Index

4chan, 221
1 Squares (Molnar), 202
3-D printing technology, 134–36, 267
200 lines: in space/of code, 98
Abrams, J. J., 306
ACM Digital Library, 281
ActionScript, 51–52, 54, 60, 303
Ader, Bas Jan, 37
Adobe, 82
Adobe After Effects, 293
Adobe Animate, 51
Adobe Creative Suite, 84
Adobe Dreamweaver, 29
Adobe Flash, 51–53, 57–58, 59–60, 303
Adobe Photoshop, 29
advice for students, 299–300
“Advice from an Old Programmer” (Shaw), 171
affordance and style, 167
affordance theory, 165–66
After Effects, 293
agency. See ARRAY[]; interactivity, teaching
agile model, 100–101, 102–4
AI (artificial intelligence), 15, 95, 142, 198, 244,
246–47
Aleknykov, Sergey, 246
algorithmic thinking, 12, 196–97
Amanita Design, 37
Amazon, 244
American College Dance Association, 145
analysis phase in process framework, 99
Analytical Engine, 80
Android Development Toolkit, 120
Ängeslevä, Jussi, 293, 294, 296–97, 299, 301, 304, 305
anthropotechnic autoimmunity, 249
anthropotechnic immune system, 229
Anthropy, Anna, 37
Apache Cordova, 102
app interface, 137
Appalachian Spring, 149
Apple Computers, 79, 82, 111
Arduino, 39, 60–62, 64, 110, 124, 150, 153
AREA, 64–67, 70
Arizona's School of Information: Science,
Technology, and Arts (SISTA), 276
ARRAY[]
 basic coding with processing, introduction
to, 86–93
code.edu hype, 79–82
code as contemporary art and design
medium, 83–85
code as specialized field, 82–83
code is not easy, 77–79
Coding Slowly, 85–93
conclusion, 93
textbook, 85–86
example from, 85–86
introduction to, 75–77
resistances to code in new media art and
design foundations, 79–83
art/design students, introducing computation to
AREA, 64–67
case study, Michael, 63–64
case study, Saam, 51–52
case study, Ting, 57
case study, Ting, 70–71
case study, Ting, 70–71
case study, Ting, 51–52
case study, Ting, 57
farm town, 52–54
out there in the void, 67–70
puppet face-off, 60–63
Index

<table>
<thead>
<tr>
<th>Page</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>318</td>
<td>art/design students, introducing computation to (cont.)</td>
</tr>
<tr>
<td></td>
<td>puppet show, 57–60</td>
</tr>
<tr>
<td></td>
<td>retirement, 54–57</td>
</tr>
<tr>
<td></td>
<td>art and design foundation. See ARRAY[]</td>
</tr>
<tr>
<td></td>
<td>art, introducing computation to, 48–71</td>
</tr>
<tr>
<td></td>
<td>artificial intelligence (AI), 15, 95, 142, 198, 244, 246–47</td>
</tr>
<tr>
<td></td>
<td>Artificial Jellyfish, 267</td>
</tr>
<tr>
<td></td>
<td>Artist is Present, The (Barr), 37</td>
</tr>
<tr>
<td></td>
<td>art-science acumen, promotion of, 279–81</td>
</tr>
<tr>
<td></td>
<td>AUDFIT, 145</td>
</tr>
<tr>
<td></td>
<td>audience experience and perception, 150</td>
</tr>
<tr>
<td></td>
<td>audiovisual complementarity, 185</td>
</tr>
<tr>
<td></td>
<td>augmentation, 279–80</td>
</tr>
<tr>
<td></td>
<td>Augmented Reality (AR), 118, 119–20, 122</td>
</tr>
<tr>
<td></td>
<td>autoethnographic method, 164–65, 180</td>
</tr>
<tr>
<td></td>
<td>Autograph, 293</td>
</tr>
<tr>
<td></td>
<td>autonomous thinking, 229–31</td>
</tr>
<tr>
<td></td>
<td>avant-garde movement, 67</td>
</tr>
<tr>
<td></td>
<td>Babbage, Charles, 80</td>
</tr>
<tr>
<td></td>
<td>Barr, Pippin, 37</td>
</tr>
<tr>
<td></td>
<td>basic coding with processing instructional narrative, 89–93</td>
</tr>
<tr>
<td></td>
<td>intentions, 87–89</td>
</tr>
<tr>
<td></td>
<td>project narrative, 86</td>
</tr>
<tr>
<td></td>
<td>starting points, 86–87</td>
</tr>
<tr>
<td></td>
<td>structure and timing, 89</td>
</tr>
<tr>
<td></td>
<td>vocabulary, 89</td>
</tr>
<tr>
<td></td>
<td>behaviorism, 215</td>
</tr>
<tr>
<td></td>
<td>Bento Labs, 263</td>
</tr>
<tr>
<td></td>
<td>Big Ideas, 304–6</td>
</tr>
<tr>
<td></td>
<td>Bilda, Zafer, 276</td>
</tr>
<tr>
<td></td>
<td>biochemical design, 267–68</td>
