Index

Admittance parameters. See Y-parameters
Analytic function, 10, 28, 38, 133–134
Artificial neural network. See Neural network
Autonomous system, 10, 48, 74, 76–77, 103,
 See also Autonomous response
Behavioral model, 53, 88–89, 93–97, 104, 109–111,
 115–116, 119, 122–125, 149, 151, 170, 181,
 218, 220, 222–224, 228, 233, 235, 248,
 262–277, 293
Boundary conditions, 62–63, 109
Boundary-value problem, 62–63
Broadband spice model, 329
Capacitance matrix, 238, 241–246, 251, 254–255,
 293
Cardiff model, 119, 125, 150–151
Characterization, 273, 277
I/V characterization, 223, 226, 228–230, 241, 259,
 276, 284, 294, 323
Isodynamic, 284, 306–307, 309
Large-signal, 111, 115, 119, 149, 233, 237, 252,
 273, 275–286, 324, 329
Large-signal network analyzers. See Nonlinear vector network analyzer
Load-pull, 144, 147–148, 151, 303
LSNA. See Nonlinear vector network analyzer
Nonlinear vector network analyzer, 116, 169, 172,
 175, 218, 275–287, 293, 299, 306
NVNA. See Nonlinear vector network analyzer
Pulsed Bias, 275, 282–283, 306–307, 323
Pulsed S-parameters, 275, 306, 309
Small-signal, 14, 70, 203, 233, 237, 242, 245, 248,
 251–252, 257, 304, 319
Source-pull, 325
Vector network analyzer, 93, 187, 189, 212
VNA. See Vector network analyzer
X-parameters. See X-parameters
Commensurate frequencies, 77, 117, 151, 153–154,
 160, 276
Compact model, 115, 125, 235, 276–277, 282–283
Complex envelope, 15, 19–22, 83–85, 88–89, 160,
 169
Constitutive relation, 123–125, 218–231, 235–241,
 245–248, 255–269, 274–275, 283–287,
 291–292, 294, 302, 306, 315
Conversion matrix, 70, 151
Convolution, 5, 35–37, 53, 68, 74, 90
Correlation
 Auto-correlation, 34
 Cross-correlation, 33–34
 Co-simulation, 88–89
dc
 Analysis, 62–63, 76, 237, 322
 bias. See dc operating point
 Block, 12, 60
 Feed, 13
 Operating point, 14, 18, 62, 106, 108–109, 111,
 122, 125–127, 129, 131, 134–135, 139,
 144–146, 150–151, 168, 182, 184, 195,
 203–205, 208–210, 212–215, 238–239, 269,
 272, 276, 280, 284, 291, 324
 Power, 9, 214, 273, 329
 Power supply, 8, 10, 118, 167, 273, 329
 Quiescent point, 10, 23, 62, 70, 319, 329
 Source, 12, 123, 128, 144, 213
 Diode, 103, 106, 115, 167, 195, 294
 Equation, 267, 275
Discrete Fourier series, 35, 54, 77, See Fourier series
Dispersive
 Effects, 224
 Elements, 54
Distortion mechanisms
 Miller effect, 16, 310–321
 Nonlinear charges, 310–315
 Nonlinear current, 307–309
 Phase-lagging, 314
 Phase-shift, 311–314
 Thermal effects, 307
 Time-varying capacitances, 310
 Trapping effects, 307
Distributed
 Effects, 204, 214
 Elements, 49, 51–53, 66, 109, 125
 Model, 109, 197, 219, 269
Empirical model. See Behavioral model
Energy conservation, 8–9, 245–252, 293–294
Envelope following analysis
 Envelope-transient harmonic-balance, 84–86,
 See Harmonic-balance
 Envelope-transient over shooting, 86–87, See
 Shooting method
Envelope-following analysis, 82–88
Equivalent circuit model, 13, 22, 50, 52, 94, 106, 182,
Distributed elements, 51
Frequency dispersion, 274
Physical structure, 182, 303
Quasi-static approximation, 223, 259
