

THERMO-HYDRAULICS OF NUCLEAR REACTORS

This book provides a concise and up-to-date summary of the essential thermo-hydraulic analyses and design principles of nuclear reactors for electricity generation. Beginning with the basic nuclear physics, it leads through technical and quantitative analyses to descriptions of both the normal operation of the various modern nuclear reactor designs and the analyses of the possible departures from normal operation. It then describes both the postulated accident scenarios and summaries of the causes for the three major nuclear power generation accidents, Three Mile Island, Chernobyl, and Fukushima, as well as the major improvements to reactor safety that grew out of those analyses and accidents.

Professor Christopher Earls Brennen was a member of the Mechanical Engineering Faculty at Caltech for over 40 years and retired as the Richard L. and Dorothy M. Hayman Professor of Mechanical Engineering in 2005. As a teacher he was the recipient of a number of teaching awards including the prestigious Richard Feynman Prize.

Thermo-Hydraulics of Nuclear Reactors

Christopher Earls Brennen

California Institute of Technology

CAMBRIDGE UNIVERSITY PRESS

32 Avenue of the Americas, New York, NY 10013-2473, USA

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107139602

© Christopher Earls Brennen 2016

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2016

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data

Names: Brennen, Christopher E. (Christopher Earls), 1941– author.

Title: Thermo-hydraulics of nuclear reactors / Christopher Earls Brennen, California Institute of Technology Pasadena, California.

Description: New York, NY: Cambridge University Press, [2016] | !!2014 | Includes bibliographical references and index.

Identifiers: LCCN 2015039287 | ISBN 9781107139602 (hardback ; alk. paper) |

ISBN 1107139600 (hardback; alk. paper)

Subjects: LCSH: Nuclear reactors-Fluid dynamics. | Nuclear energy.

Classification: LCC TK9202 .B66 2016 | DDC 621.48/3-dc23

LC record available at http://lccn.loc.gov/2015039287

ISBN 978-1-107-13960-2 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

Contents

Pre	face		page ix
Ma	them	natical Nomenclature	xi
1	Inti	roduction	1
	1.1	Background and Context	1
	1.2		2
2	Bas	sic Nuclear Power Generation	5
	2.1	Nuclear Power	5
	2.2	Nuclear Fuel Cycle	5
		2.2.1 Thorium Fuel Cycle	7
		2.2.2 Fuel Changes in the Reactor	8
		2.2.3 The Postreactor Stages	8
	2.3	Nuclear Physics	9
		2.3.1 Basic Nuclear Fission	9
		2.3.2 Neutron Energy Spectrum	10
		2.3.3 Cross Sections and Mean Free Paths	11
		2.3.4 Delayed Neutrons and Emissions	13
	2.4	Radioactivity and Radioactive Decay	13
		2.4.1 Half-Life	13
		2.4.2 Decay in a Nuclear Reactor	14
	2.5	Radiation	15
	2.6	Containment Systems	16
		2.6.1 Radioactive Release	16
		2.6.2 Reactor Shielding	17
	2.7	Natural Uranium Reactors	18
	2.8	Thermal Reactors	18
		2.8.1 Moderator	18
		2.8.2 Neutron History in a Thermal Reactor	20

v

vi			Contents
	2.9	Fast Reactors	21
		Criticality	21
		Fuel Cycle Variations	22
2		·	
3		re Neutronics	25
		Introduction	25
		Neutron Density and Neutron Flux	25
		Discretizing the Energy or Speed Range	26
		Averaging over Material Components	27
		Neutron Transport Theory	28
	3.6	Diffusion Theory	30
		3.6.1 Introduction	30
		3.6.2 One-Speed and Two-Speed Approximations	32
		3.6.3 Steady State One-Speed Diffusion Theory	33
		3.6.4 Two-Speed Diffusion Theory	34
		3.6.5 Nonisotropic Neutron Flux Treatments	36
		3.6.6 Multigroup Diffusion Theories and Calculations	36
		3.6.7 Lattice Cell Calculations	37
	3.7	Simple Solutions to the Diffusion Equation	37
		3.7.1 Spherical and Cylindrical Reactors	37
		3.72 Effect of a Reflector on a Spherical Reactor	40
		3.73 Effect of a Reflector on a Cylindrical Reactor	42
		3.7.4 Effect of Control Rod Insertion	43
	3.8	Steady State Lattice Calculations	45
		3.8.1 Introduction	45
		3.8.2 Fuel Rod Lattice Cell	47
		3.8.3 Control Rod Lattice Cell	49
		3.8.4 Other Lattice Scales	50
	3.9	Unsteady or Quasi-Steady Neutronics	51
		3.9.1 Unsteady One-Speed Diffusion Theory	51
		3.9.2 Point Kinetics Model	53
	3.10	More Advanced Neutronic Theory	53
	3.11	Monte Carlo Calculations	54
4	Son	ne Reactor Designs	56
	4.1	Introduction	56
	4.2	Current Nuclear Reactors	56
	4.3	Light Water Reactors (LWRs)	57
		4.3.1 Types of LWRs	57
		4.3.2 Pressurized Water Reactors (PWRs)	58
		4.3.3 Boiling Water Reactors (BWRs)	60
		4.3.4 Fuel and Control Rods for LWRs	62
		4.3.5 Small Modular Reactors	65
		4.3.6 LWR Control	66

