Contents

Preface and Acknowledgements

Preface and Acknowledgements

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ix</td>
</tr>
</tbody>
</table>

Part I The Osteochondral System

1 General Principles Relating to the Joint Tissues and Their Function

1.1 The Regulation of Joint Stresses and Joint Friction	3
1.2 The Structural Meaning of Elastic Stiffness	7
1.3 Fundamental Principles Governing Compliant Versus Stiff Tissues	8
1.4 Composition of Articular Cartilage and Its Physico-Chemical Implications	10
1.5 Early Structural Models of Articular Cartilage	10
1.6 Structural Models of Articular Cartilage with the Advent of Electron Microscopy	13
1.7 Fibril Continuity and Ultra-Structural Imaging of the Articular Cartilage Matrix	15
1.8 A Fibril-Level Model Integrating Multiple Scales of Evidence	16
1.9 The Pseudo-Random Radial Fibrillar Model	17
1.10 Fibril Interconnectivity: Is It Entwinement or Non-Entwinement Based?	24
1.11 Fibril Interconnectivity and the Abnormal Cartilage Matrix	31

2 The Osteochondral Junction

2.1 Early Studies of the Osteochondral Junction	42
2.2 Structure of the Normal Osteochondral Junction	46
2.3 Structural Changes in the Osteochondral Junction with Ageing and Early Degeneration	49
2.4 Detailed Assessment of the Significance of Bony Spicules in the Osteochondral Junction	58
2.5 A Novel Indentation Method for Investigating Osteochondral Response	66
2.6 A Simplified Physical Analogue of the Osteochondral System	79

3 General Aspects of Failure of the Osteochondral Tissue System

| 3.1 The Relevant Forces | 84 |
| 3.2 Junction Failure Induced by Direct Compression | 86 |
Contents

3.3 Making Sense of the Impact Test 92
3.4 Microstructural Analysis of Impact-Induced Osteochondral Damage 97
3.5 Relating Osteochondral Damage to Impact Energy and Impact Stress 99
3.6 Does Prior Cartilage Creep Influence Osteochondral Response to Impact? 105
3.7 Macro- and Micro-Level Analysis of Osteochondral Damage Following Prior Creep and Impact 109

4 Shear Failure of the Osteochondral Junction 115

4.1 Whole Condyle Loading 115
4.2 Quasi-Static Measurement of Osteochondral Junction Strength 116
4.3 Semi-Quantitative Analysis of Osteochondral Fracture Under Impact Loading in Shear 118
4.4 An Approximate Fracture Mechanics Analysis of Osteochondral Shear Fracture 124

5 A Large In Vivo Model Exploring Extreme Physiological Loading of the Osteochondral Tissues 131

5.1 The Biological Significance of Micro-Cracking at the Osteochondral Junction 131
5.2 The Thoroughbred Equine Animal Model 132
5.3 Palmar Osteochondral Disease: A Major Stress-Related Equine Pathology 133
5.4 Osteochondral Damage in the Mid-Condylar Region 134
5.5 Osteochondral Damage in the Parasagittal Groove 143
5.6 Subchondral Bone Cysts or Reverse Osteochondral Lesions 150

Part II The Intervertebral Disc–Endplate System 155

6 Relevant Anatomy and Macro-Level Structure 157

6.1 Anatomical Overview 157
6.2 Compositional Overview of the Disc and Endplate 162
6.3 Microanatomy of the Annulus 163
6.4 Micromechanical Studies Reveal Subtle Structural Features 166
6.5 A Provisional Model of Intra- and Inter-Lamellar Connectivity 168
6.6 Further Structural Detail Captured with Serial Thick Sections 170

7 The Elastic Fibre Component in the Disc 178

7.1 Earlier Histological and Ultrastructural Studies of Disc Elastin 178
7.2 Advanced Imaging Studies of Disc Elastic Fibres 180
7.3 Functional Role of Elastic Fibres in the Disc 183
7.4 Comparison of Collagen Fibre and Elastic Fibre Elasticity 187
7.5 Elastin: A Biological Elastomer 188
7.6 Theories of Elastin Elasticity 189
Table of Contents

