

Principles of Seismology

Second Edition

The second edition of Principles of Seismology has been extensively revised and updated to present a modern approach to observation seismology and the theory behind digital seismograms. It includes: a new chapter on earthquakes, Earth's structure and dynamics; a considerably revised chapter on instrumentation, with new material on processing of modern digital seismograms and a list of website hosting data and seismological software; and 100 end-of-chapter problems. The fundamental physical concepts on which seismic theory is based are explained in full detail with step-by-step development of the mathematical derivations, demonstrating the relationship between motions recorded in digital seismograms and the mechanics of deformable bodies. With chapter introductions and summaries, numerous examples, newly drafted illustrations and new color figures, and an updated bibliography and reference list, this intermediate-level textbook is designed to help students develop the skills to tackle real research problems.

Agustín Udías is Emeritus Professor at the Universidad Complutense, Madrid, Spain. He is the author of many papers about seismicity, seismotectonics of the Azores-Gibraltar, and the physics of seismic sources, and has also written several textbooks. Professor Udías has served as Editor-in-Chief of Física de la Tierra and the Journal of Seismology, and as the Vice-President of the European Seismological Commission. He is a member of the Accademia Europeae, the Seismological Society of America, the American Geophysical Union, amongst other societies, and is a Fellow of the Royal Astronomical Society.

Elisa Buforn is Professor of Geophysics at the Universidad Complutense, Madrid, Spain, where she teaches courses on geophysics, seismology, physics, and numerical methods. Professor Buforn's research focuses on source fracture processes, seismicity, and seismotectonics and she is Editor-in-Chief of Física de la Tierra and on the Editorial Board of the Journal of Seismology. She is a member of the Seismological Society of America, American Geophysical Union, Royal Astronomical Society, and Real Sociedad Española de Física, amongst other societies.

Principles of Seismology Second Edition

AGUSTÍN UDÍAS

Universidad Complutense, Madrid

ELISA BUFORN

Universidad Complutense, Madrid

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India
79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org/
Information on this title: www.cambridge.org/9781107138698
DOI: 10.1017/9781316481615

© Agustín Udías and Elisa Buforn 2018

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2018

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data
Names: Udías Vallina, Agustín, author. | Buforn, Elisa, 1954– author.
Title: Principles of seismology / Agustin Udias, Universidad Complutense, Madrid, Elisa
Buforn, Universidad Complutense, Madrid.

Description: Second edition. | Cambridge : Cambridge University Press, 2017. | Includes bibliographical references and index.

Identifiers: LCCN 2017024371 | ISBN 9781107138698

Subjects: LCSH: Seismology. | Seismology – Mathematics. | Wave mechanics – Mathematics. | Classification: LCC QE534.2 .U35 2017 | DDC 551.22–dc23 | LC record available at https://lccn.loc.gov/2017024371

ISBN 978-1-107-13869-8 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Prejace and Acknowleagments		
1	Seismology, the science of earthquakes	1
	1.1 The historical development	1
	1.2 Seismology a multidisciplinary science	4
	1.3 Divisions of seismology	5
	1.4 Theory and observations	6
	1.5 International cooperation	8
	1.6 Books, journals, and websites	9
	1.7 Summary	12
2	Earthquakes, Earth structure, and dynamics	14
	2.1 Earthquakes: natural disasters	14
	2.2 Size of earthquakes	17
	2.3 Earthquakes and faults	18
	2.4 Spatial distribution of earthquakes	20
	2.5 Temporal distribution of earthquakes	22
	2.6 Earth's structure: crust, mantle, and core	23
	2.7 Plate tectonics	26
	2.8 Earthquake risk, prediction, and prevention	29
	2.9 Summary	30
3	Instrumentation and digital data processing	32
	3.1 The historical evolution of seismographs	32
	3.2 The theory of the seismometer	35
	3.3 Recording systems, magnification, and dynamic range	39
	3.4 Electromagnetic seismographs	40
	3.5 Digital seismographs	45
	3.6 Processing digital seismograms	47
	3.6.1 Data acquisition	47
	3.6.2 Radial and transverse components	48
	3.6.3 Removing the instrumental response	49
	3.6.4 Spectral analysis	50
	3.6.5 Filtering seismograms	51