Cor	itents		Vii
	4.4	Heavy Water Reactors (HWRs)	67
	4.5	•	69
	4.6	Gas-Cooled Reactors	69
	4.7	Fast Neutron Reactors (FNRs)	70
		Liquid Metal Fast Breeder Reactors	70
	4.9	Generation IV Reactors	74
		4.9.1 Generation IV Thermal Reactors	75
		4.9.2 Generation IV Fast Reactors	76
5	Coı	re Heat Transfer	78
	5.1	Heat Production in a Nuclear Reactor	78
		5.1.1 Introduction	78
		5.1.2 Heat Source	78
		5.1.3 Fuel Rod Heat Transfer	79
		5.1.4 Heat Transfer to the Coolant	82
	5.2	Core Temperature Distributions	83
	5.3	Core Design: An Illustrative LWR Example	84
	5.4	Core Design: An LMFBR Example	85
	5.5	Boiling Water Reactor	86
		5.5.1 Temperature Distribution	86
		5.5.2 Mass Quality and Void Fraction Distribution	87
	5.6	Critical Heat Flux	89
6	Mu	ltiphase Flow	90
	6.1	Introduction	90
	6.2	Multiphase Flow Regimes	90
		6.2.1 Multiphase Flow Notation	90
		6.2.2 Multiphase Flow Patterns	91
		6.2.3 Flow Regime Maps	92
		6.2.4 Flow Pattern Classifications	93
		6.2.5 Limits of Disperse Flow Regimes	95
		6.2.6 Limits on Separated Flow	96
	6.3	Pressure Drop	99
		6.3.1 Introduction	99
		6.3.2 Horizontal Disperse Flow	99
		6.3.3 Homogeneous Flow Friction	100
		6.3.4 Frictional Loss in Separated Flow	101
	6.4	Vaporization	105
		6.4.1 Classes of Vaporization	105
		6.4.2 Homogeneous Vaporization	105
		6.4.3 Effect of Interfacial Roughness	108
	6.5	Heterogeneous Vaporization	108
		6.5.1 Pool Boiling	108
		6.5.2 Pool Boiling on a Horizontal Surface	109

VIII			Contents
		6.5.3 Nucleate Boiling	111
		6.5.4 Pool Boiling Crisis	113
		6.5.5 Film Boiling	115
		6.5.6 Boiling on Vertical Surfaces	116
	6.6	Multiphase Flow Instabilities	118
		6.6.1 Introduction	118
		6.6.2 Concentration Wave Oscillations	119
		6.6.3 Ledinegg Instability	119
		6.6.4 Chugging and Condensation Oscillations	120
	6.7	Nuclear Reactor Context	124
7	Rea	actor Multiphase Flows and Accidents	127
	7.1	Multiphase Flows in Nuclear Reactors	127
		7.1.1 Multiphase Flow in Normal Operation	127
		7.1.2 Void Fraction Effect on Reactivity	128
		7.1.3 Multiphase Flow during Overheating	128
	7.2	Multiphase Flows in Nuclear Accidents	130
	7.3	•	
	7.4	Safety Systems	131
		7.4.1 PWR Safety Systems	132
		7.4.2 BWR Safety Systems	133
	7.5	.,	
		7.5.1 Three Mile Island	134
		7.5.2 Chernobyl	137
		7.5.3 Fukushima	140
		7.5.4 Other Accidents	141
	7.6	Hypothetical Accident Analyses	142
		7.6.1 Hypothetical Accident Analyses for LWRs	142
		7.6.2 Loss-of-Coolant Accident: LWRs	143
		7.6.3 Loss-of-Coolant Accident: LMFBRs	145
		7.6.4 Vapor Explosions	146
		7.6.5 Fuel–Coolant Interaction	147
	7.7	Hypothetical Accident Analyses for FBRs	147
		7.7.1 Hypothetical Core Disassembly Accident	148
Ind	ex		151