Scaling rules, 193, 197, 214
Symmetry, 262
Topology, 190, 195, 199, 203, 212, 215, 220, 222,
239, 241, 302
Euler method, 55, 63, 66, 85–86
Final condition. See Final state
Final state, 63, 65, 171
Finite-differences in time-domain, 63
Forced system, 10, 49, See also Forced response
Fourier coefficients, 6, 35, 43, 66–69, 83, 85, 120,
135–136
Fourier series, 34, 43, 66–68, 78, 80, 120, 150
Fourier transform, 6, 36, 43–44, 54, 81, 104
Harmonic superposition, 144–146
Harmonic-balance, 67–82
Almost-periodic Fourier transform, 79–81
Artificial frequency mapping, 81–82
Conversion matrix. See Conversion matrix
Jacobian matrix, 69, 71, See Jacobian Matrix
Multidimensional Fourier transform, 80–81
Multitone harmonic-balance, 77–79
Nodal-based harmonic-balance, 70–71
Oscillator analysis, 74–77
Piece-wise harmonic-balance, 71–74
Toeplitz matrix, 68
Impedance matrix. See Z-parameters
Incommensurate frequencies, 77–78, 80–81, 83, 127,
151–154, 156–157
Initial condition. See Initial state
Initial state, 55, 61–66, 70, 171
Initial-value problem, 62
Jacobian matrix, 56–57
Kirchhoff’s laws, 13, 49–50, 104, 124, 240
Large-signal operating point, 70, 125–130, 135, 139,
144–146, 149–150, 154–156, 165, 319, 324
Least-squares, 29, 32, 80, 100, 130, 224, 227
Linear circuit model elements
 Bond-wires, 305
 Extrinsic elements, 183, 190–191, 302
 Intrinsic elements, 183, 190–191, 199, 202, 214,
 302, 306
 Linearized circuit elements, 107
 Manifolds, 189
 Package, 302, 304
 Parasitic elements. See Extrinsic elements
 Pre-matching, 302, 304–305
 Linear model, 181–182, 184–185, 195, 199,
 203–205, 207, 209–210
 Additivity, 3, 5, 8
 Convolution, 5–6
 Homogeneity, 3–4, 8
 Memory span, 37, 40
 Superposition, 3–8, 37, 44, 96, 101–102,
 111–112, 115, 126, 139, 144–147, 149, 181
 Transfer-Function, 7, 18, 20, 43–44, 70, 224
 Linear system. See Linear model
 Load-line, 276, 282, 286
 Dynamic, 147, 278, 286, 323
 Load-line method, 322–323
 Look-Up-Table, 40, 42, 214, 218, 228–237,
 248–251, 293
 LSOP. See Large-signal operating point
 Lumped
 Elements, 48–49, 51, 125, 181, 199, 239, 255, 305
 Model, 49, 52–54, 61, 89, 109, 198, 219, 238,
 269, 274, 329
 LUT. See Look-Up-Table
 Memory effects, 20–21, 166–169
 Baseband. See Long-term
 Carrier memory effects. See Long-term
 Long-term, 167–169, 326, 329
 Short-term, 168–169
 Model definition, 2
 Model extraction, 31, 181, 306, 309
 Calibration, 93, 187–189
 Cold FET, 190–191
 De-embedding, 190, 199, 302
 Dummy device, 304
 Forward bias, 195–196, 199, 304
 Methodology, 203, 223, 226
 Optimization, 227–228
 Parameter extraction, 182–184, 187–188,
 190–197, 201, 205, 218, 224–225, 227, 229,
 235, 241, 268, 276–279, 304
 Polynomial, 30
 Reference plane, 188–190, 199
 Strategy. See Methodology
 Model extrapolation, 233, 235–237
 Model formulation. See Constitutive relation
 Model implementation, 225, 315
 Advanced Design System, 315
Model implementation (cont.)
APLAC netlists, 316
AWR. See Microwave Office
Microwave Office, 316
Schematic, 316
Symbolic Defined Device, 315