۷

vi Contents

3.7 Accelerographs	54
3.8 Other types of seismologic instruments	55
3.9 Summary	58
3.10 Problems	58
4 Basic concepts and equations of an elastic medium	60
4.1 Displacement, strain, and stress	60
4.1.1 Eigenvalues and eigenvectors	64
4.2 Elasticity coefficients	65
4.3 The influence of temperature	68
4.4 Work, energy, and heat considerations	70
4.5 Equations of continuity and motion	72
4.5.1 The equations of continuity of mass and energy	72
4.5.2 The equation of motion or momentum	73
4.6 The Lagrangian formulation	77
4.7 Potential functions of displacements and forces	78
4.8 The Green and Somigliana functions of elastodynamics	79
4.9 Theorems of reciprocity and representation	81
4.10 Summary	84
4.11 Problems	85
5 Waves in an infinite elastic medium	87
5.1 Wave equations for an elastic medium	87
5.2 Solutions of the wave equation	89
5.2.1 Wave fronts and rays	91
5.2.2 Waves of several frequencies	93
5.3 Displacement, velocity, and acceleration	93
5.4 The propagation of energy	95
5.4.1 Phase and group velocities	96
5.5 The effect of gravity on wave propagation	97
5.6 Plane waves	98
5.7 The geometry of P and S wave displacements	101
5.8 Particular forms of the potentials	103
5.9 Spherical waves	105
5.10 Cylindrical waves	109
5.11 Summary	112
5.12 Problems	112
6 Reflection and refraction	115
6.1 Snell's law	115
6.2 Reflection and refraction in two liquid media	116
6.2.1 Normal incidence	120
6.2.2 Critical incidence	120
6.2.3 Inhomogeneous waves	121

vii Contents

		6.2.4 Reflected and transmitted energy	122
		6.2.5 Reflection on a free surface	126
	6.3	Reflection and refraction in elastic media	127
		6.3.1 Incident SH waves	127
		6.3.2 Critical incidence and inhomogeneous waves	129
		6.3.3 Incident P and SV waves	130
	6.4	Reflection on a free surface	132
		6.4.1 Incident SH waves	133
		6.4.2 Incident P waves	133
		6.4.3 Incident SV waves	135
		6.4.4 Critical reflection of SV waves	136
		6.4.5 The partition of energy	136
	6.5	Motion at the free surface	139
		6.5.1 Incident P waves	139
		6.5.2 Incident S waves	140
		6.5.3 Apparent angles of incidence and polarization	141
	6.6	Summary	143
	6.7	Problems	143
,	D - J		1.47
/		y wave propagation in layered media	146
		Wave propagation in the (x, z) plane	146
		The equation for the displacement–stress vector	148
		The propagator matrix	150
	/.4	A layered medium with constant parameters	152
		7.4.1 Eigenvalues and eigenvectors	153
		7.4.2 The propagator matrix for SH motion	154
		SH motion in an elastic layer over a half-space	155
	7.6	The general problem	157
		7.6.1 SH motion	158
		7.6.2 P–SV motion	158
		Summary	159
	7.8	Problems	159
8	Ray	theory. Media of constant velocity	161
		The eikonal equation	161
		8.1.1 The condition of validity	164
	8.2	Ray trajectories	165
		Ray trajectories and travel times. A homogeneous half-space	167
		A layer over a half-space with constant velocities	171
		The dipping layer	176
		A plane-layered medium	178
		Summary	181
		Problems	181