</tr>
<tr>
<td></td>
<td>biological design, 263, 267–68, 268–71</td>
</tr>
<tr>
<td></td>
<td>Bioradio, 265</td>
</tr>
<tr>
<td></td>
<td>Biorealize, 263</td>
</tr>
<tr>
<td></td>
<td>Bishop, Claire, 82–83</td>
</tr>
<tr>
<td></td>
<td>Black Stack (Bratron), 237–38</td>
</tr>
<tr>
<td></td>
<td>blood glucose measurement, 131–32, See also Sango project</td>
</tr>
<tr>
<td></td>
<td>BlueGriffon, 29</td>
</tr>
<tr>
<td></td>
<td>Bogost, Ian, 53–54</td>
</tr>
<tr>
<td></td>
<td>BoofCV library, 284</td>
</tr>
<tr>
<td></td>
<td>Boombox, 265</td>
</tr>
<tr>
<td></td>
<td>Bratron, Benjamin, 229, 237–38</td>
</tr>
<tr>
<td></td>
<td>bricolage approach, 26</td>
</tr>
<tr>
<td></td>
<td>browser, coding in, 167–70</td>
</tr>
<tr>
<td></td>
<td>browser, coding outside, 170–71</td>
</tr>
<tr>
<td></td>
<td>browsing, 186</td>
</tr>
<tr>
<td></td>
<td>Bubble Harp, 293</td>
</tr>
<tr>
<td></td>
<td>building and opening, 186</td>
</tr>
<tr>
<td></td>
<td>Byrne, David, 26</td>
</tr>
<tr>
<td></td>
<td>Byron, Ada, 80</td>
</tr>
<tr>
<td></td>
<td>Cage, John, 148, 202</td>
</tr>
<tr>
<td></td>
<td>Canadian Internet Registration Authority (CIRA), 224</td>
</tr>
<tr>
<td></td>
<td>Candy, Linda, 276</td>
</tr>
<tr>
<td></td>
<td>Carclay, Christian, 37</td>
</tr>
<tr>
<td></td>
<td>Carpenter, Rollo, 248</td>
</tr>
<tr>
<td></td>
<td>Cave of the Heart, 149</td>
</tr>
<tr>
<td></td>
<td>Cheng, Liang, 77</td>
</tr>
<tr>
<td></td>
<td>Chick-fil-A, 30</td>
</tr>
<tr>
<td></td>
<td>CHmaps, 222–23</td>
</tr>
<tr>
<td></td>
<td>circuit making, 268–69</td>
</tr>
<tr>
<td></td>
<td>Cirino, Rafael, 133</td>
</tr>
<tr>
<td></td>
<td>citizenship, 220–21</td>
</tr>
<tr>
<td></td>
<td>Cleberbot, 248</td>
</tr>
<tr>
<td></td>
<td>Clement, Andrew, 222</td>
</tr>
<tr>
<td></td>
<td>Clock, The (Marclay), 37</td>
</tr>
<tr>
<td></td>
<td>Close, Chuck, 300</td>
</tr>
<tr>
<td></td>
<td>Cloud platforms, 237</td>
</tr>
<tr>
<td></td>
<td>Cloud Polis, 244</td>
</tr>
<tr>
<td></td>
<td>clustered regularly interspaced short palindromic repeats (CRISPR), 233–34</td>
</tr>
<tr>
<td></td>
<td>code .edu hype, 79–82</td>
</tr>
<tr>
<td></td>
<td>Code Academy, 167, 171, 172, 175</td>
</tr>
<tr>
<td></td>
<td>code as medium ARRAY coding slowly, 75–93</td>
</tr>
<tr>
<td></td>
<td>design singularity, teaching for, 95–104</td>
</tr>
<tr>
<td></td>
<td>introduction to, 9–10</td>
</tr>
<tr>
<td></td>
<td>code learning platforms. See online code learning environments</td>
</tr>
<tr>
<td></td>
<td>Code School, 167, 171, 172</td>
</tr>
<tr>
<td></td>
<td>code-based design curriculum, 95–104</td>
</tr>
<tr>
<td></td>
<td>Codeskulptor, 268</td>
</tr>
<tr>
<td></td>
<td>coding as fundamental skill for creative research, 278–79</td>
</tr>
<tr>
<td></td>
<td>coding in another browser window, 168–70</td>
</tr>
<tr>
<td></td>
<td>coding in the browser, 167–68</td>
</tr>
<tr>
<td></td>
<td>coding MOOC, developing background, 193–95</td>
</tr>
<tr>
<td></td>
<td>conclusion, 207–8</td>
</tr>
<tr>
<td></td>
<td>Creative Coding MOOC, 195–97</td>
</tr>
<tr>
<td></td>
<td>evaluating MOOCs as an education platform, 204–7</td>
</tr>
<tr>
<td></td>
<td>introduction to, 191–93</td>
</tr>
<tr>
<td></td>
<td>social learning, 201–4</td>
</tr>
<tr>
<td></td>
<td>technical and cultural prism, 197–204</td>
</tr>
<tr>
<td></td>
<td>coding outside the browser, 170–71</td>
</tr>
<tr>
<td></td>
<td>Coding Slowly instructional narrative, 89–93</td>
</tr>
<tr>
<td></td>
<td>intentions, 87–89</td>
</tr>
<tr>
<td></td>
<td>introduction to, 85–86</td>
</tr>
<tr>
<td>Index</td>
<td>319</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>Cow Clicker, 53</td>
<td></td>
</tr>
<tr>
<td>Craigslist, 293</td>
<td></td>
</tr>
<tr>
<td>Crary, Jonathan, 244</td>
<td></td>
</tr>
<tr>
<td>Crawford, Chris, 52</td>