Adjacent network. See Neural network training
Extrapolation, 235–237, See Model extrapolation
Neuron, 234
Time delay, 41–42
Training, 235, 248, 257, 261, 286
NMSE. See Normalized mean square error

Nonlinear circuit model elements
Charge source, 309
Current source, 316

Nonlinear distortion
ACPR, 163–166, 168, 239–240
adjacent channel power ratio. See ACPR
AM to PM conversion, 9, 15–16, 20, 301–302, 310–314, 329, 331–333
Cross-talk, 11
Desensitization, 11
Gain compression, 9, 14–15, 285, 287, 310, 329
Harmonic distortion, 9, 11, 18, 117, 130, 231, 279, 319
IMR. See Intermodulation distortion
Intermodulation distortion, 9, 11, 111, 137, 152, 163, 165, 167, 173, 227, 239, 289, 320
IP3, 165–166
Phase shift. See Nonlinear distortion AM to PM conversion
Spectral leakage, 59
Third-order intercept. See IP3

Nonlinear model
Artificial neural network. See Neural network
Compact model. See Compact model
Look-Up-Table. See Look-Up-Table
Poly-harmonic distortion. See Poly-harmonic distortion
Normalized mean square error, 31

ODE. See Ordinary differential equation
Ordinary differential equation, 49, 51–52, 84–85, 270
Output conductance, 59, 71, 220, 258, 261, 269, 272, 306
Output-equation, 49–50, 52, 54
Periodic-steady-state. See Shooting method
Phase-state. See State-space
Physical charge conservation, 48, 240, 246

Physically based model, 218–223, 231, 258, 292
Poly-harmonic distortion, 70, See X-parameters
Polynomial approximation. See Polynomial model
Polynomial coefficients, 29
Polynomial model, 27–31
Polynomial coefficients, 29
Taylor series, 29–31, 39, 56, 63, 128
Volterra series, 39, 143, 151
Wiener series, 41–42
Power amplifier characterization, 328
Continuous-wave testing, 16, 319, 323, 328–329
CW. See Continuous-wave testing
Gain, 17, 308, 319–320, 329–332
Modulated signal testing, 329, 332
Multitone testing, 328–333
PAE. See Power-added efficiency
Power dissipation, 168, 233, 273, 277
Power-added efficiency, 9, 147, 261, 274, 287–288, 302, 319–320, 329
Video-bandwidth, 326

Power amplifier design
Bias, 319–321, 325
Electromagnetic simulation, 325–329
EM. See Electromagnetic simulation
Layout, 326
Load-line, 324, See Load-line; Load-line method
Load-pull, 302–306, 309, 321, 323–324
Matching, 302–321, 325, 329
Quiescent point, 319, 329, See Bias
Schematic, 328
Source-pull, 325
Using X-Parameters, 148

Power Amplifier Operation Modes
Class A, 62, 273–274
Class AB, 273–274, 308, 314, 320, 330
Class B, 308, 319–320, 323, 330
Class C, 62, 149, 273, 308, 319–321, 330
Class F, 323–325
Doherty, 148–149, 310
Power amplifier stability, 324–325
Predistortion, 168

Quasi-static approximation, 49, 161–166, 168, 176, 258–259, See Quasi-static model
Quasi-static Elements, 74
Quasi-static model, 161–166, 173, 176, 218, 223–224, 228, 258–261, 293