Preface

This book presents an overview of the thermo-hydraulics of the nuclear reactors designed to produce power using nuclear fission. The book began many years ago as a series of notes prepared for a graduate student course at the California Institute of Technology. When, following the Three Mile Island accident in 1979, nuclear power became politically unpopular, demand and desire for such a course waned, and I set the book aside in favor of other projects. However, as the various oil crises began to accentuate the need to explore alternative energy sources, the course and the preparation of this book were briefly revived. Then came the terrible Chernobyl accident in 1986, and the course and the book got shelved once more. However, the pendulum swung back again as the problems of carbon emissions and global warming rose in our consciousness and I began again to add to the manuscript. Even when the prospects for nuclear energy took another downturn in the aftermath of the Fukushima accident (in 2011), I decided that I should finish the book whatever the future might be for the nuclear power industry. I happen to believe, despite the accidents - or perhaps because of them - that nuclear power will be an essential component of electricity generation in the years ahead.

The book is an introduction to a graduate-level (or advanced undergraduate-level) course in the thermo-hydraulics of nuclear power generation. Because neutronics and thermo-hydraulics are closely linked, a complete understanding of thermo-hydraulics and the associated safety issues also requires knowledge of the neutronics of nuclear power generation and, in particular, of the interplay between the neutronics and the thermo-hydraulics that determine the design of the reactor core. This material necessarily leads into the critical issues associated with nuclear reactor safety, and this, in turn, would be incomplete without brief descriptions of the three major accidents (Three Mile Island, Chernobyl, and Fukushima) that have influenced the development of nuclear power.

Some sections in Chapter 6 of this book were adapted from two of my other books, *Cavitation and Bubble Dynamics* and *Fundamentals of Multiphase Flow*, and I am grateful to the publisher of those books, Cambridge University Press, for permission to reproduce those sections and their figures in the present text. Other figures and photographs reproduced in this book are acknowledged in their respective

ix

x Preface

captions. I would also like to express my gratitude to the senior colleagues at the California Institute of Technology who introduced me to the topic of nuclear power generation, in particular, Noel Corngold and Milton Plesset. Milton did much to advance the cause of nuclear power generation in the United States, and I am much indebted to him for his guidance. I also appreciate the interactions I had with colleagues at other institutions, including Ivan Catton, the late Ain Sonin, George Maise, and the staff at the Nuclear Regulatory Commission.

This book is dedicated to James MacAteer, from whom I first heard the word *neutron*, and to the Rainey Endowed School in Magherafelt, where the physics Johnny Mac taught me stayed with me throughout my life.

California Institute of Technology, November 2013

Mathematical Nomenclature

Roman letters

a	Amplitude of wave-like disturbance
A	Cross-sectional area
A	Atomic weight
b	Thickness
B_g^2	Geometric buckling
$B_g^2 \ B_m^2$	Material buckling
c	Speed of sound
c_p	Specific heat of the coolant
C, C_1, C_2, C_R	Constants
C^*, C^{**}	Constants
C_f	Friction coefficient
$egin{array}{c} C_f \ C_i \end{array}$	Concentration of precursor i
d	Diameter
D	Neutron diffusion coefficient
D_h	Hydraulic diameter of coolant channel
E	Neutron kinetic energy
E'	Neutron energy prior to scattering
f	Frequency
g	Acceleration due to gravity
h, h^*	Heat transfer coefficients
H	Height
H_E	Extrapolated height
Hm	Haberman-Morton number, normally $g\mu^4/\rho S^3$
j	Total volumetric flux
j_N	Volumetric flux of component N
J_{j}	Angle-integrated angular neutron current density vector
J_j^*	Angular neutron current density vector
$k^{'}$	Multiplication factor
k_{∞}	Multiplication factor in the absence of leakage
	-

хi

> Mathematical Nomenclature xii Thermal conductivity k \mathcal{K} Frictional constants Typical dimension of a reactor 1 ℓ Typical dimension ℓ Mean free path Mean free path for absorption ℓ_f Mean free path for fission Mean free path for scattering ℓ_s Neutron diffusion length, $(D/\Sigma_a)^{\frac{1}{2}}$ L \mathcal{L} Latent heat of vaporization Mass flow rate \dot{m} m Index denoting a core material MNumber of different core materials denoted by m = 1 to MMa Square root of the Martinelli parameter Integer n n(E)dENumber of neutrons with energies between E and E + dENumber of neutrons or nuclei per unit volume N Number of fuel rods N_f Number of atoms per unit volume N^* Site density, number per unit area Nusselt number, hD_h/k_L NuPressure p^T Total pressure P Power \mathcal{P} $(1-P_F)$ Fraction of fast neutrons that are absorbed in ^{238}U Fraction of thermal neutrons that are absorbed in ^{238}U $(1 - P_T)$ PrPrandtl number Heat flux per unit surface area ġ Q Rate of heat production per unit length of fuel rod Radial coordinate r, θ, z Cylindrical coordinates Radius of reactor or bubble R R_E Extrapolated radius Reflector outer radius R_R Extrapolated reflector radius R_{RE} Fuel pellet radius R_P Outer radius R_{O} Re Reynolds number Coordinate measured in the direction of flow $S(x_i, t, E)$ Rate of production of neutrons of energy, E, per unit volume \mathcal{S} Surface tension Time