viii Contents

9.2 The Lagrangian formulation 9.3 The change of distance with the ray parameter 9.4 The velocity distribution with ζ constant 159.5 A linear increase of velocity with depth 9.6 Distributions of velocity with depth 9.6.1 A gradual increase of velocity 9.6.2 A rapid increase in velocity 9.6.3 A decrease of velocity. A low-velocity layer 9.7 Travel times for deep foci 9.8 Reflected rays 9.9 Determination of the velocity distribution 9.10 The energy propagated by ray beams. Geometrical spreading 9.11 Summary 9.12 Problems 20 10 Ray theory. Spherical media 10.1 The geometry of ray trajectories and displacements 10.2 A sphere of constant velocity 10.3 A sphere with a velocity that is variable with the radius 10.3.1 The change of distance with the ray parameter 10.4 A velocity distribution with ζ constant 10.5 Rays with circular trajectory	83 87 88 90
9.3 The change of distance with the ray parameter 9.4 The velocity distribution with ζ constant 9.5 A linear increase of velocity with depth 9.6 Distributions of velocity with depth 9.6.1 A gradual increase of velocity 9.6.2 A rapid increase in velocity 9.6.3 A decrease of velocity. A low-velocity layer 9.7 Travel times for deep foci 9.8 Reflected rays 9.9 Determination of the velocity distribution 9.10 The energy propagated by ray beams. Geometrical spreading 9.11 Summary 9.12 Problems 20 10.1 The geometry of ray trajectories and displacements 10.2 A sphere of constant velocity 10.3 A sphere with a velocity that is variable with the radius 10.3.1 The change of distance with the ray parameter 10.4 A velocity distribution with ζ constant 10.5 Rays with circular trajectory	88
9.4 The velocity distribution with ζ constant 9.5 A linear increase of velocity with depth 9.6 Distributions of velocity with depth 9.6.1 A gradual increase of velocity 9.6.2 A rapid increase in velocity 9.6.3 A decrease of velocity. A low-velocity layer 9.7 Travel times for deep foci 9.8 Reflected rays 9.9 Determination of the velocity distribution 9.10 The energy propagated by ray beams. Geometrical spreading 9.11 Summary 9.12 Problems 20 10.1 The geometry of ray trajectories and displacements 10.2 A sphere of constant velocity 10.3 A sphere with a velocity that is variable with the radius 10.3.1 The change of distance with the ray parameter 10.4 A velocity distribution with ζ constant 10.5 Rays with circular trajectory	
 9.5 A linear increase of velocity with depth 9.6 Distributions of velocity with depth 9.6.1 A gradual increase of velocity 9.6.2 A rapid increase in velocity 9.6.3 A decrease of velocity. A low-velocity layer 9.7 Travel times for deep foci 9.8 Reflected rays 9.9 Determination of the velocity distribution 9.10 The energy propagated by ray beams. Geometrical spreading 9.11 Summary 9.12 Problems 10 Ray theory. Spherical media 10.1 The geometry of ray trajectories and displacements 10.2 A sphere of constant velocity 10.3 A sphere with a velocity that is variable with the radius 10.3.1 The change of distance with the ray parameter 10.4 A velocity distribution with ζ constant 10.5 Rays with circular trajectory 	gΛ
 9.6 Distributions of velocity with depth 9.6.1 A gradual increase of velocity 9.6.2 A rapid increase in velocity 9.6.3 A decrease of velocity. A low-velocity layer 9.7 Travel times for deep foci 9.8 Reflected rays 9.9 Determination of the velocity distribution 9.10 The energy propagated by ray beams. Geometrical spreading 9.11 Summary 9.12 Problems 10.1 The geometry of ray trajectories and displacements 10.2 A sphere of constant velocity 10.3 A sphere with a velocity that is variable with the radius 10.3.1 The change of distance with the ray parameter 10.4 A velocity distribution with ζ constant 10.5 Rays with circular trajectory 	70
9.6.1 A gradual increase of velocity 9.6.2 A rapid increase in velocity 9.6.3 A decrease of velocity. A low-velocity layer 9.7 Travel times for deep foci 9.8 Reflected rays 9.9 Determination of the velocity distribution 9.10 The energy propagated by ray beams. Geometrical spreading 9.11 Summary 9.12 Problems 20 10.1 The geometry of ray trajectories and displacements 10.2 A sphere of constant velocity 10.3 A sphere with a velocity that is variable with the radius 10.3.1 The change of distance with the ray parameter 10.4 A velocity distribution with ζ constant 10.5 Rays with circular trajectory	91
9.6.2 A rapid increase in velocity 9.6.3 A decrease of velocity. A low-velocity layer 9.7 Travel times for deep foci 9.8 Reflected rays 9.9 Determination of the velocity distribution 9.10 The energy propagated by ray beams. Geometrical spreading 9.11 Summary 9.12 Problems 20 10 Ray theory. Spherical media 10.1 The geometry of ray trajectories and displacements 10.2 A sphere of constant velocity 10.3 A sphere with a velocity that is variable with the radius 10.3.1 The change of distance with the ray parameter 10.4 A velocity distribution with ζ constant 10.5 Rays with circular trajectory	94