<td></td>
</tr>
<tr>
<td>creative classroom. See digital literacies, developing for the creative classroom</td>
<td></td>
</tr>
<tr>
<td>creative coding. See ARRAY</td>
<td></td>
</tr>
<tr>
<td>Creative Coding MOOC, 195–97. See also coding MOOC, developing</td>
<td></td>
</tr>
<tr>
<td>Creative Coding Research Group, 274, 276, 278</td>
<td></td>
</tr>
<tr>
<td>creativity, 16</td>
<td></td>
</tr>
<tr>
<td>Creator’s Project, 298</td>
<td></td>
</tr>
<tr>
<td>CRISPR (clustered regularly interspaced short palindromic repeats), 233–34</td>
<td></td>
</tr>
<tr>
<td>critical coding. See ARRAY</td>
<td></td>
</tr>
<tr>
<td>critical pedagogy</td>
<td></td>
</tr>
<tr>
<td>cognisphere, citizens of, 229–50</td>
<td></td>
</tr>
<tr>
<td>introduction to, 12–13</td>
<td></td>
</tr>
<tr>
<td>media arts pedagogy, process and outcome paradigms in, 213–26</td>
<td></td>
</tr>
<tr>
<td>critique sessions, 285–89</td>
<td></td>
</tr>
<tr>
<td>Cross, Nigel, 109, 114, 115</td>
<td></td>
</tr>
<tr>
<td>Csikszentmihalyi, Mihaly, 66</td>
<td></td>
</tr>
<tr>
<td>Cubitt, Sean, 219</td>
<td></td>
</tr>
<tr>
<td>culture-jamming project, 30–34</td>
<td></td>
</tr>
<tr>
<td>Cunningham, Merce, 148</td>
<td></td>
</tr>
<tr>
<td>curricula collection. See ARRAY</td>
<td></td>
</tr>
<tr>
<td>curriculum mapping, 311–14</td>
<td></td>
</tr>
<tr>
<td>cycle of experience and reflection, 214 cycles of code, 80–81</td>
<td></td>
</tr>
<tr>
<td>dance movement capture, 144</td>
<td></td>
</tr>
<tr>
<td>Databases, 194</td>
<td></td>
</tr>
<tr>
<td>data-driven performance analysis, 242–43</td>
<td></td>
</tr>
<tr>
<td>Davis, Joe, 265</td>
<td></td>
</tr>
<tr>
<td>DCog (Distributed Cognition), 163–67, 180</td>
<td></td>
</tr>
<tr>
<td>DeepMind, 245</td>
<td></td>
</tr>
<tr>
<td>Deleuze, Gilles, 48–49</td>
<td></td>
</tr>
<tr>
<td>delivery culture, 242–43</td>
<td></td>
</tr>
<tr>
<td>democratization of technology, 96. See also design singularity, teaching for design curricula, 103, 306–7</td>
<td></td>
</tr>
<tr>
<td>design literacy. See literacies of design, changing</td>
<td></td>
</tr>
<tr>
<td>design pedagogy. See literacies of design, changing</td>
<td></td>
</tr>
<tr>
<td>design process, 50–51, See also design singularity, teaching for design programs, 4</td>
<td></td>
</tr>
</tbody>
</table>

project narrative, 86	
starting points, 86–87	
structure and timing, 89	
vocabulary, 89	
coding, overview of, 15	
cogninodes, 231, 232–33, 235	
cognisphere, citizens of customs in the cognisphere, 231–36	
from person to per capita, 241–45	
introduction to, 229–31	
mapping the cognisphere, 236–41	
our daily turing test, 245–48	
passport to the cognisphere, 248–50	
Cognition in the Wild (Hutchins), 163	
coherence principle, 175	
collaborative research, 147–49	
communication, 307	
communication/implementation phase in process framework, 99	
computation literacy. See interactivity, teaching	
computational creativity, interdisciplinary nature of, 5–6	
computational creativity, teaching code as medium, 9–10	
critical pedagogy, 12–13	
curricular synthesis, 311–15	
introduction to, 1–8	
new foundations, 8–9	
online learning, 11–12	
physical computing, 10–11	
transdisciplinary, 13–14	
computational literacy, 49. See also ARRAY	
computer science, 84, 87, 98, 140, 264	
“conceptual economy”, 195	
conditioning, 88	
“Conference on Design Methods”, 114	
constructivism, 216, 218	
consumerist mindset, 25	
contemporary art and design medium, code as, 83–85	
contemporary maker movement. See maker movement	
contested Internet, 213, 220–25	
contextualizing knowledge, 222	
contiguity principle, 175	
conventional process, 103–4	
Cordova, 102	
costume design, 151	
course design, 41–63	
course readings, in Technology in Art Education course, 29	
Coursera, 168, 171, 172–73, 194	
