REFERENCES (CHAPTER 3) | 65
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Model–Ship Extrapolation</td>
<td>70</td>
</tr>
<tr>
<td>4.1</td>
<td>Practical Scaling Methods</td>
<td>70</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Traditional Approach: Froude</td>
<td>70</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Form Factor Approach: Hughes</td>
<td>71</td>
</tr>
<tr>
<td>4.2</td>
<td>Geosim Series</td>
<td>72</td>
</tr>
<tr>
<td>4.3</td>
<td>Flat Plate Friction Formulae</td>
<td>73</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Froude Experiments</td>
<td>73</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Schoenherr Formula</td>
<td>77</td>
</tr>
<tr>
<td>4.3.3</td>
<td>The ITTC Formula</td>
<td>79</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Other Proposals for Friction Lines</td>
<td>80</td>
</tr>
<tr>
<td>4.4</td>
<td>Derivation of Form Factor ((1 + k))</td>
<td>80</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Model Experiments</td>
<td>81</td>
</tr>
<tr>
<td>4.4.2</td>
<td>CFD Methods</td>
<td>82</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Empirical Methods</td>
<td>82</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Effects of Shallow Water</td>
<td>84</td>
</tr>
<tr>
<td>REFERENCES (CHAPTER 4)</td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>5</td>
<td>Model–Ship Correlation</td>
<td>86</td>
</tr>
<tr>
<td>5.1</td>
<td>Purpose</td>
<td>86</td>
</tr>
<tr>
<td>5.2</td>
<td>Procedures</td>
<td>86</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Original Procedure</td>
<td>86</td>
</tr>
<tr>
<td>5.2.2</td>
<td>ITTC1978 Performance Prediction Method</td>
<td>88</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Summary</td>
<td>91</td>
</tr>
<tr>
<td>5.3</td>
<td>Ship Speed Trials and Analysis</td>
<td>91</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Purpose</td>
<td>91</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Trials Conditions</td>
<td>92</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Ship Condition</td>
<td>92</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Trials Procedures and Measurements</td>
<td>92</td>
</tr>
<tr>
<td>5.3.5</td>
<td>Corrections</td>
<td>93</td>
</tr>
<tr>
<td>5.3.6</td>
<td>Analysis of Correlation Factors and Wake Fraction</td>
<td>96</td>
</tr>
<tr>
<td>5.3.7</td>
<td>Summary</td>
<td>97</td>
</tr>
<tr>
<td>5.3.8</td>
<td>Updated Ship Speed Trials Procedures</td>
<td>97</td>
</tr>
<tr>
<td>REFERENCES (CHAPTER 5)</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>Restricted Water Depth and Breadth</td>
<td>102</td>
</tr>
<tr>
<td>6.1</td>
<td>Shallow Water Effects</td>
<td>102</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Deep Water</td>
<td>102</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Shallow Water</td>
<td>102</td>
</tr>
<tr>
<td>6.2</td>
<td>Bank Effects</td>
<td>105</td>
</tr>
<tr>
<td>6.3</td>
<td>Blockage Speed Corrections</td>
<td>105</td>
</tr>
<tr>
<td>6.4</td>
<td>Squat</td>
<td>108</td>
</tr>
<tr>
<td>6.5</td>
<td>Wave Wash</td>
<td>108</td>
</tr>
<tr>
<td>REFERENCES (CHAPTER 6)</td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>7</td>
<td>Measurement of Resistance Components</td>
<td>113</td>
</tr>
<tr>
<td>7.1</td>
<td>Background</td>
<td>113</td>
</tr>
<tr>
<td>7.2</td>
<td>Need for Physical Measurements</td>
<td>113</td>
</tr>
</tbody>
</table>
Contents

7.3 Physical Measurements of Resistance Components 115
 7.3.1 Skin Friction Resistance 115
 7.3.2 Pressure Resistance 121
 7.3.3 Viscous Resistance 124
 7.3.4 Wave Resistance 129
7.4 Flow Field Measurement Techniques 141
 7.4.1 Hot-Wire Anemometry 142
 7.4.2 Five-Hole Pitôt Probe 142
 7.4.3 Photogrammetry 142
 7.4.4 Laser-Based Techniques 144
 7.4.5 Summary 146
REFERENCES (CHAPTER 7) 147