9.6.3 A decrease of velocity. A low-velocity layer 9.7 Travel times for deep foci 9.8 Reflected rays 9.9 Determination of the velocity distribution 9.10 The energy propagated by ray beams. Geometrical spreading 9.11 Summary 9.12 Problems 20 10.1 The geometry of ray trajectories and displacements 10.2 A sphere of constant velocity 10.3 A sphere with a velocity that is variable with the radius 10.3.1 The change of distance with the ray parameter 10.4 A velocity distribution with ζ constant 10.5 Rays with circular trajectory	94
 9.7 Travel times for deep foci 9.8 Reflected rays 9.9 Determination of the velocity distribution 9.10 The energy propagated by ray beams. Geometrical spreading 9.11 Summary 9.12 Problems 10 Ray theory. Spherical media 10.1 The geometry of ray trajectories and displacements 10.2 A sphere of constant velocity 10.3 A sphere with a velocity that is variable with the radius 10.3.1 The change of distance with the ray parameter 10.4 A velocity distribution with ζ constant 10.5 Rays with circular trajectory 	95
 9.8 Reflected rays 9.9 Determination of the velocity distribution 9.10 The energy propagated by ray beams. Geometrical spreading 9.11 Summary 9.12 Problems 10 Ray theory. Spherical media 10.1 The geometry of ray trajectories and displacements 10.2 A sphere of constant velocity 10.3 A sphere with a velocity that is variable with the radius 10.3.1 The change of distance with the ray parameter 10.4 A velocity distribution with ζ constant 10.5 Rays with circular trajectory 	98
 9.9 Determination of the velocity distribution 9.10 The energy propagated by ray beams. Geometrical spreading 9.11 Summary 9.12 Problems 10 Ray theory. Spherical media 10.1 The geometry of ray trajectories and displacements 10.2 A sphere of constant velocity 10.3 A sphere with a velocity that is variable with the radius 10.3.1 The change of distance with the ray parameter 10.4 A velocity distribution with ζ constant 10.5 Rays with circular trajectory 	00
 9.10 The energy propagated by ray beams. Geometrical spreading 9.11 Summary 9.12 Problems 10 Ray theory. Spherical media 10.1 The geometry of ray trajectories and displacements 10.2 A sphere of constant velocity 10.3 A sphere with a velocity that is variable with the radius 10.3.1 The change of distance with the ray parameter 10.4 A velocity distribution with ζ constant 10.5 Rays with circular trajectory 	00
9.11 Summary 9.12 Problems 20 10 Ray theory. Spherical media 10.1 The geometry of ray trajectories and displacements 10.2 A sphere of constant velocity 10.3 A sphere with a velocity that is variable with the radius 10.3.1 The change of distance with the ray parameter 10.4 A velocity distribution with ζ constant 10.5 Rays with circular trajectory	02
9.12 Problems 20 10 Ray theory. Spherical media 20 10.1 The geometry of ray trajectories and displacements 20 10.2 A sphere of constant velocity 21 10.3 A sphere with a velocity that is variable with the radius 21 10.3.1 The change of distance with the ray parameter 21 10.4 A velocity distribution with ζ constant 21 10.5 Rays with circular trajectory 21	04
10 Ray theory. Spherical media20 10.1 The geometry of ray trajectories and displacements20 10.2 A sphere of constant velocity21 10.3 A sphere with a velocity that is variable with the radius21 $10.3.1$ The change of distance with the ray parameter21 10.4 A velocity distribution with ζ constant21 10.5 Rays with circular trajectory21	06
 10.1 The geometry of ray trajectories and displacements 10.2 A sphere of constant velocity 10.3 A sphere with a velocity that is variable with the radius 10.3.1 The change of distance with the ray parameter 10.4 A velocity distribution with ζ constant 10.5 Rays with circular trajectory 	07
 10.2 A sphere of constant velocity 10.3 A sphere with a velocity that is variable with the radius 10.3.1 The change of distance with the ray parameter 10.4 A velocity distribution with ζ constant 10.5 Rays with circular trajectory 	:09
 10.2 A sphere of constant velocity 10.3 A sphere with a velocity that is variable with the radius 10.3.1 The change of distance with the ray parameter 10.4 A velocity distribution with ζ constant 10.5 Rays with circular trajectory 	09
 10.3 A sphere with a velocity that is variable with the radius 10.3.1 The change of distance with the ray parameter 10.4 A velocity distribution with ζ constant 10.5 Rays with circular trajectory 	12
10.4 A velocity distribution with ζ constant2110.5 Rays with circular trajectory21	13
10.4 A velocity distribution with ζ constant2110.5 Rays with circular trajectory21	15
10.5 Rays with circular trajectory	17
	17
10.0 Distribution of the velocity with the radius	18
·	19
	20
	21
· · · · · · · · · · · · · · · · · · ·	22
•	24
	26
10.10 Problems 22	26
11 Travel times and the structure of the Earth 22	28
11.1 Observations and methods	28
	30
~	31
	33
- · · · · · · · · · · · · · · · · · · ·	35
	36
	38
	43
	44