Index

design scenes of online coding environments
affordance and style, 167–78
coding in another browser window, 168–70
coding in the browser, 167–68
coding outside the browser, 170–71
conclusion, 187–88
DCog, 163–67
design parameters, 185–87
multimedia cognition, 171–77
note taking, 177–78
three screen scene, 178–85
design singularity, teaching for, 95–104
design-build. See design singularity, teaching for designer, role of. See design singularity, teaching for “design-then-build” paradigm, 99
digital art pedagogy, 25–26
“digital citizens”, 220
digital divide, 249
“Digital Divide” (Bishop), 82–83
digital ethics, 219
digital fabrication, 262
Digital Humanities (Burdick et al), 222
digital literacies, developing for the creative classroom
future impact of course design, 41–63
introduction to, 21–24
projects, 30–41
syllabus development, 24–30
digital media in the classroom, 40
“digital natives”, 82, 210
digital objects, creative potential of, 25
digital systems, 21
DIMES project, 222
discursive skills, 311, 312
disruption, 293–94
disruptive products, 293
Distributed Cognition (DCog), 163–67, 180
distributed design scene, 182
distributed intelligence, 218
DNA, 233–34
DNA sequencing, 260
Donath, Judith, 220
“draw your name” exercise, 203–4
Driessens, Erwin, 202
Dynabook, 78
Dys4ia (Anthropy), 37
Eclipse, 120
Eclipse development environment for Android devices, 136–37
Ede, Siân, 148
Einstein, Albert, 235
Eisner, Elliot, 217
electives, 313
Electronic Visualization Laboratory (EVL), 276
Embattled Garden, 149
enactive learning, 49
Erp, Jean, 202
Errand into the Maze, 149
evaluation phase in process framework, 99
Event Horizon Telescope, 235
existing works, emulation or extension of, 284–85
expanded context, experimenting with, 186
expectations, 89
experience, 88
experience-based knowledge, 146
experiential education, 217
experiential learning, 216–18
Experiential Learning (Kolb), 217
“Experiential Learning from a Constructivist Perspective” (Mughal and Zafar), 216
“Experiential Learning: Theoretical Underpinnings” (Beaudin and Quick), 217
expertise effect, 176
expression, vs. syntax, 278
expressive interactive experience, 50, 51
Eyeo Festival, 298
Facebook, 247, 248
Falling series (Ader), 37
Farm Town, 52–54
FarmVille, 53
feelings, 89
Fernandez, Eduardo, 77
Final Cut, 79
Financial Industry Regulatory Authority (FINRA), 245
financial markets, 245–46
Flash, 51–53, 57–58, 59–60, 303
Flash (ActionScript), 50, 51–52, 54, 57–58
flash crash of 2010, 245
flow, 66, See also interactivity, teaching
Flux Ping-Pong (Maciunas), 69
Fredkin, Edward, 234
free and open source software (F/OSS), 241
freedom, 218
freelancers, 243–44
Frontier, 149
Fuller, Buckminster, 114
Future of Storytelling, 298
FutureLearn, 196, 201, 204, 205, 206
Galloway, Alex, 220, 237
Game Art, 67, 70
Index

321
game design. See also digital literacies, developing for the creative classroom; interactivity, teaching
AREA, 64–67
case study, 51–57
Farm Town, 52–54
Puppet Show, 57–60
Retirement, 54–57
game development, 31, 35–40
GameMaker, 29, 35, 39
gatekeeping, 186
Geertz, Clifford, 164
gender, 21, 27
gendered clothing, 31
“General Purpose User” of digital technology, 26
general theory of relativity, 235
generation, 279
generation phase in process framework, 99
generative art, 198–201, 202
Geigerspace, 263
Geographical Traceroute project, 222
Giaccardi, Elisa, 276
Gibson, J. J., 165, 166
GIMP, 29, 40
Gimsewski, James, 148
Gitchu, 240–41
Gladwell, Malcolm, 303
glycemic index reading, 132
Goldman Sachs, 246
Google, 238, 240, 247
Google Android mobile platform, 119, 134
Google docs, 177
Google Scholar, 281, 282
graffiti painting, 121, See also Tinta Solta project
Graffiti Research Lab, 124
Graham, Martha, 149
Graham, Paul, 84–85
graphical user interface (GUI), 49, 111