Regression matrix, 34
Response
Autonomous response, 12, 22–26, 42
Chaotic response, 22, 25, 28, 42, 67, 77, 117
Finite impulse response, 40
Forced response, 12, 22, 24, 61
Impulse response, 4–7, 36–40, 43, 53, 101, 171
Infinite impulse response, 42
Large-signal, 111, See Characterization: large-signal
Quasi-static response, 170
Sinusoidal response. See Response: Periodic response
Small-signal. See Characterization: small-signal
Steady-state regime. See Periodic response
Step response, 171, 175
Transient response, 60–62, 171, 274
Unstable regime, 10, See Autonomous response
Runge-Kutta method, 58
Sampling frequency, 4–5, 54
Sampling interval. See Sampling frequency
Scattering matrix. See S-parameters
Schottky contact, 182, 195, 294, See also Diode
Shooting method, 63–66
Hot S-parameters, 111, 133, 151
large-signal S-parameters, 111
Large-signal S-parameters, 70
SPICE, 48, 54–55, 61, 90
State-equation, 49–52, 54–55, 57, 63, 67, 71, 84, 89–90, 275
State-space, 52, 56
State-variables, 23, 49–51, 54, 56, 61, 63, 68–69, 71, 73, 75, 77, 83–85, 280–281, 284
State-vector. See State-variables
Superposition. See Linear model system
Definition, 2
System state. See State-variables
Table-based model. See Look-Up-Table
Thermal effects, 307
Circuit model, 269, 275
Frequency dispersion, 259, 284
Self-heating, 167, 269
Time constants, 319
Time samples, 4, 31, 35, 55, 63, 66, 80, 83, 88, 162–164
Time-delayed look-up-table. See Look-Up-Table
Time-step integration, 55–61, 64, 83
T-parameters, 70
Training
Model. See Model extraction
Transcapacitance, 205–209, 242, 252–255, 294
Transconductance, 15, 29, 50, 59, 70, 191, 206, 258, 261, 306, 319
Time-delay, 199, 209–210
Time-varying, 70–71
Transistor, 103, 106, 115, 167, 181, 219, 222
Field-effect, 22, 106, 182, 215, 219, 221, 230
GaAs pHEMT, 182, 197–198, 200, 212, 221, 230–233, 244, 246, 250, 256–259, 269, 285
GaN HEMT, 147, 149, 201, 218, 287, 310
Si LDMOS, 231, 302, 304, 310
Si MOSFET, 221, 232
Transistor characteristics
Breakdown voltage, 319
I/V curves, 306
Knee voltage, 319
Soft turn-on, 309
Thermal resistance, 214, 270, 323
Triode region, 309
Triode region, 309
Transmission matrix. See T-parameters
Trapezoidal integration rule, 58
Time samples, 4, 31, 35, 55, 63, 66, 80, 83, 88, 162–164
Time-delay, 199, 209–210
Time-varying, 70–71
Transistor, 103, 106, 115, 167, 181, 219, 222
Field-effect, 22, 106, 182, 215, 219, 221, 230
GaAs pHEMT, 182, 197–198, 200, 212, 221, 230–233, 244, 246, 250, 256–259, 269, 285
GaN HEMT, 147, 149, 201, 218, 287, 310–315
Heterojunction bipolar, 239, 247, 256
III-V semiconductors, 218, 222, 273–275, 293
Si LDMOS, 231, 302, 304, 310–315
Si MOSFET, 221, 232
Transistor characteristics
Breakdown voltage, 319
I/V curves, 306
Knee voltage, 319
Soft turn-on, 309
Thermal resistance, 214, 270, 323
Triode region, 309
Triode region, 309
Transmission matrix. See T-parameters
Trapezoidal integration rule, 58–59, 65
Trapping effects, 273, 307
Current model, 275
Current collapse, 329
Drain-lag, 167, 274, 319
Frequency dispersion, 259, 284, 329
Gate-lag, 274
Self-biasing, 323, 329
Soft-compression, 329
Time constants, 319
Window function, 60
X-parameters, 70, 115–177, 262, 277, 289, 293
Identification - offset frequency method, 137–140
Identification - offset phase method, 129–132
Load dependent, 129, 146–150
Z-parameters, 194, 196–197