Mathematical Nomenclature

xiii

T	Temperature
u, U	Velocity
\bar{u}	Neutron velocity
u_i	Fluid velocity vector
u_N	Fluid velocity of component N
V	Volume
\dot{V}	Volume flow rate
x, y, z	Cartesian coordinates
x_i	Position vector
x_N	Mass fraction of component N
\mathcal{X}	Mass quality
z	Elevation

Greek letters

α	Volume fraction
$lpha_L$	Thermal diffusivity of liquid
α_{mf}	Ratio of moderator volume to fuel volume
β	Fractional insertion
β	Volume quality
eta	Fraction of delayed neutrons
ϵ	Fast fission factor of ^{238}U
δ	Boundary layer thickness
η	Efficiency
η	Thermal fission factor of ^{238}U
θ	Angular coordinate
κ	Bulk modulus of the liquid
К	Wave number
κ_L, κ_G	Shape constants
λ	Wavelength
λ_i	Decay constant of precursor i
$(1-\Lambda_F)$	Fraction of fast neutrons that leak out of the reactor
$(1 - \Lambda_T)$	Fraction of thermal neutrons that leak out of the reactor
ξ	Time constant
ξ_1, ξ_2	Constants
μ , ν	Dynamic and kinematic viscosity
ρ	Density
ρ	Reactivity, $(k-1)/k$
σ	Cross section
$\sigma_a, \sigma_f, \sigma_s$	Cross sections for absorption, fission, and scattering
Σ	Macroscopic cross section, $N\sigma$
Σ_{tr}	Macroscopic transport cross section, 1/3D

© in this web service Cambridge University Press

www.cambridge.org

xiv

Mathematical Nomenclature

 $\begin{array}{lll} \tau & & \text{Half-life} \\ \tau_w & & \text{Wall shear stress} \\ \phi & & \text{Angle-integrated neutron flux} \\ \phi_L^2, \phi_G^2, \phi_{L0}^2 & & \text{Martinelli pressure gradient ratios} \\ \varphi & & \text{Angular neutron flux} \\ \omega & & \text{Radian frequency} \\ \omega_a & & \text{Acoustic mode radian frequency} \\ \omega_m & & \text{Manometer radian frequency} \end{array}$

Unit direction vector

Subscripts

 Ω_i

on any variation	-, £.
Q_o	Initial value, upstream value, or reservoir value
Q_1, Q_2	Values at inlet and discharge
Q_a	Pertaining to absorption
Q_b	Bulk value
Q_c	Critical values and values at the critical point
Q_d	Detachment value
Q_e	Effective value or exit value
Q_e	Equilibrium value or value on the saturated liquid-vapor line
Q_i	Components of vector Q
Q_f	Pertaining to fission or a fuel pellet
Q_s	Pertaining to scattering
Q_w	Value at the wall
Q_A, Q_B	Pertaining to general phases or components, A and B
Q_B	Pertaining to the bubble
Q_C	Pertaining to the continuous phase or component, C
Q_C	Critical value
Q_C	Pertaining to the coolant or cladding
Q_{CI}	Pertaining to the inlet coolant
Q_{CS}	Pertaining to the inner cladding surface
Q_D	Pertaining to the disperse phase or component, D
Q_E	Equilibrium value
Q_F	Pertaining to fast neutrons
Q_{FS}	Pertaining to the fuel pellet surface
Q_G	Pertaining to the gas phase or component
Q_L	Pertaining to the liquid phase or component
Q_M	Mean or maximum value
Q_N	Nominal conditions or pertaining to nuclei
Q_N	Pertaining to a general phase or component, N
Q_R	Pertaining to the reflector

Mathematical Nomenclature

 $\mathbf{X}\mathbf{V}$

Q_S	Pertaining to the surface
Q_T°	Pertaining to thermal neutrons
Q_V	Pertaining to the vapor
Q_{∞}^{\cdot}	Pertaining to conditions far away

Superscripts and other qualifiers

On any variable, Q:

$ar{Q}$	Mean value of Q
\dot{Q}	Time derivative of Q
δQ	Small change in Q
ΔQ	Difference in Q values

 Q^m Pertaining to the material component, m