Gravilux, 293
Gtrace project, 222
guerrilla communications. See digital literacies, developing for the creative classroom
Hackteria, 263
hacktivism, 221
Hayles, N. Katherine, 229, 231–32, 245
high culture, 6
high-fidelity prototype, 101, 102–3, See also design singularity, teaching for
Hot Throttle (Söderström), 37
“How Big is Coding Right Now? A Programming School Just Sold for $36m”, 80
How We Became Posthuman (Hayles), 231
human intelligence tasks (HITs), 244
human-computer interaction (HCI), 183–84
humanities, culture of, 5
Hutchins, Edwin, 163
Hwang, Indae, 197
hybrid platform, 299
I am sitting in a room (Lucier), 199
I Ching, 148
IATI (Interactive Technology and Arts Initiative), 142, 158
iconic learning, 49
identity and definitional issues, 296–98
“If You Can Easily Describe What You Do, You’re Fucked” (Kessler), 296
Igoe, Tom, 110–11
Imogen Heap, 145
iMovie, 29, 35
implementation phase in process framework, 99
In the Shadow performance, 154–55
information and communications technologies (ICTs), 213, 220–25, 225–26
information labor, 239, 242
Instagram, 294
instrumentalist theory, 214
integrated curriculum. See design singularity, teaching for
Integrated Development Environment (IDE), 15, 60, 168, 169, 170
integrative design studio, 268–71
interaction design, 98–101, 101–4, 107, 140, See also physical computing initiative in Brazil
interactive dance performance, art and technology collaboration
background, 145–49
challenges, 156–58
collaborative research, 147–49
conclusion, 158–59
course activities, 150–56
course design, 149–56
creative activities, 144–45
In the Shadow performance, 154–55
interactive performances, 145–46
introduction to, 142–43
learning objectives, 149
overview of course, 143–45
practice-based research, 146–47
proximity, 153–54
research, 144
roles of participating faculty, 149–50
students’ collaborations, 151–53
interactive dance performance, art and technology collaboration (cont.)
students’ projects, 153–56
teaching, 143–44
Zwischenkörper Performance, 155–56
interactive design, 57–58. See also interactivity, teaching
interactive media, 5, 57–61
interactive multimedia programming. See digital literacies, developing for the creative classroom
interactive performances, 145–46, 149–56
interactive systems, 144
interactive technology, 3, 4, 5
Interactive Technology and Arts Initiative (IATI), 142, 158
Interactive Telecommunications Program (ITP), 110
interactivity, teaching
AREA, 64–67
case study, Michael, 63–64
case study, Saam, 51–52
case study, Ting, 57
conclusion, 70–71
farm town, 52–54
introduction to, 48–51
out there in the void, 67–70
puppet face-off, 60–63
puppet show, 57–60
retirement, 54–57
interdependence, 304–5
interdisciplinary, 6, 275–76
interdisciplinary collaborations, 147–49
interdisciplinary research, 264–66
interdisciplinary research skills, exercises for developing
emulation and extension of existing works, 284–85
“STAR” reports, writing, 282–84
tree criticism, 285–89
interface design, 58
Internet Exchange Points (IXPs), 224
Internet infrastructure, 220–25
interviews, 289–90, 293–311
Introduction into Artificial Intelligence, 194
Inventing Abstraction exhibition, 285
iOS app store, 293
iPad, 77–78
iteration, 88
ITP (Interactive Telecommunications Program), 110
IXmaps, 222–23, 224
Java programming language, 120, 137
Jennings, Pamela, 276
Jiang, Zhen, 77
Jobs, Steve, 111
Joy, Bill, 80
K-12 art education/educators, 21–23, 24, 27. See also digital literacies, developing for the creative classroom
Kahunaburger Traceroute, 222
Kaplan, Esther, 242–44
Kay, Alan, 48, 49–50, 77–78, 78, 81
Kessler, Al, 4, 296
Ketai Sensor Library, 119, 134
kill-switch, 245
Kinect sensor, 126–27, 150, 156
Kircher, Athanasius, 295
Knitted Radio, 265
Knuth, Donals, 97
Kolb, David, 214, 216, 217