8 Wake and Thrust Deduction 149
 8.1 Introduction 149
 8.1.1 Wake Fraction 149
 8.1.2 Thrust Deduction 149
 8.1.3 Relative Rotative Efficiency η_R 150
 8.2 Origins of Wake 150
 8.2.1 Potential Wake: w_P 150
 8.2.2 Frictional Wake: w_F 151
 8.2.3 Wave Wake: w_W 151
 8.2.4 Summary 151
 8.3 Nominal and Effective Wake 151
 8.4 Wake Distribution 152
 8.4.1 General Distribution 152
 8.4.2 Circumferential Distribution of Wake 153
 8.4.3 Radial Distribution of Wake 153
 8.4.4 Analysis of Detailed Wake Measurements 155
 8.5 Detailed Physical Measurements of Wake 155
 8.5.1 Circumferential Average Wake 155
 8.5.2 Detailed Measurements 156
 8.6 Computational Fluid Dynamics Predictions of Wake 156
 8.7 Model Self-Propulsion Experiments 156
 8.7.1 Introduction 156
 8.7.2 Resistance Tests 157
 8.7.3 Propeller Open Water Tests 157
 8.7.4 Model Self-Propulsion Tests 157
 8.7.5 Trials Analysis 160
 8.7.6 Wake Scale Effects 160
 8.8 Empirical Data for Wake Fraction and Thrust Deduction Factor 161
 8.8.1 Introduction 161
 8.8.2 Single Screw 161
 8.8.3 Twin Screw 164
 8.8.4 Effects of Speed and Ballast Condition 167
 8.9 Effects of Shallow Water 167
Contents

8.10 Tangential Wake
8.10.1 Origins of Tangential Wake
8.10.2 Effects of Tangential Wake
8.11 Submarine and AUV Wake and Thrust Deduction
8.11.1 Submarine and AUV Wake
8.11.2 Submarine and AUV Thrust Deduction
8.11.3 Submarine and AUV Relative Rotative Efficiency

REFERENCES (CHAPTER 8)

9 Numerical Estimation of Ship Resistance
9.1 Introduction
9.2 Historical Development
9.3 Available Techniques
9.3.1 Navier–Stokes Equations
9.3.2 Incompressible Reynolds Averaged Navier–Stokes Equations (RANS)
9.3.3 Potential Flow
9.3.4 Free Surface
9.4 Interpretation of Numerical Methods
9.4.1 Introduction
9.4.2 Validation of Applied CFD Methodology
9.4.3 Access to CFD
9.5 Thin Ship Theory
9.5.1 Background
9.5.2 Distribution of Sources
9.5.3 Modifications to the Basic Theory
9.5.4 Example Results
9.6 Estimation of Ship Self-Propulsion Using RANS
9.6.1 Background
9.6.2 Mesh Generation
9.6.3 Boundary Conditions
9.6.4 Methodology
9.6.5 Results
9.6.6 Added Resistance in Waves
9.7 Summary

REFERENCES (CHAPTER 9)

10 Resistance Design Data
10.1 Introduction
10.2 Data Sources
10.2.1 Standard Series Data
10.2.2 Other Resistance Data
10.2.3 Regression Analysis of Resistance Data
10.2.4 Numerical Methods
10.3 Selected Design Data
10.3.1 Displacement Ships
10.3.2 Semi-Displacement Craft

© in this web service Cambridge University Press
www.cambridge.org
Contents

10.3.3 Planing Craft 222
10.3.4 Small Craft 230
10.3.5 Multihulls 233
10.3.6 Yachts 239
10.3.7 Submarines and AUVs 245
10.3.8 Hydrofoil Craft 249
10.4 Wetted Surface Area 252
10.4.1 Background 252
10.4.2 Displacement Ships 253
10.4.3 Semi-Displacement Ships, Round-Bilge Forms 253
10.4.4 Semi-Displacement Ships, Double-Chine Forms 256
10.4.5 Planing Hulls, Single Chine 256
10.4.6 Yacht Forms 257
REFERENCES (CHAPTER 10) 257

11 Propulsor Types 264
11.1 Basic Requirements: Thrust and Momentum Changes 264
11.2 Levels of Efficiency 264
11.3 Summary of Propulsor Types 265
11.3.1 Marine Propeller 265
11.3.2 Controllable Pitch Propeller (CP Propeller) 266
11.3.3 Ducted Propellers 266
11.3.4 Contra-Rotating Propellers 268
11.3.5 Tandem Propellers 268
11.3.6 Z-Drive Units 269
11.3.7 Podded Azimuthing Propellers 270
11.3.8 Waterjet Propulsion 271
11.3.9 Cycloidal Propeller 271
11.3.10 Paddle Wheels 272
11.3.11 Sails 272
11.3.12 Oars 273
11.3.13 Lateral Thrust Units 273
11.3.14 Other Propulsors 274
REFERENCES (CHAPTER 11) 275

