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Introduction

Martingales (with discrete time) lie at the centre of this book. They are known
to have major applications to virtually every corner of probability theory. Our
central theme is their applications to the geometry of Banach spaces.
We should emphasize that we do not assume any knowledge about scalar

valued martingales. Actually, the beginning of this book gives a self-contained
introduction to the basic martingale convergence theorems for which the use
of the norm of a vector valued random variable instead of the modulus of a
scalar one makes little difference. Only when we consider the 8boundedness
implies convergence9 phenomenon does it start to matter. Indeed, this requires
the Banach space B to have the Radon-Nikodým property (RNP). But even at
this point, the reader who wishes to concentrate on the scalar case could simply
assume that B is onite-dimensional and disregard all the inonite-dimensional
technical points. The structure of the proofs remains pertinent if one does so.
In fact, it may be good advice for a beginner to do a orst reading in this way.
One could argue similarly about the property of 8unconditionality of martingale
differences9 (UMD): although perhaps the presence of a Banach space norm
is more disturbing there, our reader could assume at orst reading that B is a
Hilbert space, thus getting rid of a number of technicalities to which one can
return later.
Amajor feature of the UMDproperty is its equivalence to the boundedness of

the Hilbert transform (HT). Thus we include a substantial excursion in (Banach
space valued) harmonic analysis to explain this.
Actually, connections with harmonic analysis abound in this book, as we

include a rather detailed exposition of the boundary behaviour of B-valued har-
monic (resp. analytic) functions in connections with the RNP (resp. analytic
RNP) of the Banach space B. We introduce the corresponding B-valued Hardy
spaces in analogy with their probabilistic counterparts. We are partly motivated

x
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Introduction xi

by the important role they play in operator theory, when one takes for B the
space of bounded operators (or the Schatten p-class) on a Hilbert space.

Hardy spaces are closely linked with martingales via Brownian motion:
indeed, for any B-valued bounded harmonic (resp. analytic) function u on the
unit disc D, the composition (u(Wt'T ))t>0 of u with Brownian motion stopped
before it exits D is an example of a continuous B-valued martingale, and its
boundary behaviour depends in general on whether B has the RNP (resp. ana-
lytic RNP).We describe this connection with Brownianmotion in detail, but we
refrain from going too far on that road, remaining faithful to our discrete time
emphasis. However, we include short sections summarizing just what is neces-
sary to understand the connections with Brownian martingales in the Banach
valued context, together with pointers to the relevant literature. In general, the
sections that are a bit far off our main goals are marked by an asterisk. For
instance, we describe in §7.1 the Banach space valued version of Fefferman9s
duality theorem between H1 and BMO. While this is not really part of martin-
gale theory, the interplay with martingales, both historically and heuristically,
is so obvious that we felt we had to include it. The asterisked sections could be
kept for a second reading.
In addition to the RN and UMD properties, our third main theme is

super-renexivity and its connections with uniform convexity and smoothness.
Roughly, we relate the geometric properties of a Banach space B with the study
of the p-variation

Sp( f ) =

�

�>

1
� fn 2 fn21�

p

B

�1/p

of B-valued martingales ( fn). Depending on whether Sp( f ) * Lp is necessary
or sufocient for the convergence of ( fn) in Lp(B), we can ond an equivalent
norm on B with modulus of uniform convexity (resp. smoothness) 8at least as
good as9 the function t ³ t p.
We also consider the strong p-variation

Vp( f ) = sup
0=n(0)<n(1)<n(2)<···

�

�>

1
� fn(k) 2 fn(k21)�

p

B

�1/p

of a martingale. For that topic (exceptionally) we devote an entire chapter only
to the scalar case. Our crucial tool here is the 8real interpolation method9. Real
and complex interpolation in general play an important role in Lp-space the-
ory, so we ond it natural to devote a signiocant amount of space to these two
8methods9.
We allow ourselves several excursions aiming to illustrate the efociency of

martingales, for instance to the concentration of measure phenomenon.We also
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xii Introduction

describe some exciting recent work on non-linear properties of metric spaces
analogous to uniform convexity/smoothness and type for metric spaces.
We originally intended to include in this book a detailed presentation of 8non-

commutative9 martingale theory, but that part became so big that we decided
to make it the subject of a (hopefully forthcoming) separate volume to be pub-
lished, perhaps on the author9s web page. We merely outline its contents in the
last chapter, devoted to non-commutative Lp-spaces. There the complex inter-
polation method becomes a central tool.
The book should be accessible to graduate students, requiring only the basics