ix Contents

		11.4.1 The lithosphere and the asthenosphere	245
	11.5	The lower mantle	247
	11.6	The core	251
		Summary	257
	11.8	Problems	258
12	Surfa	ce waves	259
	12.1	Rayleigh waves in a half-space	259
		12.1.1 Displacements of Rayleigh waves	263
	12.2	A liquid layer over a rigid half-space. Guided waves	265
		12.2.1 Constructive interference	266
		12.2.2 The dispersion equation and curves	267
		12.2.3 Displacements	268
	12.3	An elastic layer over a half-space. Love waves	269
		12.3.1 Constructive interference	271
		12.3.2 Dispersion curves	272
		12.3.3 Displacements	274
	12.4	An elastic layer over a half-space. Rayleigh waves	276
	12.5	Surface waves in layered media	279
		12.5.1 Love waves in a layer over a half-space	279
	12.6	Surface waves in a spherical medium	280
	12.7	Stoneley waves	281
	12.8	Summary	283
	12.9	Problems	284
13	Wave	dispersion. Phase and group velocities	285
		Phase and group velocities	285
	13.2	Groups of waves	287
		The principle of a stationary phase	289
		Characteristics of dispersed waves	292
		Determination of group and phase velocities. Instantaneous	
		frequencies	294
		13.5.1 The group velocity	294
		13.5.2 The phase velocity	295
	13.6	Determination of phase and group velocities. Fourier analysis	297
		13.6.1 Fourier analysis of seismograms	297
		13.6.2 The phase velocity	298
		13.6.3 The group velocity	298
	13.7	Dispersion curves and the Earth's structure	300
		13.7.1 Observations	300
		13.7.2 Interpretation	302
	13.8	Summary	306
		Problems	306