Kopas, Merritt, 37
Kurzweil, Ray, 4, 95
Kwasteck, Katja, 69
language literacy, 49
Le Corbusier, 114
learnable programming. See ARRAY[]
“Learnable Programming” (Victor), 77, 78–79, 80
learner control principle, 176
learning analytics, possibilities of, 225–26
Learning Styles Inventory (LSI), 217
LED Dress Research Project, 144
Legrady, George, 277
Lessig, Lawrence, 239
Lewis, Michael, 246
LeWitt, Sol, 198, 202
Lialina, Olia, 26
LIFE Lab, 107, 108, 110, 113, 117, 124, 131, 132–33
LIGO Laser Interferometer Gravitational-Wave Observatory, 235
Lilypad Arduino, 150
LIM (Kopas), 37
literacies, 261
literacies of design, changing
conclusion, 271
integrative design studio, 268–71
introduction to, 259–61
literacy in matter and material, 266–68
overview of, 261–62
research, 264–66
tool-making, 262–64
literacy in matter and material, 266–68
Index

looping, 88
low culture, 6
low-fidelity prototyping, 101
Lucier, Avlin, 199
LUST, 302
LUSTlab, 302
Lynda.com, 170, 174
M messaging service, 247
Machinarium (Amanita Design), 37
Machine Learning, 194
Macintosh personal computer, 96
Maciunas, George, 69
Madsen, Rune, 97–98
Maker Faire, 298
maker movement, 95, 96, 97
Makey Makey, 39, 42
Malina, Roger, 275
Manifesto for Agile Software Development, 100
Mann, Steve, 232
Manovich, Lev, 63, 249
Macintosh personal computer, 96
Machine Learning, 194
Macintosh personal computer, 96
Maciunas, George, 69
Madsen, Rune, 97–98
Maker Faire, 298
maker movement, 95, 96, 97
Makey Makey, 39, 42
Malina, Roger, 275
Manifesto for Agile Software Development, 100
Mann, Steve, 232
Manovich, Lev, 63, 249
Marks, Laura, 208
Massive Open Online Courses (MOOC), 171, 172, 204–7, See also coding MOOC, developing
mastery, 294–96, 303–4
Mauricio, Gabriela Schirmer, 118
McLuhan, Marshall, 173
Mechanical Turk, 244
Media Arts and Technology (MAT) program, 276
media arts pedagogy
ideals and measures, 218–20
introduction to, 213–14
learning analytics, possibilities of, 225–26
OBE frameworks, expanding, 225–26
process and outcomes models, 214–15
process and reflexive learning, 215–18
project-based learning, ICTs and the contested Internet, 220–25
mediation, 280–81
Mei, Rafael, 133
Menkman, Rosa, 26
metadata, 219
meta-design, 96–97
Metaio Augmented Reality Library, 120
microbial maps, 260
Microsoft ExpressionWeb, 39
Mindstorms (Pappert), 70
Minsky, Marvin, 247
modality principle, 174
Molnar, Vera, 202–3
Mondloch, Kate, 62
mono screen scene, 181
Moogfest, 298
Moore’s Law, 236, 245
Moroder, Giorgio, 298
Morowitz, Harold, 234
movement session, 144
multi-disciplinarity, 8
multimedia cognition, 171–77
My Mother Was a Computer (Hayles), 231
mycelium, 270
Naimark, Michael, 299
narrational context, 185
National Coalition for Core Arts Standards, 24
national curriculum, 193–94
National Dance Educator Organization, 145
Negroponte, Nicholas, 306
neural networks, 246–47
new foundations
art/design students, introducing
computation to art, 48–71
digital literacies, developing for the creative classroom, 21–63
introduction to, 8–9
New Inc. incubator at New Museum, 298
new media artists, 34, 37
New Tendencies movement, 236
NEXT Tridimensional Experimentation Lab, 135, 136
Ng, Andrew, 194
Niebuhr, Reinhold, 214, 218–19, 220
Nielsen, Jakob, 2
Night Journey, 149
nine “9 Evenings: Theatre and Engineering”, 85
Noguchi, Isamu, 149
Norman, Donald, 165
Norvig, Peter, 194
note taking, 177–78
numerical systems, 101–93
O’Sullivan, Dan, 110–11
OBE (outcomes-based education), 215, 218, 221, 225–26
Olivera, Jhonnata, 131, 133, 134, 137
online code learning environments
affordance and style, 167–78
coding in another browser window, 168–70
coding in the browser, 167–68
coding outside the browser, 170–71
conclusion, 187–88
DCog, 163–67
Index

online code learning environments (cont.)