of real and complex analysis (mainly Lebesgue integration) and basic func-
tional analysis (mainly duality, the weak and strong topologies and renexiv-
ity of Banach spaces). Our choice is to give fully detailed proofs for the main
results and to indicate references to the reonements in the 8Notes and Remarks9
or the asterisked sections. We strive to make the presentations self-contained,
and when given a choice, we opt for simplicity over maximal generality. For
instance, we restrict the Banach space valued harmonic analysis to functions
with domains in the unit disc D or the upper half-planeU in C (or their bound-
ary "D = T or "U = R). We feel the main ideas are easier to grasp in the real
or complex uni-dimensional case.
The topics (martingales,H p-space theory, interpolation, Banach space geom-

etry) are quite diverse and should appeal to several distinct audiences. The main
novelty is the choice to bring all these topics together in the various parts of this
single volume. We should emphasize that the different parts can be read inde-
pendently, and each time their start is introductory.
There are natural groupings of chapters, such as 1-2-10-11 or 3-4-5-6 (possi-

bly including parts of 1 and 2, but not necessarily), which could form the basis
for a graduate course.
Depending on his or her background, a reader is likely to choose to con-

centrate on different parts. We hope probabilist graduate students will ben-
eot from the detailed introductory presentation of basic H p-space theory, its
connections with martingales, the links with Banach space geometry and the
detailed treatment of interpolation theory (which we illustrate by applications
to the strong p-variation of martingales), while graduate students with interest
in functional analysis and Banach spaces should beneot more from the initial
detailed presentation of basic martingale theory. In addition, we hope to attract
readers with interest in computer science wishing to see the sources of the var-
ious recent developments on onite metric spaces described in Chapter 13. A
reader with an advanced knowledge of harmonic analysis and H p-theory will
probably choose to skip the introductory part on that direction, which is written
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Introduction xiii

with non-specialists in mind, and concentrate on the issues specioc to Banach
space valued functions related to the UMD property and the Hilbert transform.

The choice to include so much background on the real and complex interpo-
lation methods in Chapter 8 is motivated by its crucial importance in Banach
space valued Lp-space theory, which, in some sense, is the true subject of this
book.
Acknowledgement. This book is based on lecture notes for various topics

courses given during the last 10 years or so at Texas A&M University. Thanks
are due to Robin Campbell, who typed most on them, for her excellent work.
I am indebted to Hervé Chapelat, who took notes from my even earlier lec-
tures on H p-spaces there, for Chapters 3 and 4. The completion of this vol-
ume was stimulated by the Winter School on 8Type, cotype and martingales
on Banach spaces and metric spaces9 at IHP (Paris), 238 February 2011, for
which I would like to thank the organizers. I am very grateful to all those who,
at some stage, helped me to correct mistakes and misprints and who suggested
improvements of all kinds, in particular Michael Cwikel, Sonia Fourati, Julien
Giol, Rostyslav Kravchenko, BernardMaurey, AdamOsÛekowski, Javier Parcet,
Yanqi Qiu, Mikael de la Salle, Francisco Torres-Ayala, Mateusz Wasilewski,
and Quanhua Xu; S. Petermichl for help on Chapter 6; and M. I. Ostrovskii for
advice on Chapter 13. I am especially grateful to Mikael de la Salle for drawing
all the pictures with TikZ.
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Description of the contents

We will now review the contents of this book chapter by chapter.
Chapter 1 begins with preliminary background: we introduce Banach space

valued Lp-spaces, conditional expectations and the central notion in this book,
namely Banach space valued martingales associated to a oltration (An)ng0 on
a probability space (",A, P). We describe the classical examples of oltrations
(the dyadic one and the Haar one) in §1.4. If B is an arbitrary Banach space
and the martingale ( fn) is associated to some f in Lp(B) by fn = E

An ( f ) (1 f

p < >), then, assumingA = A> for simplicity, the fundamental convergence
theorems say that

fn ³ f

both in Lp(B) and almost surely (a.s.).
The convergence in Lp(B) is Theorem 1.14, while the a.s. convergence is

Theorem 1.30. The latter is based on Doob9s classical maximal inequalities

(Theorem 1.25), which are proved using the crucial notion of stopping time.
We also describe the dual form of Doob9s inequality due to Burkholder-Davis-
Gundy (see Theorem 1.26). Doob9s maximal inequality shows that the con-
vergence of fn to f in Lp(B) 8automatically9 implies a.s. convergence. This,
of course, is special to martingales, but in general it requires p g 1. However,
for martingales that are sums of independent, symmetric random variables (Yn)
(i.e. we have fn =

�n
1 Yk), this result holds for 0 < p < 1 (see Theorem 1.40).

It also holds, roughly, for p = 0. This is the content of the celebrated Ito-Nisio
theorem (see Theorem 1.43), which asserts that even a weak form of conver-
gence of the series fn =

�n
1 Yk implies its a.s. norm convergence.

In §1.8, we prove, again using martingales, a version of Phillips9s theorem.
The latter is usually stated as saying that, if B is separable, any countably addi-
tive measure on the Borel Ã -algebra of B is 8Radon9, i.e. the measure of a Borel

xiv
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