12 Propeller Characteristics 277
12.1 Propeller Geometry, Coefficients, Characteristics 277
12.1.1 Propeller Geometry 277
12.1.2 Dimensional Analysis and Propeller Coefficients 282
12.1.3 Presentation of Propeller Data 282
12.1.4 Measurement of Propeller Characteristics 283
12.2 Cavitation 286
12.2.1 Background 286
12.2.2 Cavitation Criterion 288
12.2.3 Subcavitating Pressure Distributions 289
12.2.4 Propeller Section Types 291
12.2.5 Cavitation Limits 291
12.2.6 Effects of Cavitation on Thrust and Torque

12.2.7 Cavitation Tunnels

12.2.8 Avoidance of Cavitation

12.2.9 Preliminary Blade Area – Cavitation Check

12.2.10 Example: Estimate of Blade Area

12.3 Propeller Blade Strength Estimates

12.3.1 Background

12.3.2 Preliminary Estimates of Blade Root Thickness

12.3.3 Methods of Estimating Propeller Stresses

12.3.4 Propeller Strength Calculations Using Simple Beam Theory

12.4 Shape-Adaptive Foils

References (Chapter 12)

13 Powering Process

13.1 Selection of Marine Propulsion Machinery

13.1.1 Selection of Machinery: Main Factors to Consider

13.1.2 Propulsion Plants Available

13.1.3 Propulsion Layouts

13.2 Propeller–Engine Matching

13.2.1 Introduction

13.2.2 Controllable Pitch Propeller (CP Propeller)

13.2.3 The Multi-Engineed Plant

13.3 Propeller Off-Design Performance

13.3.1 Background

13.3.2 Off-Design Cases: Examples

13.4 Voyage Analysis and In-Service Monitoring

13.4.1 Background

13.4.2 Data Required and Methods of Obtaining Data

13.4.3 Methods of Analysis

13.4.4 Limitations in Methods of Logging and Data Available

13.4.5 Developments in Voyage Analysis

13.4.6 Further Data Monitoring and Logging

13.5 Dynamic Positioning

References (Chapter 13)

14 Hull Form Design

14.1 General

14.1.1 Introduction

14.1.2 Background

14.1.3 Choice of Main Hull Parameters

14.1.4 Choice of Hull Shape

14.2 Fore End

14.2.1 Basic Requirements of Fore End Design

14.2.2 Bulbous Bows

14.2.3 Cavitation

14.3 Aft End

References (Chapter 14)
14.3.1 Basic Requirements of Aft End Design 347
14.3.2 Stern Hull Geometry to Suit Podded Units 350
14.3.3 Shallow Draught Vessels 352
14.4 Influence of Hull Form on Seakeeping 353
14.5 Computational Fluid Dynamics Methods Applied to Hull Form Design 354

REFERENCES (CHAPTER 14) 355

15 Numerical Methods for Propeller Analysis 359
15.1 Introduction 359
15.2 Historical Development of Numerical Methods 359
15.3 Hierarchy of Methods 360
15.4 Guidance Notes on the Application of Techniques 361
15.4.1 Blade Element-Momentum Theory 361
15.4.2 Lifting Line Theories 362
15.4.3 Surface Panel Methods 362
15.4.4 Reynolds Averaged Navier–Stokes 364
15.5 Blade Element-Momentum Theory 365
15.5.1 Momentum Theory 365
15.5.2 Goldstein K Factors [15.8] 367
15.5.3 Blade Element Equations 369
15.5.4 Inflow Factors Derived from Section Efficiency 371
15.5.5 Typical Distributions of a, a' and dK_T/dx 373
15.5.6 Section Design Parameters 373
15.5.7 Lifting Surface Flow Curvature Effects 374
15.5.8 Calculations of Curvature Corrections 375
15.5.9 Algorithm for Blade Element-Momentum Theory 377
15.6 Propeller Wake Adaption 378
15.6.1 Background 378
15.6.2 Optimum Spanwise Loading 379
15.6.3 Optimum Diameters with Wake-Adapted Propellers 381
15.7 Effect of Tangential Wake 382
15.8 Examples Using Blade Element-Momentum Theory 383
15.8.1 Approximate Formulae 383
15.8.2 Example 1 384
15.8.3 Example 2 385
15.8.4 Example 3 386
15.9 Numerical Prediction of Cavitation 388
15.10 Assessment of Propeller Noise 390
15.11 Summary 391