8 Detailed Analysis of the Disc–Endplate System

- **8.1 The Endplates**
- **8.2 Annulus–Endplate Integration**
- **8.3 Micro-Level View of the Annulus–Endplate Junction**
- **8.4 A Model of Annulus–Endplate Anchorage**
- **8.5 Mechanical Consequences of Having a Step-Change in Stiffness at the Tidemark**
- **8.6 Mechanical Toughness of the Annulus–Endplate Junction**
- **8.7 Fibril-Level View of the Annulus–Endplate Junction**
- **8.8 How Maturity Levels Influence Annulus–Endplate Anchorage**

9 Structure of the Nucleus and Its Relation to Annulus and Endplate

- **9.1 Nucleus Composition and Structure**
- **9.2 Is There Structural Continuity Between Nucleus and Annulus?**
- **9.3 Nucleus-Annulus Connectivity Suggested by the Presence of Elastic Fibres**
- **9.4 Is There Structural Continuity Between Nucleus and Endplate?**
- **9.5 Mechanical Evidence Supporting Nucleus-Endplate Structural Integration**
- **9.6 Microstructural Analysis of Nucleus-Endplate Integration**
- **9.7 A Proposed Model for Clarifying Nucleus-Endplate Structure and Function**
- **9.8 Is Nucleus–Endplate Integration Influenced by Maturity?**
- **9.9 Fibril-Level Analysis of Nucleus–Endplate Integration**
- **9.10 Structural Models Integrating Nucleus, Annulus and Endplate**
- **9.11 Nucleus–Endplate Integration in Human Discs**

10 Experimental Investigation of Failure of the Annulus–Endplate Junction Region

- **10.1 Failure Under Directional Modes of Loading**
- **10.2 Structural Visualisation of Annulus–Endplate Failure**
- **10.3 Influence of Demineralisation on Annulus–Endplate Junction Failure**
- **10.4 Fibril-Level View of Annulus–Endplate Junction Failure**
- **10.5 Load Trajectories and Modes of Failure**
- **10.6 Comparison with Human Annulus–Endplate Junction Failure**

11 Endplate Involvement in Whole Disc Failure

- **11.1 The Variable Nature of Failure Processes – Some General Considerations**
- **11.2 What is Intervertebral Disc Herniation?**
- **11.3 Inducing Disc–Endplate Failure in the Healthy Motion Segment**
- **11.4 Inducing Disc–Endplate Failure Using Internal Nuclear Pressurisation**
- **11.5 Micromechanics of Disc–Endplate Failure Under Nuclear Pressurisation**
Contents

12 **Micromechanics of Failure of the Disc–Endplate System Under Realistic Loading** 270

12.1 Clinical Evidence for Endplate Involvement in Disc Failure 270
12.2 Multi-Parameter Studies of Whole Disc–Endplate Failure 271
12.3 Structural Factors Influencing Failure of the Endplate Region 279
12.4 Animal Versus Human Discs 281

Part III The Enthesis 283

13 **Tendon and Ligament Biomechanics** 285

13.1 Biomechanical Function of Tendons and Ligaments 285
13.2 Hierarchical Structure 289
13.3 Biomechanical Relevance of Tendon/Ligament Structure and Composition 294
13.4 The Functional Significance of Collagen Crimp 295
13.5 Factors of Safety in the Natural Design of Ligaments and Tendons 301

14 **The Enthesis: Composition, Structure and Function** 304

14.1 Some General Principles 304
14.2 Types of Insertion in Bone 306
14.3 A Summary of Direct Versus Indirect Insertion 319

15 **Exploring Enthesis Structure–Function Relationships** 323

15.1 The Anterior Cruciate Ligament and Its Enthesis 323
15.2 Structure of the ACL Double-Bundle Insertion System 325

16 **Managing the Modulus Mismatch** 338

16.1 Modulus Mismatch and Mechanical Risk 338
16.2 Some General Examples of Functional Grading 338
16.3 Enthesis Structure and Functional Grading 340
16.4 Multiscale Structural Organisation and Biominalisation 341
16.5 Enthesis Strength and Toughness 343
16.6 The Importance of Mechanobiological Adaptation 345

Epilogue 349

References 353
Index 383