x Contents

14	Free oscillations of the Earth. Theory and observations	308
	14.1 Standing waves and modes of vibration	308
	14.2 Vibrations of an elastic string of finite length	310
	14.3 Vibrations of an elastic rod	313
	14.3.1 Longitudinal vibrations	313
	14.3.2 Torsional vibrations	315
	14.4 The general problem. The Sturm–Liouville equation	317
	14.5 Free oscillations of a homogeneous liquid sphere	318
	14.6 Free oscillations of an elastic sphere	322
	14.7 Toroidal modes	324
	14.8 Spheroidal modes	327
	14.9 Effects on free oscillations	329
	14.10 Observations	331
	14.11 Summary	333
	14.12 Problems	334
15	Anelasticity and anisotropy	335
	15.1 Anelasticity and damping	335
	15.1.1 Anelasticity	336
	15.1.2 Harmonic excitation of a Maxwellian body	337
	15.1.3 Damped harmonic motion. The Q coefficient	338
	15.2 Wave attenuation	341
	15.3 The attenuation of body and surface waves	343
	15.3.1 Body waves	343
	15.3.2 Surface waves	345
	15.4 The attenuation of free oscillations	346
	15.5 The attenuation of coda waves	348
	15.6 Attenuation in the Earth	349
	15.7 Anisotropy	351
	15.8 Wave propagation in anisotropic media	352
	15.8.1 Body waves	352
	15.8.2 Surface waves	354
	15.9 Anisotropy in the Earth	355
	15.10 Summary	356
	15.11 Problems	357
16	Focal parameters of earthquakes	358
	16.1 Location of an earthquake focus	358
	16.1.1 Macroseismic determination of epicenter	
	locations	359
	16.1.2 Instrumental determination. Graphical methods	360
	16.1.3 Numerical methods	362
	16.2 Joint hypocenter determination	364

xi Contents

	16.3 Seismic intensity	365
	16.3.1 Isoseismal or intensity maps	367
	16.4 Magnitude	368
	16.4.1 Scales of magnitude	368
	16.4.2 The saturation of magnitude scales	372
	16.5 Seismic energy	373
	16.6 The seismic moment, stress drop, and average stress	374
	16.7 Summary	378
	16.8 Problems	379
17	Basic theory of earthquake mechanism	380
	17.1 Earthquakes and faults	380
	17.2 Equivalent forces. Point sources	382
	17.2.1 Formulation using Green's function	384
	17.2.2 Single and double couples	385
	17.3 Fractures and dislocations	388
	17.4 The Green function for an infinite medium	390
	17.4.1 The radial force	390
	17.4.2 An impulsive force in an arbitrary direction	391
	17.5 The separation of near and far fields	396
	17.5.1 The near field	397
	17.5.2 The far field	397
	17.6 A shear dislocation or fracture. The point source	400
	17.6.1 The radiation pattern	401
	17.6.2 The geometry of a shear fracture	404
	17.7 The source time function	406
	17.8 The equivalence between forces and dislocations	408
	17.9 Summary	411
	17.10 Problems	412
10	The seismic moment tensor	414
10	18.1 Definition of the moment tensor	414
	18.2 The moment tensor and elastic dislocations	418
	18.2.1 An explosive source	418
	18.2.2 Shear fracture	419
	18.3 Eigenvalues and eigenvectors	420
	18.4 Types of sources and separation of the moment tensor	420
	18.5 Displacements due to a point source	424
	18.6 The temporal dependence18.7 The centroid moment tensor	425
	18.7 The centroid moment tensor 18.8 Inversion of the moment tensor	427
		427
	18.9 Summary	429
	18.10 Problems	429

