

GEOMORPHOLOGY IN THE ANTHROPOCENE

The Anthropocene – referring to the epoch that began when human activities started to have a significant impact on Earth's systems – is a major new concept in the Earth sciences. This book examines the effects on geomorphology during this latest period of Earth's history. Drawing on examples from many different environments around the world, this comprehensive volume demonstrates that the human impact on landforms and land-forming processes has and continues to be profound, driven by a number of forces, including: the use of fire; the extinction of fauna; the development of agriculture, urbanization, and globalization; and new methods of harnessing energy. This human impact has accelerated since the Industrial Revolution and – in particular – since the Second World War. The book explores the ways in which future climate change in response to anthropogenic causes may further magnify the human effect on geomorphology, with respect to future hazards such as floods and landslides, the state of the cryosphere, and global sea levels. The book concludes with a consideration of the ways in which landforms are now being managed and protected. Covering all major aspects of geomorphology, this book is ideal for undergraduate and graduate students taking courses in geomorphology, environmental science, and physical geography, and for all researchers of geomorphology.

ANDREW S. GOUDIE is Emeritus Professor of Geography at the University of Oxford. He specializes in the study of desert processes and climate change, and has worked in the Middle East, India and Pakistan, East Africa, Southern Africa, Australia, and the United States. From 2005 to 2009, Professor Goudie was President of the International Association of Geomorphologists and he has also been President of the Geographical Association, President of Section E of the British Association, and Chairman of the British Geomorphological Research Group. He was the recipient of the Farouk El-Baz Prize for Desert Research from the Geological Society of America in 2007, and the Founder's Medal of the Royal Geographical Society in 1991.

HEATHER A. VILES is Professor of Biogeomorphology and Heritage Conservation at the University of Oxford. Her research focuses on understanding weathering and rock breakdown in coastal, arid, and urban environments, and applying that knowledge to conserving heritage sites. She also works extensively on the links between geomorphology and ecology. Professor Viles has been Chairman of the British Society for Geomorphologists, Vice President (fieldwork) of the Royal Geographical Society, and is currently on the executive committee of the International Association of Geomorphologists. She received the Ralph Alger Bagnold Medal from the European Geosciences Union in 2015 for establishing the field of biogeomorphology.

"Among contemporary physical geographers, there are none who are the equal of Andrew Goudie and Heather Viles in their ability to synthesize vast areas of the literature and to bring out new meanings from the avalanche of data that is published each week... This is the first book that explores, in depth, the relation between the Anthropocene epoch and landscape science (geomorphology)... [It] can be recommended to any serious student of the global implications of human modification of Earth's surface... [as well as to the] geoscience and environmental science communities, from geographers to geologists and geophysicists"

- Olav Slaymaker, University of British Columbia

"What an interesting topic! What a good book! It presents the geomorphological evidence for the concept of the Anthropocene... With great clarity the authors give a wonderful review of the issues and a very clear account of the problems involved in selection of the start point and character of the possible new stratigraphical unit. Breathtaking in scope, it also gives a fine account of geomorphological processes and landforms linked to human achievements."

- Denys Brunsden, King's College, London

"In this comprehensive examination of human impacts on diverse landscapes, Goudie and Viles provide numerous examples and details of how human activities have altered and continue to alter Earth's surface. This book provides a valuable reference and thorough overview for students and professionals."

- Ellen Wohl, Colorado State University

"In today's climate of media-induced alarm about what mankind is doing to our planet, this book stands out as a calm and considered appraisal of human impacts on Earth resources and natural systems. Few are better placed than these authors to interpret the scientific data on human and natural forces driving those rapid changes currently challenging sustainability of Earth systems."

- Michael Crozier, Victoria University of Wellington

GEOMORPHOLOGY IN THE ANTHROPOCENE

ANDREW S. GOUDIE

University of Oxford

HEATHER A. VILES

University of Oxford

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107139961

© Andrew S. Goudie and Heather A. Viles 2016

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2016

Printed in the United States of America by Sheridan Books, Inc.

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data
Names: Goudie, Andrew, author. | Viles, Heather A., author.
Title: Geomorphology in the Anthropocene / Andrew S. Goudie, University of Oxford;
and Heather A. Viles, University of Oxford.

Description: Cambridge, United Kingdom; New York: Cambridge University Press, 2016.

| Includes bibliographical references and index.

Identifiers: LCCN 2016015452 | ISBN 9781107139961 (hardback)
Subjects: LCSH: Geomorphology. | BISAC: SCIENCE / Earth Sciences / Geography.
Classification: LCC GB401.5 .G68 2016 | DDC 551.41–dc23 LC record available at https://lccn.loc.gov/2016015452

ISBN 978-1-107-13996-1 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Acknowledgments		
1	Introduction to the Anthropocene and Anthropogeomorphology		
	1.1	The Anthropocene	1
	1.2	Anthropogeomorphology: Its History	7
	1.3	Direct and Indirect Anthropogeomorphological Influences	10
	1.4	Techniques in Anthropogeomorphology	12
	1.5	Our Approach	13
2	Drivers of Anthropogeomorphological Change		
	2.1	Humans Arrive	15
	2.2	Fire	17
	2.3	Tool Production	19
	2.4	Pleistocene Overkill	19
	2.5	Agriculture and Domestication	20
	2.6	Irrigation and Water Management	22
	2.7	Secondary Products Revolution	23
	2.8	Urbanization	24
	2.9	Mining and Metals	24
	2.10	Globalization	26
	2.11	Harnessing of Energy	26
	2.12	The Great Acceleration	28
	2.13	Conclusions	30
3	Construction and Excavation		
	3.1	Introduction: Humans as Earth Movers	31
	3.2	Landforms Produced by Construction and Dumping: Introduction	on 33
	3.3	Artificial Islands	34
	3.4	Artificial Reefs	35