design parameters, 185–87
multimedia cognition, 171–77
note taking, 177–78
three screen scene, 178–83
online identity, 218, 220
online learning
creating coding MOOC, developing, 191–208
introduction to, 11–12
learning environments, design scenes of, 163–88
Open Insulin, 263
Open Trons, 263
OpenCV library, 284
openFrameworks community, 298
Out There In The Void (OTITV), 67–70
outcome paradigms. See process and outcome paradigms in media arts pedagogy
outcomes-based education (OBE), 215, 218, 221, 225–26
outdoor installations, 157
Outliers (Gladwell), 303
P3P project, 239
Pappert, Seymour, 70
pedagogical experiments in creative coding
art-science acumen, promotion of, 279–81
augmentation, 279–80
coding as fundamental skill for creative research, 278–79
conclusion, 289–90
generation, 279
interdisciplinary research skills, exercises for developing, 281–86
introduction to, 273–76
mediation, 280–81
pedagogical goals, 276–78
provocation, 280
"Pedagogical Pattern for Teaching Computer Programming to Non-CS Majors, A" (Jiang, Fernandez, and Cheng), 77
peer assessments, 206
Penny, Simon, 26
performance capture, 144, 145
performance metrics, 213, 215
Perpetual Motion, 145
Personal Computer for Children of All Ages, A (Kay), 77–78
personalization effect, 173–74
personalization principle, 176
Phillips, David J., 222
physical computing. See also digital literacies, developing for the creative classroom
Brazilian teaching initiative, 107–48
definition of, 109
goals of, 62
interactive dance performance, art and technology collaboration, 142–64
introduction to, 10, 11–12
overview of, 110–13
physical computing initiative in Brazil
case studies, 118–37
conclusion, 137–40
examples of projects, 113
introduction to, 107–10
LIFE lab, 113
methodological considerations, 116–24
physical computing, 110–13
reflective practice learning experience, 114–16
Physical Computing: Sensing and Controlling the Physical World with Computers (O’Sullivan and Ioge), 110–11
Pink, Daniel, 195
Pitdr, 29
Polanyi, Michel, 116
Pontifícia Universidade Católica do Rio de Janeiro, 107, 108
Popper, Karl, 5–6
practice context, 185
practice-based research, 146–47
pre-build interface components, 102
pre-service art education. See digital literacies, developing for the creative classroom
pre-training principle, 176
Printed Radio, 265
PRISM, 238
procedurality. See interactivity, teaching
procedure, connecting with, 88
process and outcome paradigms in media arts pedagogy
ideals and measures, 218–20
introduction to, 213–14
learning analytics, possibilities of, 225–26
OBE frameworks, expanding, 225–26
process and outcomes models, 214–15
process and reflexive learning, 215–18
project-based learning, ICTs and the contested Internet, 220–25
process and outcomes models, 214–15
process and reflexive learning, 215–18
project framework in creative disciplines, 99
Processing, 60–62, 64, 66, 98, 101–3, 110, 119, 120, 134, 137, 138–39, 153, 284, See also Coding Slowly
Processing (Java), 50
process-oriented pedagogy, 216, 218
professional organizations, 298–99

Index 325

professional projects, and students, 307–9
"Programming Design Systems", 97–98
programming languages, 278, 300–301, 303
Project Muse, 281
project-based learning, 220–25
Projection Mapping, 118
Protocol (Galloway), 237
protocols, 219–20
prototyping. See high-fidelity prototype; low-fidelity prototyping
provocation, 280
Proximity performance, 153–54
Psychology of Everyday Things, The (Norman), 165
Puppet Face-Off, 60–63
Puppet Show, 57–60, 63
Python, 168, 170, 171
QuantumSound, 145
QuickTime VR, 110
Radio in a Bag, 265
redundancy principle, 176
reflection-in-action, 218
reflection-on-action, 218
reflective practice, 115–16, 116, 139–40
"Reflective Practitioner, The" (Schön), 217
research, 264–66
research literacy, 265
resistances to code in new media art and design foundations, 79–83
responsive environment design, 151
Retirement, 54–57, 62
Rhizome, 85
Right to be Forgotten, 238
Rittel, Horst, 115
Rozin, Daniel, 34
rules, connecting with, 88
Rushkoff, Doug, 25
Ryle, Gilbert, 116
safe harbor agreement, 238–39
Salonen, Essi, 148
Salter, Anastasia, 82
Sango project, 131–37, 140