xii Contents

19	Simp	le models of fracture	431
	-	Source dimensions. Kinematic models	432
	19.2	Rectangular faults. Haskell's model	434
		Circular faults. Brune's model	438
	19.4	Nucleation, propagation, and arrest of a rupture	440
		Dynamic models of fracture	444
		19.5.1 The static problem	444
		19.5.2 The dynamic problem	445
	19.6	Friction models of fracture	448
	19.7	The complexity of a fracture	449
		19.7.1 The cohesive zone	449
		19.7.2 Barriers and asperities	451
		19.7.3 Acceleration spectra	453
	19.8	Summary	454
	19.9	Problems	455
20	Meth	ods of determination of source mechanisms	456
	20.1	Parameters and observations	456
	20.2	P wave first motion polarities. Fault plane solutions	457
		20.2.1 Graphical methods	460
		20.2.2 Numerical methods	461
	20.3	Wave-form modeling	463
	20.4	Inversion of the moment tensor	468
		20.4.1 The inversion of Rayleigh waves	468
	20.5	Amplitude spectra of seismic waves	470
	20.6	Determination of the slip distribution over the fault plane	471
	20.7	Summary	473
	20.8	Problems	475
21	Seisn	nicity, seismotectonics, seismic risk, and prediction	477
	21.1	The spatial distribution of earthquakes	477
	21.2	The temporal distribution of earthquakes	480
	21.3	Seismic cycles	481
	21.4	The distribution of magnitudes	483
		Models of the occurrence of earthquakes	485
		Seismotectonics	487
	21.7	Seismic hazard and risk	490
	21.8	The prediction of earthquakes	493
	21.9	Summary	496
Ap		x 1 Vectors and tensors	497
	A1.1	Definitions	497
	A1.2	Operations with vectors and tensors	498

xiii Contents

A1.3 Vector and tensor calculus	500
Appendix 2 Cylindrical and spherical coordinates	502
A2.1 Cylindrical coordinates	502
A2.2 Spherical coordinates	504
Appendix 3 Bessel and Legendre functions	506
A3.1 Bessel functions	506
A3.2 Spherical Bessel functions	507
A3.3 Legendre functions	508
A3.4 Associate Legendre functions	509
Appendix 4 Fourier and Laplace transforms	511
A4.1 Periodic functions	511
A4.2 Non-periodic functions	512
A4.3 Convolution and correlation	513
A4.4 Sampled functions of finite duration	514
A4.5 Laplace transform	516
Appendix 5 Parameters of the Earth	518
Appendix 6 The interior of the Earth	519
Appendix 7 Important earthquakes	520
Bibliography	522
References	526
Index	540

Color plates are to be found between pp. 296 and 297.

Preface and Acknowledgments

A second edition of this textbook, first published 17 years ago, is a wonderful opportunity to review its contents and improve its pedagogical orientation, in view of the many comments and interactions received, teaching experience, and experimental progress in seismology over the intervening years. Seismology is the science of earthquakes, which are both natural disasters profoundly affecting human lives, and a subject of study through application of the principles of the physical sciences. These two aspects are linked, since an important aim of the study of seismology is to mitigate the terrible effects of earthquakes through a more complete knowledge of their nature. Seismology provides us also with a powerful instrument to study the constitution and dynamics of the Earth. To emphasize these different aspects of seismology, Chapter 2 has been added to present, as an introduction, the complex phenomenon of earthquakes from a narrative point of view. As a physical science, the fundamentals of seismology are based on analysis of the seismic waves produced by earthquakes and registered by seismographs. The importance of this aspect is shown by presenting the analysis of seismographic digital data in Chapter 3, so that it can be used in subsequent chapters. This is a unique feature not present in other texts on seismology. Thus, this approach has been used in the new edition. The text is at an introductory level for students in the last years of the European Licentiate and the first year of Masters programs or American upper-division undergraduate courses and first graduate courses, and at similar levels of study in other countries. As a first book, no previous knowledge of seismology, as such, is assumed of the student. The book's emphasis, as indicated by its title, is on the fundamental physical principles which constitute the basis of the analysis of seismic waves and their basic development. In consequence, a number of topics have been selected. It has been noticed that sometimes even graduate students lack a true grasp of the fundamental physical principles underlying some aspects of seismology. In this book, the most fundamental concepts are, therefore, developed in detail, with their mathematical developments fully worked out. Simple cases, such as one-dimensional problems and those in liquid media, are used as introductory topics. In some instances, more difficult subjects are introduced, although not fully developed. In these cases references to more advanced books and articles are given where they can be found. In each chapter, problems are proposed, some of them are fully solved in the electronic material. As an innovation in this edition, for some of the problems seismogram digital data are used, which are given in the electronic material. Details of websites from where data and programs can be retrieved are provided. The reader can access the electronic material at www.cambridge.org/UdiasBuforn, and it is referenced in the text as EM.