REFERENCES (CHAPTER 15) 391

16 Propulsor Design Data 395
16.1 Introduction 395
16.1.1 General 395
16.1.2 Number of Propeller Blades 395
16.2 Propulsor Data 397
Table of Contents

16.2.1 Propellers 397
16.2.2 Controllable Pitch Propellers 415
16.2.3 Ducted Propellers 415
16.2.4 Podded Propellers 416
16.2.5 Cavitating Propellers 421
16.2.6 Supercavitating Propellers 423
16.2.7 Surface-Piercing Propellers 425
16.2.8 High-Speed Propellers, Inclined Shaft 429
16.2.9 Small Craft Propellers: Locked, Folding and Self-Pitching 429
16.2.10 Waterjets 431
16.2.11 Vertical Axis Propellers 435
16.2.12 Paddle Wheels 436
16.2.13 Lateral Thrust Units 436
16.2.14 Oars 438
16.2.15 Sails 439

16.3 Hull and Relative Rotative Efficiency Data 443
16.3.1 Wake Fraction w_T and Thrust Deduction t 443
16.3.2 Relative Rotative Efficiency, η_R 443

16.4 Submarine and AUV Propulsor Design 445
16.4.1 Submarine Propeller 445
16.4.2 AUV Propeller 446

REFERENCES (CHAPTER 16) 446

17 Reductions in Propulsive Power and Emissions 451
17.1 Introduction 451
17.2 Potential Savings in Hull Resistance 451
17.3 Potential Savings in Propeller Efficiency 452
17.3.1 Main Energy Losses 452
17.3.2 Detailed Design Modification to Propeller 456
17.3.3 Hull–Propeller–Rudder Interaction 456

17.4 Power Savings During Operation 456
17.4.1 Speed 456
17.4.2 Effects of Trim on Hull Resistance 457
17.4.3 Hull Surface Finish 458
17.4.4 Hull/Propeller Cleaning 459
17.4.5 Minimum Water Ballast 459
17.4.6 Weather Routeing 459