Schiffman, Daniel, 66
scholarship of teaching and learning (SoTL), 7
Schön, Donald, 109, 115–16, 116, 216, 217, 218
School of Information: Science, Technology, and Arts (SISTA), 276
science, technology, engineering, art, and math (STEAM), 22
Sciences of the Artificial, The (Simon), 115
Scientific Management (Taylor), 2
Screening the Hello World! Processing Documentary, 87
segmenting principle, 175
self-transcendence, 218, 219, 220
Senses Considered as Perceptual Systems (Gibson), 165
Seven on Seven Conference, 85
Shaw, Zed, 170, 171, 174
Shneiderman, Ben, 375
Shrank, Brian, 68–69
signaling principle, 175–76
Signature Track, 172–73
Simon, Herbert, 109, 115
simulation. See interactivity, teaching
singularity, 95
Sincerity is Near, The (Kurzweil), 95
sketch, 102
skill development, 301–2
Sloterdijk, Peter, 249
Smalltalk, 49
Snow, C. P., 5
Snow, John, 216
So Kanno, 124
social constructivist paradigm, 166
social in/formality, 186
social learning, 201–4
social networking, 29–30
sociology of scientific knowledge (SSK), 166
Söderström, Jonatan, 37
Soft Circuit, 144
software used in Technology of Art Education course, 29
sound sculpture, 43
Spady, William, 213, 215
spatial memory, 181–84
specialization, 295, 302–3, 303–4
specialized field, code as, 82–83
spinning top example, 196–97
Spotify, 265
Springer, P. W., 245
Stanford University, 194
state-of-the-art (STAR) reports, 282–84
Status of Arts Education in Ohio's Public Schools, The, 24
STEAM (science, technology, engineering, art, and math), 32
Steyerl, Hito, 243
Strauss, Levi, 294
Streamline movement, 267
sublated video, 168–70
Sundance New Frontiers, 298
surveillance, 219, 221, 222–23, 224–25, 232, 238
Index

syllabus development, 24–30
symbolic learning, 49
synchronicity, 235
syntax, vs. expression, 278
Tacit Dimension, The (Polanyi), 116
tacit knowledge, 116
talking/identity mask, 44
Target, 80
TattooAR project, 118–21, 140
Taylor, Frederick, 2
teaching games, 43
technical domains, 311–12
technical skillsets, 2
Technology in Art Education course
development of, 26–30
future impact of course design, 41–63
introduction to, 21–24
projects, 30–41
student evaluations, 41–60
syllabus development, 24–30
Technology Student Association (TSA), 40
technoscience, culture of, 5
teachmedics, 135
Text Rain (Utterback), 284
TextWrangler, 170
“third culture”, 5
third wave human-computer
interaction, 6
tree screen scene, 178–85
Thrun, Sebastian, 194
Tiger Leap Foundation, 194
Tinta Solta project, 121–31, 140
tool-making, 262–64
transdisciplinarity, 6
introduction to, 13–14
literacies of design, changing, 259–71
pedagogical experiments in creative coding,
273–90
transdisciplinary studio, 311, 313
transrationalism, 218–19
tree criticism, 285–89
TRgen – traceroute generation, 223
Trust Engineering Group, 248
Turing Test, 245–48
Turkle, Sherry, 243
Twitter, 294
“Two Dimensions of Collaboration” (Pisano
and Verganti), 148
typing vs. handwriting, 177–78
US Securities and Exchange Commission
(SEC), 245

US-EU Safe Harbor Framework, 238–39
Udacity, 194, 247
Unity (C#), 50
UPS, 242–43
Upwork, 243–44
usability, history of, 2–4
User Interface: A Personal View (Kay), 49
Utterback, Camille, 284
variables and conditions, connecting
with, 88
vector graphics, 51
Venn Diagram, 166
Verstappen, Maria, 202
Vesna, Victoria, 148, 280
Victor, Bret, 77–78, 78–79, 79, 81
video production, 35
Vieira, Amanda, 130
Villaça, Matheus, 133
Violacein Factory, 263
virtual tattoo, See TattooAR project
visualizations, 144
Viz-a-Go-Go public exhibition, 145
Vygotsky, Lev, 216–17
Waco Dance Fest, 145
Wall Street Reform and Consumer Protection
Act, 245
Wark, McKenzie, 239–40
waterfall model, 99–100
wearable technology, 150, 156, 232
web design, 31
Webber, Melvin, 115
Whalen, Thomas, 231, 248
What is Creative Coding?, 199
Whitaker, João, 121, 122–24, 125–28, 128–31
Widom, Jennifer, 194
Wiener, Norbert, 249
Wii, 150
Windows and Mirrors (Bolton and Gromala), 70
Windows Movie Maker, 29
Wolfram, Stephen, 234
words, 88
“World 3”, 5–6
World Wide Web Consortium, 239
xtraceroute project, 222
“Year of Code”, 80, 82
Yo-Yo Games, 29
Zanini, Gabriel, 133
Zwischenkörper performance, 155–56
Zynga, 53