The book presupposes a certain level of knowledge of mathematics and physics. Knowledge of mathematics at the level of calculus and ordinary and partial differential equations, as well as a certain facility for vector and tensor analysis, are assumed. Cartesian,

Preface and Acknowledgments

χvi

spherical, and cylindrical coordinates, and some functions such as Legendre and Bessel functions are used. Tensor index notation is used preferentially throughout the book. Fundamental ideas about certain mathematical subjects are given briefly in Appendixes 1 to 4. Basic knowledge of the mechanics of a continuous medium and of the theory of elasticity is also presupposed, but the reader is reminded about the basic equations of elasticity in Chapter 4 and for other topics is referred to textbooks on elasticity that are cited in the Bibliography.

Throughout the book there is an emphasis on the fundamental theoretical aspects of seismology and observations are treated briefly. Thus, some readers will miss discussion of recent results; we refer them to the excellent books by Lay and Wallace (1995) and Stein and Wysession (2003). Also, more advanced developments of the theory of wave propagation and generation are not treated; see, for example, Aki and Richards (1980), Ben Menahem and Singh (1981), and Dahlen and Tromp (1998). We hope that our book is a good introduction to these excellent advanced books. It is difficult to decide where to stop with subjects treated in a textbook that is designed as an introduction. We have selected to develop only, but with all mathematical detail, the very basic problems. In this sense, as was mentioned in the preface of the first edition, this book is different from those that already exist. The style and approach are also sometimes different, and reflect those of the authors.

After the introductory two chapters providing a short narrative presentation of the phenomenon of earthquakes, Chapter 3 gives the theory of seismographs and the analysis of seismograms in digital form. In this way digital seismograms can be used in subsequent chapters and problems thereby included. The following chapters are dedicated to the fundamentals of elasticity theory (Chapter 4), solutions of the wave equation (Chapter 5), the propagation of body waves (Chapters 6 and 7), ray theory (Chapters 8 to 11), and surface waves (Chapters 12 and 13), normal modes and free oscillations (Chapter 14), with an introduction to anelasticity and anisotropy (Chapter 15). Five chapters are devoted to the study of the earthquake source and the focal mechanism (Chapters 16 to 20). The final one (Chapter 21) introduces the reader to the problems of seismicity, seismotectonics, and seismic risk. Appendixes 1 to 4 cover some mathematical tools, Appendixes 5 to 7 give some helpful information. The Bibliography includes books on seismology and related topics. Other references cited in the text are given separately. Some books are listed as references, so one must use both lists.

The authors wish to thank in the first place all of our students over many years at the Universidad Complutense in Madrid, to whom we are indebted for their questions and suggestions, which have helped us to write this second edition, and for their patience during our lectures. We must thank also a long list of seismologists, some of them former students, who will be difficult to name without omissions, and we hope, therefore, that they will all feel included in our thanks. We thank IRIS (Incorporated Research Institutions for Seismology) for providing some of the digital seismograms used in examples and problems. Finally, we very much appreciate Cambridge University Press for offering to prepare this new edition.