V

vi

Table of Contents

	3.5	Coastal and Lake Reclamation	35
	3.6	Terracing	36
	3.7	Tells and Other Mounds	39
	3.8	Embankments and Levees	43
	3.9	Mine Spoil Heaps	43
	3.10	Artificial Lakes: Dams and Reservoirs	45
	3.11	Landforms Produced by Excavation	48
	3.12	Craters Produced by War	53
	3.13	Qanat	53
	3.14	Canals and Other Artificial Channels	54
	3.15	Conclusions	55
4	Subs	idence in the Anthropocene	57
	4.1	Introduction	57
	4.2	Karstic Collapse	57
	4.3	Solutional Collapse of Salt and Gypsum	59
	4.4	Coal Mining Subsidence	60
		Salt Mining	60
	4.6	Hydrocarbon Abstraction	61
	4.7		62
		Geothermal Fluid Abstraction	65
		Hydrocompaction	66
		Land Drainage	67
		Induced Seismic Activity	68
	4.12	Conclusions	70
5	Wea	thering Processes in the Anthropocene	71
	5.1	Weathering in the Paleoanthropocene	72
	5.2	Weathering in the Industrial Era	74
	5.3	Weathering in the Great Acceleration	80
	5.4	Future Weathering	81
	5.5	Conclusions	86
6	Hillslope Processes in the Anthropocene		
	6.1	Modification of Infiltration Capacities and Other Soil Properties	87
	6.2	Grazing	88
	6.3	Replacement of Grassland by Shrubland	90
	6.4	Deforestation	91
	6.5	Soil Compaction by Agriculture, Vehicular Activity,	
		and Ski Resorts	92
	6.6	Driving Forces	93

		Table of Contents	vii
	6.7	Case Study: Eroding Peat in Britain	108
		Soil Erosion Rates: Introduction	110
	6.9	Erosion Management	112
	6.10	Lake Sedimentation Rates	113
	6.11	Acceleration of Mass Movements	119
	6.12	Mass Movement Management	123
	6.13	Future Rates of Soil Erosion and Mass Movements	125
	6.14	Conclusions	129
7	Fluv	ial Processes and Forms in the Anthropocene	130
	7.1	Modifications of River Flow	130
	7.2	Sediment Transport: The Impact of Dams and Soil Erosion	138
	7.3	Channel Changes: Deliberate	144
	7.4	Accidental Channel Changes	146
	7.5	Effects of Urbanization	150
	7.6	Effects of Transport Corridors	150
	7.7	Effects of Mining on Stream Channels	151
	7.8	Changing Riparian Vegetation, Animal Activity,	
		and Stream Channels	152
	7.9	Stream Restoration	153
	7.10	Dam Removal Effects	155
	7.11	Holocene Floodplain Sedimentation Related	
		to Accelerated Erosion	155
	7.12	Case Studies	162
	7.13	The Future: River Flows and Channels Under Climate Change	168
	7.14	Lake Level Changes	173
	7.15	Conclusions	178
8	Aeol	ian Processes and Forms in the Anthropocene	179
	8.1	Introduction	179
	8.2	Dust Storms and Wind Erosion	180
	8.3	Sand Dunes	185
	8.4	Future Anthropocene Climate Changes and the Aeolian	
		Environment	190
	8.5	Conclusions	192
9	Coas	tal Processes and Forms in the Anthropocene	193
	9.1	Coastal Change	193
	9.2	Coral Reefs	201
	9.3	Estuaries	204
	94	Salt Marshes Mangrove Swamps and Seagrasses	207

> viii Table of Contents Future Sea-Level Rise 211 9.6 Conclusions 222 10 Cryospheric Processes and Forms in the Anthropocene 223 10.1 Thermokarst 223 10.2 Glaciers 225 10.3 Glacial Lakes 233 10.4 Conclusions 233 Conclusions on the Relationships Between Geomorphology and the Anthropocene 234 11.1 The Antiquity of Some Anthropogenic Geomorphological Changes 234 11.2 Highlights of Human Impacts on Geomorphology During the Great Acceleration 236 11.3 The Future 239 11.4 Stage 3 of the Anthropocene: Stewardship 243 11.5 Geomorphological Changes and the Earth System 247 References 251 Index 319

Acknowledgments

This book is the result of many influences. As a Cambridge undergraduate, Andrew was exposed to the study of the Quaternary and environmental change as a result of being taught by people like Dick Grove, Richard Hey, Richard West, and Nick Shackleton. Since then, he has gained a great deal from links with Alayne Perrott, Adrian Parker, and David Anderson. He has also been grateful to archaeologists who have given him a long time perspective on human affairs, including Raymond and Bridget Allchin and David Price Williams. His Oxford colleagues Michael Williams and Frank Emery taught him much about historical geography, adding to what he had gleaned from the lectures of Clifford Darby at Cambridge. Environmental management is a field to which he was introduced by John Doornkamp, David Jones, Ron Cooke, and Denys Brunsden, while John Davey encouraged him to write about the human impact. He has also benefited over the years from collaboration or discussions with Stan Trimble, Cleide Rodriguez, Piotr Migoń, and Olav Slaymaker. We are both grateful to NASA, Google Earth, and Google Scholar for making so many resources available, and to Elsevier for permission to reproduce Figures 6.4, 7.4, 7.6, 7.7, 7.10, 7.11, and 9.9; John Wiley and Sons for Figures 5.5 and 9.6; Springer for Figures 4.4, 6.11, and 6.13; Nature Publishing Group for Figure 3.14; and CSIRO for Figure 6.7. We thank John Wiley and Sons for permission to use Table 7.2. We thank Ailsa Allen for drawing some of the figures.