17.5 Energy Saving Devices (ESDs) 460
17.5.1 Working Principles 460
17.5.2 Upstream Fins 460
17.5.3 Upstream Ducts (Pre-Ducts) 460
17.5.4 Twisted Stern Upstream of Propeller 461
17.5.5 Downstream Fins 461
17.5.6 Twisted Rudder 461
17.5.7 Integrated Propeller–Rudder 461
17.5.8 Propeller Boss Cap Fins (PBCFs) 461
17.5.9 Summary 462
17.6 Auxiliary Propulsion Devices
17.6.1 Wind
17.6.2 Wave
17.6.3 Solar: Using Photovoltaic Cells
17.6.4 Gyroscopic Systems
17.6.5 Auxiliary Power–Propeller Interaction
17.6.6 Applications of Auxiliary Power
17.7 Alternative Fuels
17.8 Alternative Machinery/Propulsor Arrangements
17.9 Energy Efficiency Design Index (EEDI)
17.9.1 Introduction
17.9.2 EEDI Formula
17.9.3 Power P
17.9.4 Capacity C
17.9.5 Speed V_{ref}
17.9.6 Correction Factors in Equation (17.10)
17.9.7 EEDI Reference Line
17.9.8 Ship Types Subject to EEDI Regulations
17.9.9 Implementation of EEDI
17.9.10 Reduction in EEDI (Methods of Reducing EEDI)
17.9.11 Minimum Propulsive Power
17.10 Summary
18 Applications
18.1 Background
18.2 Example Applications
18.2.1 Example Application 1. Tank Test Data: Estimate of Ship Effective Power
18.2.2 Example Application 2. Model Self-Propulsion Test Analysis
18.2.3 Example Application 3. Wake Analysis from Full-Scale Trials Data
18.2.4 Example Application 4. 140 m Cargo Ship: Estimate of Effective Power
18.2.5 Example Application 5. Tanker: Estimates of Effective Power in Load and Ballast Conditions
18.2.6 Example Application 6. 8000 TEU Container Ship: Estimates of Effective and Delivered Power
18.2.7 Example Application 7. 135 m Twin-Screw Ferry, 18 knots: Estimate of Effective Power P_E
18.2.8 Example Application 8. 45.5 m Passenger Ferry, 37 knots, Twin-Screw Monohull: Estimates of Effective and Delivered Power
18.2.9 Example Application 9. 98 m Passenger/Car Ferry, 38 knots, Monohull: Estimates of Effective and Delivered Power
18.2.10 Example Application 10. 82 m Passenger/Car Catamaran Ferry, 36 knots: Estimates of Effective and Delivered Power 493
18.2.11 Example Application 11. 130 m Twin-Screw Warship, 28 knots, Monohull: Estimates of Effective and Delivered Power 496
18.2.12 Example Application 12. 35 m Patrol Boat, Monohull: Estimate of Effective Power 502
18.2.13 Example Application 13. 37 m Ocean-Going Tug: Estimate of Effective Power 504
18.2.14 Example Application 14. 14 m Harbour Work Boat, Monohull: Estimate of Effective Power 504
18.2.15 Example Application 15. 18 m Planing Craft, Single-Chine Hull: Estimates of Effective Power Preplaning and Planing 506
18.2.16 Example Application 16. 25 m Planing Craft, 35 knots, Single-Chine Hull: Estimate of Effective Power 509
18.2.17 Example Application 17. 10 m Yacht: Estimate of Performance 511
18.2.18 Example Application 18. Tanker: Propeller Off-Design Calculations 515
18.2.20 Example Application 20. Ship Speed Trials: Correction for Natural Wind 521
18.2.21 Example Application 21. Detailed Cavitation Check on Propeller Blade Section 522
18.2.22 Example Application 22. Estimate of Propeller Blade Root Stresses 524
18.2.23 Example Application 23. Propeller Performance Estimates Using Blade Element-Momentum Theory 525
18.2.24 Example Application 24. Wake-Adapted Propeller 527
18.2.25 Example Application 25. Patrol Class Submarine: Estimates of Effective and Delivered Power 528
18.2.26 Example Application 26. AUV: Estimates of Effective and Delivered Power 530

REFERENCES (CHAPTER 18) 532

APPENDIX A1: Background Physics 533
A1.1 Background 533
A1.2 Basic Fluid Properties and Flow 533
Fluid Properties 533
Steady Flow 535
Uniform Flow 535
Streamline 535
A1.3 Continuity of Flow 535
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1.4</td>
<td>Forces Due to Fluids in Motion</td>
<td>536</td>
</tr>
<tr>
<td>A1.5</td>
<td>Pressure and Velocity Changes in a Moving Fluid</td>
<td>536</td>
</tr>
<tr>
<td>A1.6</td>
<td>Boundary Layer</td>
<td>537</td>
</tr>
<tr>
<td></td>
<td>Origins</td>
<td>537</td>
</tr>
<tr>
<td></td>
<td>Outer Flow</td>
<td>537</td>
</tr>
<tr>
<td></td>
<td>Flow Within the Boundary Layer</td>
<td>538</td>
</tr>
<tr>
<td></td>
<td>Displacement Thickness</td>
<td>539</td>
</tr>
<tr>
<td></td>
<td>Laminar Flow</td>
<td>540</td>
</tr>
<tr>
<td>A1.7</td>
<td>Flow Separation</td>
<td>540</td>
</tr>
<tr>
<td>A1.8</td>
<td>Wave Properties</td>
<td>541</td>
</tr>
<tr>
<td></td>
<td>Wave Speed</td>
<td>542</td>
</tr>
<tr>
<td></td>
<td>Deep Water</td>
<td>542</td>
</tr>
<tr>
<td></td>
<td>Shallow Water</td>
<td>542</td>
</tr>
<tr>
<td>REFERENCES (APPENDIX A1)</td>
<td></td>
<td>543</td>
</tr>
<tr>
<td>APPENDIX A2:</td>
<td>Derivation of Eggers Formula for Wave Resistance</td>
<td>544</td>
</tr>
<tr>
<td>APPENDIX A3:</td>
<td>Tabulations of Resistance Design Data</td>
<td>547</td>
</tr>
<tr>
<td>APPENDIX A4:</td>
<td>Tabulations of Propulsor Design Data</td>
<td>581</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>587</td>
</tr>
</tbody>
</table>